JP2004074928A - Two-wheel/four-wheel drive switching mechanism - Google Patents

Two-wheel/four-wheel drive switching mechanism Download PDF

Info

Publication number
JP2004074928A
JP2004074928A JP2002238312A JP2002238312A JP2004074928A JP 2004074928 A JP2004074928 A JP 2004074928A JP 2002238312 A JP2002238312 A JP 2002238312A JP 2002238312 A JP2002238312 A JP 2002238312A JP 2004074928 A JP2004074928 A JP 2004074928A
Authority
JP
Japan
Prior art keywords
clutch
wheel
wheel drive
speed
pawl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002238312A
Other languages
Japanese (ja)
Other versions
JP4106252B2 (en
JP2004074928A5 (en
Inventor
Hitoshi Nomura
野村 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP2002238312A priority Critical patent/JP4106252B2/en
Publication of JP2004074928A publication Critical patent/JP2004074928A/en
Publication of JP2004074928A5 publication Critical patent/JP2004074928A5/ja
Application granted granted Critical
Publication of JP4106252B2 publication Critical patent/JP4106252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of shortage in a clutch capacity in a conventional two-wheel/four-wheel drive switching mechanism in which an energizing member is arranged in a hydraulic clutch and the clutch is turned on by pressing pressing a friction plate by means of the energizing member. <P>SOLUTION: In a traveling vehicle allowing switch among a four-wheel drive condition, a front wheel accelerating drive condition, and a two-wheel drive condition as a power transmission condition to a front wheel driving output shaft 30 serving as a driving output shaft to four front wheels 1, a selection clutch performing the switch is arranged on the front wheel driving output shaft 30. The selection clutch is constructed of the friction clutch 95 and a claw type clutch 97, and they can be operated by an actuator. When the friction clutch 95 and the claw type clutch 97 actuator are not operated, the four-wheel drive condition is set. When the claw type clutch97 actuator is operated, the two-wheel drive condition is set. When the friction clutch 95 and the claw type clutch 97 actuator are operated, the front wheel accelerating drive condition is set. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、トラクタ等の走行車両において、二輪駆動と四輪駆動を切り換えるクラッチの構成に関する。
【0002】
【従来の技術】
従来、二輪輪駆動(2WD)と四輪駆動(4WD)を油圧クラッチにより切り換えるトラクタ等の走行車両において、エンジンが停止すると油圧ポンプも停止されて油圧クラッチに圧油が供給されないため、該油圧クラッチがオフ状態となり、前輪の駆動経路が絶たれるため、駐車ブレーキを制動状態としても後輪のみ制動されて前輪は制動されない状態となっている。
そこで、油圧クラッチに付勢部材を設けて、圧油が送油されていないときは該付勢部材の付勢力により摩擦板を押圧することで、該クラッチをオン状態として後輪伝動系と前輪とを接続した四輪駆動とし、二輪駆動とするときは油圧クラッチを作動させてクラッチをオフ状態としていた。こうしてエンジン停止時には付勢部材の付勢力により四輪駆動として前輪にも制動力を伝達可能に構成していた。
【0003】
【発明が解決しようとする課題】
しかし、前述の如く、油圧クラッチに付勢部材を設けて、該付勢部材により摩擦板を押圧することで該クラッチをオン状態とする構成では、付勢部材、例えばバネによりクラッチをオンとし、この付勢力により、前輪へ制動力を伝達し、また、四輪駆動には後輪からの駆動力をクラッチを介して前輪に伝達しなければならないために、クラッチ容量を大きくしなければならず、ミッションケースが大きくなり、重量等も増加していた。また、ミッションケースの大きさを従来のものと略同じにして構成した場合、十分な付勢力を有する付勢部材を用いることができず、クラッチ容量が不足気味となっていた。
【0004】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0005】
即ち、請求項1においては、前輪への駆動出力軸である前輪駆動出力軸への動力伝達状態を、前輪を後輪の周速と略同速に駆動する四輪駆動状態と、前輪を後輪の周速よりも増速して駆動する前輪増速駆動状態と、後輪のみを駆動する二輪駆動状態に切換可能とした走行車両において、前記前輪駆動出力軸上に前記切り換えを行う切換クラッチを設け、該切換クラッチは、摩擦式クラッチと爪式クラッチより構成しそれぞれアクチュエータで作動可能に構成し、摩擦式クラッチと爪式クラッチのアクチュエータの非作動時に四輪駆動状態とし、爪式クラッチのアクチュエータの作動時に二輪駆動状態とし、摩擦式クラッチと爪式クラッチのアクチュエータの作動時に前輪増速駆動状態とするものである。
【0006】
請求項2においては、請求項1に記載の二輪・四輪駆動切換機構において、前記爪式クラッチは弾性体にて咬合するよう常時付勢されているものである。
【0007】
請求項3においては、請求項1又は請求項2に記載の二輪・四輪駆動切換機構において、前記爪式クラッチを、標準駆動入力歯車に設けたクラッチ爪と、クラッチケース内を摺動するクラッチ爪とから構成し、両爪の咬合時に回転方向においてクラッチ爪とクラッチ爪の間に所定の隙間を設けたものである。
【0008】
【発明の実施の形態】
次に、発明の実施の形態を説明する。
図1は本発明の実施例に係るトラクタの全体的な構成を示した側面図、図2は動力伝達構成を示したスケルトン図、図3は動力伝達構成を示すミッションケースの断面展開図、図4は油圧回路図、図5は本発明の二輪・四輪駆動切換機構を示すミッションケース下部の側面断面図、図6は四輪駆動時における二輪・四輪駆動切換機構の拡大図、図7は図5におけるA−A矢視断面図、図8は二輪駆動時の二輪・四輪駆動切換機構の拡大図、図9は前輪増速駆動時の二輪・四輪駆動切換機構の拡大図、図10は二輪・四輪駆動切換機構の制御を示すフローチャート図である。
【0009】
図1に示す如く、この走行車両はトラクタを実施例としており、本機の前後に前輪1・1及び後輪2・2が支承され、前部のボンネット6内部にはエンジン5が配置され、該ボンネット6の後方にはステアリングハンドル10が配設されている。前記ステアリングハンドル10の後方には座席11が配設され、該座席11の側部には主変速レバーや副変速レバー等の操作レバーが配設されている。これらステアリングハンドル10や座席11やレバー類等はキャビン12内の運転部に配置されている。
【0010】
また、エンジン5の後部にクラッチハウジングが配置され、該クラッチハウジングの後部にミッションケース9が配設され、エンジン5からの動力を後輪2に伝達して駆動し、後述する本発明の二輪・四輪駆動切換機構79を介して前輪1にも同時に駆動力を伝達することを可能としている。
【0011】
前記エンジン5の駆動力はミッションケース9後端から突出したPTO軸15に伝達されて、該PTO軸15から図示しないユニバーサルジョイント等を介して車両後端に作業機装着装置を介して装着した作業機100を駆動するように構成している。そして、前記座席11前下方のステップ上にはクラッチを断接操作するためのクラッチペダルとブレーキペダル等が配設されている。
【0012】
次に、動力伝動系の構成について図2より説明する。
前記クラッチハウジング7内には多板式の主クラッチ21が収納され、前記クラッチペダル16に連係されている。そして、前記エンジン5の出力軸(クランク軸)22の回転が主クラッチ21に入力され、該主クラッチ21の出力軸23は車両後方に延出され、PTOクラッチ軸29と同一軸心に配設されている。
【0013】
前記出力軸23の後端上に伝動歯車64とPTO三速爪64aが配置され、PTOクラッチ軸29上には三枚のPTO変速歯車、すなわち、PTO一速歯車61、PTO二速歯車62、PTO逆転歯車63、が遊嵌される。該PTO変速歯車61・62と伝動歯車64は、主軸25に固設あるいは形設した三枚の前記伝達歯車41・42・44に噛合しており、PTO逆転歯車63はカウンタ歯車37を介して伝達歯車43と噛合し、後述するPTOクラッチスライダ93・94の摺動により、伝達歯車41・42・43・PTO三速爪64aからPTOクラッチ軸29に回転駆動力が伝達される。
【0014】
また、PTOクラッチ軸29には二つのPTOクラッチスライダ93・94が軸方向摺動可能にスプライン嵌合されており、該PTOクラッチスライダ93・94は、図略のPTO変速レバーに連係されている。そして、PTO変速レバーの操作によりPTOクラッチスライダ93・94とPTO一速歯車61、PTO二速歯車62、PTO逆転歯車63に形成した爪とPTO三速爪64aとの咬合を選択しPTOクラッチ軸29に回動力が伝達される。
前記PTOクラッチ軸29の回転動力は減速歯車91を介してPTO軸15伝達され、該PTO軸15は後方に延出され、作業車後端に接続された作業機100を駆動する。
【0015】
前記主軸25に固設あるいは形設した四枚の前記伝達歯車41・42・43・44は、主変速軸24にそれぞれ遊嵌された主変速歯車、すなわち、主変速一速歯車31、主変速二速歯車32、主変速三速歯車33、主変速四速歯車34と噛合している。
主変速軸24には二つの主変速クラッチスライダ51・52が軸方向摺動可能にスプライン嵌合されており、該主変速クラッチスライダ51・52は、主変速レバー77に連係されている。そして、主変速レバー77の操作により主変速クラッチスライダ51・52と主変速一速歯車31、主変速二速歯車32、主変速三速歯車33、主変速四速歯車34に形成した爪との咬合を選択し、選択されたいずれか一つの主変速歯車31・32・33・34を介して主軸25から主変速軸24へ動力が伝達される。このようにして、四段階の変速を可能とした主変速装置を構成し、主軸25からの変速後の回転が主変速軸24に伝達される。
【0016】
そして、主変速軸24は前方に延長されて、該延長部分には正逆転機構が構成されて正転側歯車26及び逆転側歯車27がそれぞれ同一軸心上に遊嵌されている。そして、リバーサレバー71(図2)の操作によりリバーサクラッチ57が前進側又は後進側いずれかが選択されて接続され、主変速軸24の回転は正転側歯車26又は逆転側歯車27のいずれかに伝達される。但し、リバーサレバー71がニュートラル位置の場合は、回転は両歯車26・27のいずれにも伝達されない。
【0017】
正転側歯車26は伝達軸48に嵌合又は固設された歯車45に噛合しており、また、逆転側歯車27は、カウンタ軸38に嵌合又は固設されたカウンタ歯車39に噛合しており、該カウンタ歯車39は伝達軸48に嵌合又は固設された歯車47と噛合している。
したがって、リバーサクラッチ57が前進側に接続されたときには、主変速軸24の回転動力が正転側歯車26を介して伝達軸48に伝達され、リバーサクラッチ57が後進側に接続されたときには、主変速軸24の回転動力が、逆転側歯車27から、カウンタ軸38を介して伝達軸48を逆転方向に回転するよう伝達される。
【0018】
伝達軸48に嵌合又は固設された歯車45は、前記正転側歯車26と噛合するとともに、副変速軸35に遊嵌した歯車59に噛合している。副変速軸35には副変速シフタ92がスプライン嵌合しており、該副変速シフタ92は副変速レバー73によって操作され、副変速シフタ92の前部に形成された副変速二速歯92aと、前記歯車59の後部に形成された歯59aが噛合する状態と、副変速シフタ92に設けられた副変速一速歯92bと、伝達軸48に形成された歯車46が噛合する状態と、副変速シフタ92に回転動力が伝達されない状態に、切換可能とした副変速装置が構成されている。そして、副変速シフタ92の摺動に基づく選択により、伝達軸48の回転が二段の変速を経て出力され、副変速軸35に入力される。
【0019】
上述の如く副変速装置によって変速されて伝達軸48より副変速軸35に伝達された回転動力は、該副変速軸35上の三つの歯車49・19・20によって、後輪駆動系と前輪駆動系の二方向に出力される。
前記ミッションケース9後部には後輪デフ装置66bが配置され、前記副変速軸35の回転が、その後端に形設した傘歯車20を介して該後輪デフ装置66bに入力され、リアアクスルケース内の車軸、伝達歯車等を経由して後輪2が駆動される。96はブレーキ装置である。
また、本発明の二輪・四輪駆動切換機構79によって、副変速軸35上に固設した歯車19より前輪駆動出力軸30上に遊嵌した標準駆動入力歯車50を介して、又は、副変速軸35上に固設した歯車49より前輪駆動出力軸30上に遊嵌した増速駆動入力歯車60を介して、前輪駆動出力軸30に入力された動力が、前輪駆動出力軸30の前端に連結する前輪伝達軸14に伝えられて、ユニバーサルジョイント等を介して前輪側のデフ装置66aに入力され、フロントアクスルケース内の車軸、伝達歯車等を介して前輪1が駆動される。
【0020】
次に、油圧回路について図4より説明する。
エンジン5の駆動により油圧ポンプ86・90が駆動され、油圧ポンプ86からパワーステアリング装置74に圧油が送油されて、ステアリングハンドル10の回動に連動した方向切換バルブ75の切り換えにより、パワーステアリング装置74のパワーステアリングシリンダ76が伸縮されて前輪1を回動する。
そして、パワーステアリング装置74を経た作動油は後述する切換バルブ85を経て、二輪・四輪駆動切換機構79に送油され、該二輪・四輪駆動切換機構79を作動させて、前輪増速又は二輪・四輪駆動の切換が行われる。
【0021】
また、油圧ポンプ90の吐出油路には分流弁123を介して、一方は作業機100の傾斜角度調節用の制御弁104から角度変更油圧シリンダ105に送油可能とし、他方の油路からは作業機制御用装置106を介して昇降シリンダ127に送油可能としている。
【0022】
次に本発明の二輪・四輪駆動切換機構79について説明する。
二輪・四輪駆動切換機構79により、四輪駆動状態での走行時に、自動切換モードとしたときには、前輪1の切れ角より車体の旋回操作が検出され、設定角度以上前輪1がきられると、後輪2の周速度よりも前輪1の周速度を増速する前輪増速駆動状態に自動的に切り換えられて、車体が速やかに旋回できるように制御される。
【0023】
前記前輪駆動出力軸30は前記ミッションケース9の前下部に、出力軸23や主変速軸24やPTO軸15等と平行に前後方向にベアリングを介して回転自在に支持され、前輪駆動出力軸30の前端はミッションケース9より前方に突出されている。
【0024】
図5及び図6に示す如く、前輪駆動出力軸30上には標準駆動入力歯車50及び増速駆動入力歯車60がそれぞれベアリングを介して遊嵌され、該標準駆動入力歯車50及び増速駆動入力歯車60と、前輪駆動出力軸30との間にはそれぞれ爪式クラッチ97と摩擦式クラッチ95が配置され、該爪式クラッチ97と摩擦式クラッチ95はそれぞれ油圧アクチュエータにより断接されるように構成されている。つまり、これらの歯車50・60の間にクラッチケースとなるシリンダ80が前輪駆動出力軸30に固設され、該シリンダ80には、標準駆動入力歯車50側及び増速駆動入力歯車60側に四駆クラッチピストン81及び増速クラッチピストン82の二個のシリンダピストンが摺動可能に内挿されて油圧アクチュエータが形成されている。
【0025】
前記四駆クラッチピストン81及び増速クラッチピストン82と、シリンダ80に設けられたバネ受けの間には、弾性係数の異なる弾性体して、バネ荷重特性の異なるバネ83・84がそれぞれ介装されてピストンを縮小する方向に付勢している。本実施例では径の異なるバネ83・84を採用して、四駆クラッチピストン81及び増速クラッチピストン82はいずれも、シリンダ80の前後略中央に形成された仕切壁80e側へ押圧されるよう付勢されるが、四駆クラッチピストン81より、増速クラッチピストン82がより強く仕切壁80eへ押圧されるようにしている。なお、増速クラッチピストン82にはシリンダ室内と摩擦板側を連通する油路とその先端にオリフィス82aが設けられて押圧時のショックを和らげるようにしている。
【0026】
また、前記標準駆動入力歯車50に咬合体となるクラッチ爪50aが設けられ、四駆クラッチピストン81の内周部に咬合体となるクラッチ爪81aが形成され、該クラッチ爪50a・81aが対向するように配設されて爪式クラッチ97が設けられ、前記バネ83の付勢力によりクラッチ爪50a・81aが咬合するように構成している。即ち、図7に示す如く、標準駆動入力歯車50の外周部に複数(本実施例では3個)のクラッチ爪50a・50a・50aが、等間隔に外側に向かって放射状に突出して固設されている。また、四駆クラッチピストン81のシリンダ室外側において内側に向かって前記クラッチ爪50a・50a・50aに対応してクラッチ爪81a・81a・81aが、等間隔に内側に向かって放射状に突出して固設されている。そして、前記四駆クラッチピストン81がバネ83の付勢力により仕切壁80e側へ付勢された非作動時において、該クラッチ爪81aとクラッチ爪81aとの間にクラッチ爪50aが回転方向で重なり合うように配置され、クラッチ爪81aとクラッチ爪50aが咬合するように構成されているのである。
そして、該クラッチ爪81aとクラッチ爪81aとの間の爪部以外の内周部の長さL1は、クラッチ爪50aの外周部の長さ(回転方向の爪幅)L2より長くして、或いは、クラッチ爪50aとクラッチ爪50aとの間の爪部以外の内周部の長さL3は、クラッチ爪81aの外周部の長さ(回転方向の爪幅)L4より長くして、両爪の咬合時に回転方向においてクラッチ爪81aの爪部とクラッチ爪50aの爪部との間に所定の隙間L5を設けて遊びを形成し、この隙間L5はクラッチ爪50aまたは81aの回転方向の爪幅L2またはL4より大きくしている。こうして、二輪駆動状態で後輪2がスリップした場合等のようにクラッチ爪50aとクラッチ爪81aとの周速差が大きいときにも切換動作しやすいようにしている。
さらに、四駆クラッチピストン81の外周部に形成されたクラッチ爪81bと、シリンダ80に形成されたクラッチ爪80aが咬合している。
したがって、四駆駆動状態では、副変速軸35上の歯車19から標準駆動入力歯車50に入力された動力は、標準駆動入力歯車50→四駆クラッチピストン81→シリンダ80→前輪駆動出力軸30という経路によって前輪駆動系へ伝達され、前輪1は後輪2の周速と略同速となるよう回転駆動される。
【0027】
なお、図8に示す如く、前記爪クラッチ80aがバネ83の付勢力に抗して標準駆動入力歯車50側へ移動して、爪クラッチ80aと爪クラッチ50aの咬合が解除されると、副変速軸35から前輪駆動出力軸30への動力伝達が断絶され、二輪駆動状態となる。
【0028】
また、増速駆動入力歯車60のボス部と、シリンダ80の内周部との間にはそれぞれ摩擦板60a・80bが交互に設けられ、増速クラッチピストン82の増速駆動入力歯車60と対向する面には皿バネ98が設けられて、摩擦式クラッチ95が形成されている。そして、前記バネ84の付勢力によって増速クラッチピストン82を縮小側に付勢して摩擦板60a・80bを押圧しないようにしている。
【0029】
そして、前輪増速駆動状態では、図9に示す如く、四駆クラッチピストン81が押されてクラッチ爪81aと爪クラッチ50aの咬合が解除されると同時に、増速クラッチピストン82が増速駆動入力歯車60側へ移動して、摩擦板60a・80bを押圧し、増速駆動入力歯車60とシリンダ80が連結されて、一体となって回転する。従って、副変速軸35上の歯車49から増速駆動入力歯車60に入力された動力は、増速駆動入力歯車60→シリンダ80→前輪駆動出力軸30という経路によって前輪駆動系へ伝達され、前輪1は後輪2よりも増速して回転駆動される。
【0030】
次に、上述の如く構成した二輪・四輪駆動切換機構79の四駆クラッチピストン81と増速クラッチピストン82の制御について説明する。
図5、図8、図9に示す如く、前記前輪駆動出力軸30内には、油圧ポンプ86からの圧油が送られる油路30a・30b・30c・30dが形成され、さらに、前記シリンダ80に形成された仕切壁80eには油路80c・80dが形成されている。これらの油路30a・30c・80cを介して、油圧ポンプ86からの作動油を四駆クラッチピストン81の配設された四駆側シリンダ室Haに圧送できるようにする一方、油路30b・30d・80dを介して油圧ポンプ86からの作動油を増速クラッチピストン82の配設された増速側シリンダ室Hbに圧送できるようにしている。
【0031】
また、前輪駆動出力軸30の軸心部に穿設した油路30a・30bはミッションケース9上またはその前部に連設したクラッチハウジングに付設した前記切換バルブ85と接続され、該切換バルブ85は油圧ポンプ86と接続されている。該切換バルブ85は電磁バルブより構成され、該切換バルブ85を構成するソレノイド85d・85eは制御装置101と接続されている。制御装置101よりソレノイド85d・85eに信号が送信されないと、つまり、摩擦式クラッチ95と爪式クラッチ97の油圧アクチュエータは非作動状態となり、中立位置を保持して四輪駆動位置85aとなる。制御装置101よりソレノイド85dに駆動信号が送信されると、切換バルブ85は二輪駆動位置85cにスプールが移動し、爪式クラッチ97の油圧アクチュエータが作動される。また、ソレノイド85eに駆動信号が送信されると、切換バルブ85は増速駆動位置85bスプールが移動して切り換えられ、摩擦式クラッチ95と爪式クラッチ97の油圧アクチュエータは作動状態となる。
【0032】
また、前記制御装置101には、前輪1のステアリング切れ角を検出するための切れ角センサ89が電気的に接続されている。該切れ角センサ89は、前輪1に設けられたキングピン88に設けられている。なお、切れ角センサ89はステアリングハンドル10や、ステアリング軸等に設けることもできる。
【0033】
そして、制御装置101には、自動切換モードのON/OFFを切り換える切換スイッチ102が接続されている。自動切換スイッチ102と二輪駆動モードに切換える切換スイッチ103は前記ステアリングハンドル10または座席11近傍に配置されて、走行時や作業時等において操縦者が容易に操作できるようにしている。
前記自動切換モードがONのときには、前輪1の切れ角に基づいて、四輪駆動状態から自動的に前輪増速駆動状態に、すなわち、切換バルブ85がステアリングハンドル10の切れ角によって四輪駆動位置85aから増速駆動位置85bに切換制御される。つまり、前輪1の切れ角に基づいて、前輪増速駆動状態から自動的に四輪駆動状態に、すなわち、切換バルブ85が増速駆動位置85bから四輪駆動位置85aに自動的に切換制御される。そして、自動切換モードがOFFのときには、四輪駆動状態が保持され、切換バルブ85は四輪駆動位置85aに固定される。
【0034】
次に、自動切換モード時の制御を図10に示すフローチャートを用いて説明する。
制御装置101は、自動切換スイッチ102がONとされる(151)と自動モードとなり、切れ角センサ89からの情報による前輪1の切れ角θと、予め設定した切換角度βとを比較する(152)。この切れ角θが切換角度β以上であれば、制御装置101から、切換バルブ85のソレノイド85eに駆動信号を送信して(153)増速駆動位置85bに切り換えて前輪増速駆動状態とする(154)。
【0035】
切換バルブ85が、増速駆動位置85bに切り換われば、油圧ポンプ86から、油圧ポンプ86→油路30a→油路30c→油路80d→四駆側シリンダ室Ha、という経路により作動油が四駆側シリンダ室Haに圧送されると同時に、油圧ポンプ→油路30b→油路30d→増速側シリンダ室Hb、という経路により作動油が増速側シリンダ室Hbに圧送される。これにより、図8に示す如く、四駆クラッチピストン81は、標準駆動入力歯車50側へ摺動して、クラッチ爪50a・81aの咬合が解除され、四駆クラッチピストン81と標準駆動入力歯車50を介する副変速軸35から前輪駆動出力軸30への動力の伝達が断絶される。そして、図9に示す如く、増速側シリンダ室Hbに送油された作動油の圧力により増速クラッチピストン82が皿バネ98を介して摩擦板80b・60aを押圧して、摩擦板80b・60a間での摩擦力が発生し、増速駆動入力歯車60とシリンダ80が一体的に回動するようになる。従って、歯車49→増速駆動入力歯車60→摩擦板60a・80b→シリンダ80→前輪駆動出力軸30→前輪伝達軸14等を介して前輪1に動力が伝達されて、前輪増速駆動状態となる(154)。
【0036】
また、切れ角センサ89からの情報による、前輪1の切れ角θと、予め設定した切換角度βとを比較して(152)、切れ角θが切換角度βより小さい値となれば、制御装置101から、切換バルブ85への信号は送信されず、切換バルブ85は中立位置を保持して四輪駆動状態を維持する(155)。
【0037】
前記切換バルブ85が、前輪増速駆動状態の増速駆動位置85bから四輪駆動位置85aに切り換われば、ドレンタンク87に繋がる油路が開かれて油路全体の圧が低くなることによって、四駆側シリンダ室Ha及び増速側シリンダ室Hbの圧が低くなり、増速クラッチピストン82による摩擦板80b・60aの押圧が解除され摩擦式クラッチ95は非作動状態となるとともに、バネ83による付勢により四駆クラッチピストン81が摺動して、四輪クラッチピストン81と標準駆動入力歯車50のクラッチ爪81a・50aが咬合し(爪式クラッチ97が作動状態となり)、四輪駆動状態となる(155)。
【0038】
また、前記自動切換モードがOFFのとき(151)には、四輪駆動状態から二輪駆動状態に切り換えることが可能であり、四輪駆動状態と二輪駆動状態を切り換えるための二輪・四輪駆動切換スイッチ103が制御装置101に接続されている。自動切換モードがOFFのときに(151)、二輪・四輪駆動切換スイッチ103をONとすると(156)、制御装置101からの信号により切換バルブ85のソレノイド85dが作動され(157)、四輪駆動位置85aから二輪駆動位置85cに切り換得られて、四輪駆動状態から二輪駆動状態になる(158)。切換バルブ85が、二輪駆動位置85cに切り換われば、油圧ポンプ86から、油圧ポンプ86→油路30a→油路30c→油路80d→四駆側シリンダ室Ha、という経路により作動油が四駆側シリンダ室Haに圧送される。これにより、図8に示す如く、四駆クラッチピストン81は、標準駆動入力歯車50側へ摺動して、爪式クラッチ97のクラッチ爪50a・81aの咬合が解除され、四駆クラッチピストン81と標準駆動入力歯車50を介する副変速軸35から前輪駆動出力軸30への動力の伝達が断絶され、二輪駆動状態となる。また、二輪・四輪駆動切換スイッチ103がOFFの場合(156)四輪駆動状態を維持する(155)。
【0039】
なお、二輪駆動状態から四輪駆動状態に、すなわち、二輪・四輪駆動切換スイッチ103がONからOFFに切り換わったときには、切換バルブ85が二輪駆動位置85cから四輪駆動位置85aに切換制御される。切換バルブ85が、四輪駆動位置85aに切り換われば、ドレンタンク87に繋がる油路が開かれて油路全体の圧が低くなることによって、四駆側シリンダ室Haの圧が低くなり、バネ83による付勢により四駆クラッチピストン81が摺動して、四輪クラッチピストン81と標準駆動入力歯車50のクラッチ爪81a・50aが咬合し、四輪駆動状態となる。
【0040】
上述の如く構成された、二輪・四輪駆動切換機構79では、エンジン5が停止して、油圧ポンプ86から作動油が送られない状態となっても、四駆クラッチピストン81のクラッチ爪81aと、標準駆動入力歯車50のクラッチ爪50aが咬合を保持するため、駐車ブレーキを作動させたときに、後輪デフ装置66bの制動は前輪駆動出力軸30にも制動力が働き、前輪1が自由に回転するような状態が発生しないため、制動力を保持できる。
したがって、ミッションケース9の大きさを変更することなく、クラッチの容量不足を解消できる。
【0041】
【発明の効果】
本発明は、以上のように構成したので、以下に示すような効果を奏する。
【0042】
即ち、請求項1に示す如く、前輪への駆動出力軸である前輪駆動出力軸への動力伝達状態を、前輪を後輪の周速と略同速に駆動する四輪駆動状態と、前輪を後輪の周速よりも増速して駆動する前輪増速駆動状態と、後輪のみを駆動する二輪駆動状態に切換可能とした走行車両において、前記前輪駆動出力軸上に前記切り換えを行う切換クラッチを設け、該切換クラッチは、摩擦式クラッチと爪式クラッチより構成しそれぞれアクチュエータで作動可能に構成し、摩擦式クラッチと爪式クラッチのアクチュエータの非作動時に四輪駆動状態とし、爪式クラッチのアクチュエータの作動時に二輪駆動状態とし、摩擦式クラッチと爪式クラッチのアクチュエータの作動時に前輪増速駆動状態とするので、エンジンが停止しても、前輪駆動出力軸への伝動系が途切れることなく前輪への制動力を保持することができる。
したがって、ミッションケースの大きさを変更することなく、クラッチの容量不足を解消できる。
【0043】
請求項2に示す如く、請求項1に記載の二輪・四輪駆動切換機構において、前記爪式クラッチは弾性体にて咬合するよう常時付勢されているので、エンジンが停止しても、前輪駆動出力軸への伝動系が途切れることなく前輪への制動力を保持することができる。
【0044】
請求項3に示す如く、請求項1又は請求項2に記載の二輪・四輪駆動切換機構において、前記爪式クラッチを、標準駆動入力歯車に設けたクラッチ爪と、クラッチケース内を摺動するクラッチ爪とから構成し、両爪の咬合時に回転方向においてクラッチ爪とクラッチ爪の間に所定の隙間を設けたので、クラッチ爪とクラッチ爪との周速差が大きいときにも切換動作しやすくなる。
【図面の簡単な説明】
【図1】本発明の実施例に係るトラクタの全体的な構成を示した側面図。
【図2】動力伝達構成を示したスケルトン図。
【図3】動力伝達構成を示すミッションケースの断面展開図。
【図4】油圧回路図。
【図5】本発明の二輪・四輪駆動切換機構を示すミッションケース下部の側面断面図。
【図6】四輪駆動時における二輪・四輪駆動切換機構の拡大図。
【図7】図5におけるA−A矢視断面図。
【図8】二輪駆動時の二輪・四輪駆動切換機構の拡大図。
【図9】前輪増速駆動時の二輪・四輪駆動切換機構の拡大図。
【図10】二輪・四輪駆動切換機構の制御を示すフローチャート図。
【符号の説明】
1 前輪
2 後輪
5 エンジン
30 前輪駆動出力軸
50 標準駆動入力歯車
50a クラッチ爪
60 増速駆動入力歯車
60a 摩擦板
79 二輪駆動・四輪駆動切換機構
80 シリンダ
80a クラッチ爪
80b 摩擦板
81 四駆クラッチピストン
81a クラッチ爪
81b クラッチ爪
82 増速クラッチピストン
83 バネ
84 バネ
95 摩擦式クラッチ
97 爪式クラッチ
98 押圧体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a clutch for switching between two-wheel drive and four-wheel drive in a traveling vehicle such as a tractor.
[0002]
[Prior art]
Conventionally, in a traveling vehicle such as a tractor that switches between two-wheel drive (2WD) and four-wheel drive (4WD) by a hydraulic clutch, when the engine stops, the hydraulic pump also stops, and no hydraulic oil is supplied to the hydraulic clutch. Is turned off and the drive path of the front wheels is cut off, so that even if the parking brake is in the braking state, only the rear wheels are braked and the front wheels are not braked.
Therefore, an urging member is provided in the hydraulic clutch, and when the pressure oil is not supplied, the friction plate is pressed by the urging force of the urging member, so that the clutch is turned on to set the rear wheel transmission system and the front wheel When the two-wheel drive is used and the two-wheel drive is connected, the hydraulic clutch is actuated and the clutch is turned off. Thus, when the engine is stopped, the braking force is transmitted to the front wheels by the four-wheel drive by the urging force of the urging member.
[0003]
[Problems to be solved by the invention]
However, as described above, in the configuration in which the urging member is provided to the hydraulic clutch and the clutch is turned on by pressing the friction plate with the urging member, the clutch is turned on by the urging member, for example, a spring, With this urging force, the braking force is transmitted to the front wheels, and for four-wheel drive, the driving force from the rear wheels must be transmitted to the front wheels via the clutch, so the clutch capacity must be increased. , The transmission case became larger, and the weight etc. also increased. Further, when the size of the transmission case is substantially the same as that of the conventional case, an urging member having a sufficient urging force cannot be used, and the clutch capacity tends to be insufficient.
[0004]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
[0005]
That is, in the first aspect, the power transmission state to the front wheel drive output shaft, which is the drive output shaft to the front wheels, includes a four-wheel drive state in which the front wheels are driven at substantially the same peripheral speed as the rear wheels, A switching clutch for performing the switching on the front wheel drive output shaft in a traveling vehicle capable of switching between a front wheel speed increasing driving state in which the driving speed is higher than the peripheral speed of the wheels and a two-wheel driving state in which only the rear wheels are driven. The switching clutch is composed of a friction clutch and a pawl clutch and is configured to be operable by an actuator. When the actuators of the friction clutch and the pawl clutch are not operated, the four-wheel drive state is provided. The two-wheel drive state is set when the actuator is operated, and the front wheel speed-up drive state is set when the friction clutch and the pawl clutch actuator are operated.
[0006]
According to a second aspect of the present invention, in the two-wheel / four-wheel drive switching mechanism according to the first aspect, the pawl-type clutch is constantly urged to engage with an elastic body.
[0007]
According to a third aspect of the present invention, in the two-wheel / four-wheel drive switching mechanism according to the first or second aspect, the pawl type clutch is provided on a standard drive input gear, and a clutch that slides in a clutch case. And a predetermined gap is provided between the clutch claws in the rotation direction when the two claws are engaged.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the invention will be described.
FIG. 1 is a side view showing an overall configuration of a tractor according to an embodiment of the present invention, FIG. 2 is a skeleton diagram showing a power transmission configuration, and FIG. 3 is a sectional development view of a transmission case showing a power transmission configuration. 4 is a hydraulic circuit diagram, FIG. 5 is a side sectional view of a lower portion of a transmission case showing a two-wheel / four-wheel drive switching mechanism of the present invention, FIG. 6 is an enlarged view of the two-wheel / four-wheel drive switching mechanism at the time of four-wheel drive, FIG. FIG. 8 is an enlarged view of a two-wheel / four-wheel drive switching mechanism at the time of two-wheel drive, FIG. 9 is an enlarged view of a two-wheel / four-wheel drive switching mechanism at the time of front wheel speed-up drive, FIG. 10 is a flowchart showing the control of the two-wheel / four-wheel drive switching mechanism.
[0009]
As shown in FIG. 1, this traveling vehicle has a tractor as an embodiment, front wheels 1.1 and rear wheels 2.2 are supported before and after the machine, and an engine 5 is disposed inside a front hood 6. A steering handle 10 is provided behind the hood 6. A seat 11 is disposed behind the steering handle 10, and operation levers such as a main transmission lever and an auxiliary transmission lever are disposed on the side of the seat 11. The steering wheel 10, the seat 11, the levers, and the like are arranged in a driving unit in the cabin 12.
[0010]
Further, a clutch housing is disposed at a rear portion of the engine 5, and a transmission case 9 is disposed at a rear portion of the clutch housing. The transmission from the engine 5 is transmitted to the rear wheels 2 to drive the rear wheels 2. It is possible to simultaneously transmit the driving force to the front wheels 1 via the four-wheel drive switching mechanism 79.
[0011]
The driving force of the engine 5 is transmitted to a PTO shaft 15 protruding from the rear end of the transmission case 9 and is mounted on the rear end of the vehicle from the PTO shaft 15 via a universal joint or the like (not shown) via a work machine mounting device. The apparatus 100 is configured to be driven. A clutch pedal, a brake pedal, and the like for operating a clutch connection and disengagement are provided on the step below the front of the seat 11.
[0012]
Next, the configuration of the power transmission system will be described with reference to FIG.
A multi-plate main clutch 21 is housed in the clutch housing 7 and is linked to the clutch pedal 16. The rotation of the output shaft (crankshaft) 22 of the engine 5 is input to the main clutch 21, and the output shaft 23 of the main clutch 21 extends to the rear of the vehicle, and is disposed on the same axis as the PTO clutch shaft 29. Have been.
[0013]
A transmission gear 64 and a PTO third speed claw 64a are disposed on the rear end of the output shaft 23, and three PTO speed change gears, namely, a PTO first speed gear 61, a PTO second speed gear 62, The PTO reverse gear 63 is loosely fitted. The PTO transmission gears 61 and 62 and the transmission gear 64 mesh with the three transmission gears 41, 42 and 44 fixed or formed on the main shaft 25, and the PTO reversing gear 63 passes through the counter gear 37. The rotational driving force is transmitted to the PTO clutch shaft 29 from the transmission gears 41, 42, 43, and the PTO three-speed pawl 64a by engaging with the transmission gear 43 and sliding the PTO clutch sliders 93 and 94 described later.
[0014]
Further, two PTO clutch sliders 93 and 94 are spline-fitted to the PTO clutch shaft 29 so as to be slidable in the axial direction. The PTO clutch sliders 93 and 94 are linked to a PTO shift lever (not shown). . By operating the PTO shift lever, the bite between the PTO clutch sliders 93 and 94, the pawls formed on the PTO first speed gear 61, the PTO second speed gear 62, and the PTO reverse gear 63 and the PTO third speed pawl 64a is selected, and the PTO clutch shaft is selected. The rotation power is transmitted to 29.
The rotational power of the PTO clutch shaft 29 is transmitted to the PTO shaft 15 via a reduction gear 91, and the PTO shaft 15 extends rearward and drives a work implement 100 connected to the rear end of the work vehicle.
[0015]
The four transmission gears 41, 42, 43, 44 fixed or formed on the main shaft 25 are main transmission gears loosely fitted to the main transmission shaft 24, that is, the main transmission first speed gear 31, the main transmission The second speed gear 32, the main speed third speed gear 33, and the main speed fourth speed gear 34 mesh with each other.
Two main transmission clutch sliders 51 and 52 are spline-fitted to the main transmission shaft 24 so as to be slidable in the axial direction. The main transmission clutch sliders 51 and 52 are linked to a main transmission lever 77. By operating the main transmission lever 77, the main transmission clutch sliders 51 and 52 and the pawls formed on the main transmission first speed gear 31, the main transmission second speed gear 32, the main transmission third speed gear 33, and the main transmission fourth speed gear 34 are formed. Occlusion is selected, and power is transmitted from the main shaft 25 to the main transmission shaft 24 via any one of the selected main transmission gears 31, 32, 33, 34. In this way, a main transmission capable of performing four-stage shifting is configured, and the rotation after shifting from the main shaft 25 is transmitted to the main transmission shaft 24.
[0016]
The main transmission shaft 24 is extended forward, and a forward / reverse rotation mechanism is formed in the extended portion, and a forward rotation gear 26 and a reverse rotation gear 27 are loosely fitted on the same axis. Then, by operating the reversing lever 71 (FIG. 2), the reversing clutch 57 is selected and connected to either the forward side or the reverse side, and the rotation of the main transmission shaft 24 is rotated by either the forward gear 26 or the reverse gear 27. Is transmitted to. However, when the reversing lever 71 is in the neutral position, the rotation is not transmitted to either of the two gears 26 and 27.
[0017]
The forward rotation gear 26 meshes with a gear 45 fitted or fixed to the transmission shaft 48, and the reverse rotation gear 27 meshes with a counter gear 39 fitted or fixed to the counter shaft 38. The counter gear 39 meshes with a gear 47 fitted or fixed to the transmission shaft 48.
Accordingly, when the reverser clutch 57 is connected to the forward side, the rotational power of the main transmission shaft 24 is transmitted to the transmission shaft 48 via the forward rotation gear 26, and when the reverser clutch 57 is connected to the reverse side, The rotational power of the transmission shaft 24 is transmitted from the reverse rotation gear 27 via the counter shaft 38 to rotate the transmission shaft 48 in the reverse rotation direction.
[0018]
The gear 45 fitted or fixed to the transmission shaft 48 meshes with the forward rotation gear 26 and also meshes with a gear 59 loosely fitted to the auxiliary transmission shaft 35. A sub-transmission shifter 92 is spline-fitted to the sub-transmission shaft 35. The sub-transmission shifter 92 is operated by a sub-transmission lever 73, and is connected to a sub-transmission second speed tooth 92a formed at the front of the sub-transmission shifter 92. A state in which the teeth 59a formed on the rear portion of the gear 59 mesh with each other, a state in which the sub-speed first gear teeth 92b provided in the sub-speed shifter 92 and the gear 46 formed on the transmission shaft 48 mesh with each other. An auxiliary transmission that can be switched to a state in which rotational power is not transmitted to the shift shifter 92 is configured. Then, by the selection based on the sliding of the sub-transmission shifter 92, the rotation of the transmission shaft 48 is output through two-stage transmission, and is input to the sub-transmission shaft 35.
[0019]
As described above, the rotational power transmitted by the auxiliary transmission and transmitted from the transmission shaft 48 to the auxiliary transmission shaft 35 is transmitted to the rear wheel drive system and the front wheel drive by the three gears 49, 19, and 20 on the auxiliary transmission shaft 35. Output in two directions of the system.
A rear wheel differential device 66b is disposed at the rear of the transmission case 9, and the rotation of the auxiliary transmission shaft 35 is input to the rear wheel differential device 66b via the bevel gear 20 formed at the rear end, and the rear axle case The rear wheel 2 is driven via an internal axle, a transmission gear, and the like. Reference numeral 96 denotes a brake device.
Further, the two-wheel / four-wheel drive switching mechanism 79 of the present invention uses the standard drive input gear 50 loosely fitted on the front wheel drive output shaft 30 from the gear 19 fixed on the sub-transmission shaft 35, or The power input to the front wheel drive output shaft 30 is transmitted to the front end of the front wheel drive output shaft 30 via a speed increasing drive input gear 60 loosely fitted on the front wheel drive output shaft 30 from a gear 49 fixed on the shaft 35. The power is transmitted to the front wheel transmission shaft 14 to be connected, is input to the front wheel side differential device 66a via a universal joint or the like, and the front wheel 1 is driven via an axle, a transmission gear, or the like in the front axle case.
[0020]
Next, the hydraulic circuit will be described with reference to FIG.
The hydraulic pumps 86 and 90 are driven by the driving of the engine 5, pressure oil is supplied from the hydraulic pump 86 to the power steering device 74, and the direction switching valve 75 is interlocked with the rotation of the steering handle 10 to switch the power steering. The power steering cylinder 76 of the device 74 is expanded and contracted to rotate the front wheel 1.
The hydraulic oil that has passed through the power steering device 74 is supplied to a two-wheel / four-wheel drive switching mechanism 79 via a switching valve 85 described later, and operates the two-wheel / four-wheel drive switching mechanism 79 to increase the front wheel speed or Switching between two-wheel and four-wheel drive is performed.
[0021]
In addition, one of the oil passages of the hydraulic pump 90 can be fed from the control valve 104 for adjusting the inclination angle of the work implement 100 to the angle changing hydraulic cylinder 105 via a flow dividing valve 123, and the other oil passage can be sent from the other oil passage. Oil can be sent to the lifting cylinder 127 via the work implement control device 106.
[0022]
Next, the two-wheel / four-wheel drive switching mechanism 79 of the present invention will be described.
In the automatic switching mode during traveling in the four-wheel drive state by the two-wheel / four-wheel drive switching mechanism 79, the turning operation of the vehicle body is detected from the turning angle of the front wheel 1, and if the front wheel 1 is turned by the set angle or more, the rear The vehicle is automatically switched to the front wheel speed-up driving state in which the peripheral speed of the front wheel 1 is increased more than the peripheral speed of the wheel 2, and control is performed so that the vehicle body can turn quickly.
[0023]
The front wheel drive output shaft 30 is rotatably supported at the front lower portion of the transmission case 9 in parallel with the output shaft 23, the main transmission shaft 24, the PTO shaft 15 and the like via a bearing in the front-rear direction. Has a front end projecting forward from the transmission case 9.
[0024]
As shown in FIGS. 5 and 6, a standard drive input gear 50 and a speed-up drive input gear 60 are loosely fitted on the front wheel drive output shaft 30 via bearings, respectively. A pawl clutch 97 and a friction clutch 95 are disposed between the gear 60 and the front wheel drive output shaft 30, respectively, and the pawl clutch 97 and the friction clutch 95 are respectively connected and disconnected by a hydraulic actuator. Have been. That is, a cylinder 80 serving as a clutch case is fixedly mounted on the front wheel drive output shaft 30 between the gears 50 and 60, and the cylinder 80 is provided with four wheels on the standard drive input gear 50 side and the speed-up drive input gear 60 side. A hydraulic actuator is formed by slidably inserting two cylinder pistons, a driving clutch piston 81 and a speed increasing clutch piston 82.
[0025]
Between the four-wheel clutch piston 81 and the speed-increasing clutch piston 82 and a spring receiver provided on the cylinder 80, springs 83 and 84 having different spring load characteristics are interposed as elastic bodies having different elastic coefficients. Biasing the piston in the direction of contraction. In the present embodiment, springs 83 and 84 having different diameters are employed, so that the four-wheel drive clutch piston 81 and the speed-increasing clutch piston 82 are both pressed toward the partition wall 80e formed substantially at the center in the front-rear direction of the cylinder 80. Although biased, the speed increasing clutch piston 82 is more strongly pressed against the partition wall 80e than the four-wheel drive clutch piston 81. The speed-increasing clutch piston 82 is provided with an oil passage communicating between the cylinder chamber and the friction plate side, and an orifice 82a at the end thereof to mitigate a shock at the time of pressing.
[0026]
The standard drive input gear 50 is provided with a clutch pawl 50a serving as an occlusal body, and a clutch pawl 81a serving as an occlusal body is formed on an inner peripheral portion of the four-wheel clutch piston 81, and the clutch claws 50a and 81a face each other. And a pawl clutch 97 is provided in such a manner that the clutch pawls 50a and 81a are engaged by the urging force of the spring 83. That is, as shown in FIG. 7, a plurality (three in this embodiment) of clutch pawls 50a, 50a, 50a are radially projected outward and are fixed at equal intervals on the outer peripheral portion of the standard drive input gear 50. ing. Further, clutch claws 81a, 81a, 81a radially project inward at equal intervals and are fixedly mounted inwardly outside the cylinder chamber of the four-wheel drive clutch piston 81 corresponding to the clutch claws 50a, 50a, 50a. Have been. When the four-wheel drive clutch piston 81 is not actuated toward the partition wall 80e by the urging force of the spring 83, the clutch pawl 50a overlaps in the rotational direction between the clutch pawl 81a and the clutch pawl 81a. And the clutch pawls 81a and the clutch pawls 50a are configured to engage.
The length L1 of the inner peripheral portion other than the claw portion between the clutch claws 81a is longer than the length (claw width in the rotation direction) L2 of the outer peripheral portion of the clutch claw 50a, or The length L3 of the inner peripheral portion other than the claw portion between the clutch claws 50a is longer than the length L4 of the outer peripheral portion (claw width in the rotation direction) of the clutch claw 81a. At the time of the engagement, a predetermined gap L5 is provided between the claw portion of the clutch claw 81a and the claw portion of the clutch claw 50a in the rotation direction to form a play, and the gap L5 is a claw width L2 in the rotation direction of the clutch claw 50a or 81a. Or, it is larger than L4. In this way, the switching operation is facilitated even when the peripheral speed difference between the clutch pawl 50a and the clutch pawl 81a is large, such as when the rear wheel 2 slips in the two-wheel drive state.
Further, a clutch claw 81b formed on the outer peripheral portion of the four-wheel clutch piston 81 and a clutch claw 80a formed on the cylinder 80 are in mesh with each other.
Accordingly, in the four-wheel drive state, the power input from the gear 19 on the auxiliary transmission shaft 35 to the standard drive input gear 50 is the standard drive input gear 50 → the four-wheel clutch piston 81 → the cylinder 80 → the front wheel drive output shaft 30. The power is transmitted to the front wheel drive system via the path, and the front wheel 1 is driven to rotate at substantially the same peripheral speed as the rear wheel 2.
[0027]
As shown in FIG. 8, when the pawl clutch 80a moves toward the standard drive input gear 50 against the urging force of the spring 83 and the bite between the pawl clutch 80a and the pawl clutch 50a is released, the sub-shift is performed. Power transmission from the shaft 35 to the front wheel drive output shaft 30 is cut off, and a two-wheel drive state is established.
[0028]
Further, friction plates 60a and 80b are provided alternately between the boss portion of the speed-increasing drive input gear 60 and the inner peripheral portion of the cylinder 80, and oppose the speed-increasing drive input gear 60 of the speed-increasing clutch piston 82. A disc spring 98 is provided on the surface to be formed, and a friction clutch 95 is formed. The urging force of the spring 84 urges the speed-increasing clutch piston 82 to the contraction side so that the friction plates 60a and 80b are not pressed.
[0029]
In the front wheel speed-up driving state, as shown in FIG. 9, the four-wheel clutch piston 81 is pushed to release the engagement between the clutch pawl 81a and the pawl clutch 50a, and at the same time, the speed-up clutch piston 82 receives the speed-up driving input. It moves to the gear 60 side and presses the friction plates 60a and 80b, and the speed-up drive input gear 60 and the cylinder 80 are connected and rotate integrally. Therefore, the power input from the gear 49 on the auxiliary transmission shaft 35 to the speed-up drive input gear 60 is transmitted to the front wheel drive system through the path of the speed-up drive input gear 60 → the cylinder 80 → the front wheel drive output shaft 30, and 1 is rotated at a higher speed than the rear wheel 2.
[0030]
Next, the control of the four-wheel drive clutch piston 81 and the speed increasing clutch piston 82 of the two-wheel / four-wheel drive switching mechanism 79 configured as described above will be described.
As shown in FIGS. 5, 8, and 9, oil passages 30a, 30b, 30c, and 30d through which hydraulic oil is sent from a hydraulic pump 86 are formed in the front wheel drive output shaft 30, and the cylinder 80 The oil passages 80c and 80d are formed in the partition wall 80e formed in the above. Through these oil passages 30a, 30c and 80c, the hydraulic oil from the hydraulic pump 86 can be pressure-fed to the fourth drive cylinder chamber Ha in which the fourth drive clutch piston 81 is disposed, while the oil passages 30b and 30d are provided. Hydraulic oil from the hydraulic pump 86 can be pressure-fed to the speed-increasing cylinder chamber Hb in which the speed-increasing clutch piston 82 is disposed via 80d.
[0031]
The oil passages 30a and 30b formed in the shaft center of the front wheel drive output shaft 30 are connected to the switching valve 85 attached to a clutch housing provided on the transmission case 9 or at the front thereof. Is connected to the hydraulic pump 86. The switching valve 85 is constituted by an electromagnetic valve, and solenoids 85 d and 85 e constituting the switching valve 85 are connected to the control device 101. When no signal is transmitted from the control device 101 to the solenoids 85d and 85e, that is, the hydraulic actuators of the friction clutch 95 and the pawl clutch 97 are in a non-operating state, the neutral position is maintained, and the four-wheel drive position 85a is established. When a drive signal is transmitted from the control device 101 to the solenoid 85d, the spool of the switching valve 85 moves to the two-wheel drive position 85c, and the hydraulic actuator of the pawl clutch 97 is operated. Further, when a drive signal is transmitted to the solenoid 85e, the switching valve 85 is switched by moving the spool at the speed increasing drive position 85b, and the hydraulic actuators of the friction clutch 95 and the pawl clutch 97 are activated.
[0032]
Further, an angle sensor 89 for detecting the steering angle of the front wheels 1 is electrically connected to the control device 101. The turning angle sensor 89 is provided on a king pin 88 provided on the front wheel 1. The turning angle sensor 89 can be provided on the steering handle 10, the steering shaft, or the like.
[0033]
The control device 101 is connected to a changeover switch 102 for switching ON / OFF of the automatic switching mode. An automatic changeover switch 102 and a changeover switch 103 for changing over to the two-wheel drive mode are arranged near the steering handle 10 or the seat 11 so that the operator can easily operate the vehicle during running or work.
When the automatic switching mode is ON, the four-wheel drive state is automatically changed from the four-wheel drive state to the front-wheel speed-up drive state based on the turning angle of the front wheel 1, that is, the switching valve 85 is moved to the four-wheel drive position by the turning angle of the steering wheel 10. Switching control is performed from 85a to the speed increasing drive position 85b. That is, based on the turning angle of the front wheels 1, the front wheel speed-up drive state is automatically switched to the four-wheel drive state, that is, the switching valve 85 is automatically switched from the speed-up drive position 85b to the four-wheel drive position 85a. You. When the automatic switching mode is OFF, the four-wheel drive state is maintained, and the switching valve 85 is fixed at the four-wheel drive position 85a.
[0034]
Next, control in the automatic switching mode will be described with reference to a flowchart shown in FIG.
When the automatic changeover switch 102 is turned on (151), the control device 101 enters the automatic mode, and compares the turning angle θ of the front wheel 1 based on information from the turning angle sensor 89 with a preset switching angle β (152). ). If the turning angle .theta. Is equal to or greater than the switching angle .beta., The control device 101 transmits a drive signal to the solenoid 85e of the switching valve 85 (153) to switch to the speed increasing drive position 85b to set the front wheel speed increasing driving state ( 154).
[0035]
When the switching valve 85 is switched to the speed increasing drive position 85b, the hydraulic oil is supplied from the hydraulic pump 86 through the hydraulic pump 86 → the oil passage 30a → the oil passage 30c → the oil passage 80d → the fourth drive side cylinder chamber Ha. At the same time as hydraulic pressure is sent to the fourth drive side cylinder chamber Ha, hydraulic oil is pressure-fed to the speed increasing side cylinder chamber Hb through the path of the hydraulic pump → the oil path 30b → the oil path 30d → the speed increasing side cylinder chamber Hb. As a result, as shown in FIG. 8, the four-wheel drive clutch piston 81 slides toward the standard drive input gear 50 to release the engagement between the clutch claws 50a and 81a. , The transmission of power from the auxiliary transmission shaft 35 to the front wheel drive output shaft 30 is cut off. Then, as shown in FIG. 9, the pressure-increase clutch piston 82 presses the friction plates 80b and 60a via the disc spring 98 by the pressure of the hydraulic oil supplied to the speed-increasing cylinder chamber Hb, and the friction plates 80b and A frictional force is generated between 60a and the speed-up drive input gear 60 and the cylinder 80 rotate integrally. Accordingly, power is transmitted to the front wheels 1 via the gear 49 → the speed-up drive input gear 60 → the friction plates 60a / 80b → the cylinder 80 → the front wheel drive output shaft 30 → the front wheel transmission shaft 14 and the like, so that the front wheel speed-up drive state is established. (154).
[0036]
In addition, a comparison is made between the turning angle θ of the front wheel 1 based on the information from the turning angle sensor 89 and a preset switching angle β (152). From 101, no signal is transmitted to the switching valve 85, and the switching valve 85 maintains the neutral position and maintains the four-wheel drive state (155).
[0037]
When the switching valve 85 is switched from the speed-up drive position 85b in the front wheel speed-up drive state to the four-wheel drive position 85a, the oil passage connected to the drain tank 87 is opened and the pressure of the entire oil passage is reduced. , The pressures in the fourth drive side cylinder chamber Ha and the speed increasing side cylinder chamber Hb decrease, and the pressing of the friction plates 80b and 60a by the speed increasing clutch piston 82 is released, so that the friction type clutch 95 is inactivated and the spring 83 , The four-wheel clutch piston 81 slides, and the four-wheel clutch piston 81 and the clutch claws 81a and 50a of the standard drive input gear 50 engage (the claw-type clutch 97 is activated), thereby driving the four-wheel drive. (155).
[0038]
Further, when the automatic switching mode is OFF (151), it is possible to switch from the four-wheel drive state to the two-wheel drive state, and to switch between the four-wheel drive state and the two-wheel drive state, a two-wheel / four-wheel drive switch. The switch 103 is connected to the control device 101. When the automatic switching mode is OFF (151), when the two-wheel / four-wheel drive switch 103 is turned ON (156), the solenoid 85d of the switching valve 85 is operated by a signal from the control device 101 (157), and the four-wheel drive is performed. The driving position 85a is switched to the two-wheel driving position 85c, and the four-wheel driving state is changed to the two-wheel driving state (158). When the switching valve 85 is switched to the two-wheel drive position 85c, the hydraulic oil is supplied from the hydraulic pump 86 to the hydraulic pump 86 → oil passage 30a → oil passage 30c → oil passage 80d → four wheel drive side cylinder chamber Ha. The pressure is sent to the driving side cylinder chamber Ha. As a result, as shown in FIG. 8, the four-wheel drive clutch piston 81 slides toward the standard drive input gear 50, and the engagement between the clutch claws 50a and 81a of the pawl type clutch 97 is released. Transmission of power from the auxiliary transmission shaft 35 to the front wheel drive output shaft 30 via the standard drive input gear 50 is cut off, and a two-wheel drive state is established. When the two-wheel / four-wheel drive switch 103 is OFF (156), the four-wheel drive state is maintained (155).
[0039]
When the two-wheel drive state is changed from the two-wheel drive state to the four-wheel drive state, that is, when the two-wheel / four-wheel drive switch 103 is switched from ON to OFF, the switching valve 85 is switched from the two-wheel drive position 85c to the four-wheel drive position 85a. You. When the switching valve 85 is switched to the four-wheel drive position 85a, the oil passage connected to the drain tank 87 is opened and the pressure of the entire oil passage is reduced, so that the pressure in the four-wheel drive cylinder chamber Ha is reduced. The four-wheel clutch piston 81 is slid by the bias of the spring 83, and the four-wheel clutch piston 81 and the clutch claws 81a and 50a of the standard drive input gear 50 are engaged, so that the four-wheel drive state is established.
[0040]
In the two-wheel / four-wheel drive switching mechanism 79 configured as described above, even when the engine 5 is stopped and the hydraulic oil is not sent from the hydraulic pump 86, the clutch claw 81a of the four-wheel clutch piston 81 is Since the clutch pawl 50a of the standard drive input gear 50 maintains the occlusion, when the parking brake is operated, the braking of the rear wheel differential device 66b also exerts a braking force on the front wheel drive output shaft 30, and the front wheel 1 is free. As a result, the braking force can be maintained.
Therefore, the clutch capacity shortage can be solved without changing the size of the transmission case 9.
[0041]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0042]
That is, as shown in claim 1, the power transmission state to the front wheel drive output shaft, which is the drive output shaft to the front wheel, is a four-wheel drive state in which the front wheels are driven at substantially the same speed as the peripheral speed of the rear wheels. In a traveling vehicle capable of switching between a front wheel speed-up driving state in which driving is performed at a speed higher than the peripheral speed of the rear wheels and a two-wheel driving state in which only the rear wheels are driven, the switching on the front wheel driving output shaft is performed. A clutch is provided, and the switching clutch is constituted by a friction clutch and a pawl clutch, each of which can be operated by an actuator. When the actuators of the friction clutch and the pawl clutch are not operated, the four-wheel drive state is provided. The two-wheel drive state is activated when the actuator is operated, and the front wheel is accelerated when the friction clutch and pawl clutch actuators are activated. Can hold the braking force to the front wheels without dynamic system is interrupted.
Therefore, the clutch capacity shortage can be solved without changing the size of the transmission case.
[0043]
According to a second aspect of the present invention, in the two-wheel / four-wheel drive switching mechanism according to the first aspect, the pawl type clutch is constantly biased so as to be engaged by an elastic body. The transmission system to the drive output shaft can maintain the braking force to the front wheels without interruption.
[0044]
According to a third aspect of the present invention, in the two-wheel / four-wheel drive switching mechanism according to the first or second aspect, the pawl-type clutch slides in a clutch pawl provided on a standard drive input gear and in a clutch case. It is composed of a clutch claw and a predetermined gap is provided between the clutch claw and the clutch claw in the rotation direction when the two claws are engaged, so that the switching operation is easy even when the peripheral speed difference between the clutch claw and the clutch claw is large. Become.
[Brief description of the drawings]
FIG. 1 is a side view showing an overall configuration of a tractor according to an embodiment of the present invention.
FIG. 2 is a skeleton diagram showing a power transmission configuration.
FIG. 3 is a sectional development view of a transmission case showing a power transmission configuration.
FIG. 4 is a hydraulic circuit diagram.
FIG. 5 is a side sectional view of a lower portion of a transmission case showing a two-wheel / four-wheel drive switching mechanism of the present invention.
FIG. 6 is an enlarged view of a two-wheel / four-wheel drive switching mechanism during four-wheel drive.
FIG. 7 is a sectional view taken along the line AA in FIG. 5;
FIG. 8 is an enlarged view of a two-wheel / four-wheel drive switching mechanism during two-wheel drive.
FIG. 9 is an enlarged view of a two-wheel / four-wheel drive switching mechanism at the time of front wheel speed-up driving.
FIG. 10 is a flowchart illustrating control of a two-wheel / four-wheel drive switching mechanism.
[Explanation of symbols]
1 front wheel
2 rear wheel
5 Engine
30 Front wheel drive output shaft
50 Standard drive input gear
50a Clutch claw
60 Speed-up drive input gear
60a friction plate
79 Two-wheel drive / four-wheel drive switching mechanism
80 cylinder
80a clutch claw
80b friction plate
81 4WD clutch piston
81a Clutch claw
81b Clutch claw
82 Speed-up clutch piston
83 spring
84 spring
95 Friction clutch
97 claw clutch
98 Pressing body

Claims (3)

前輪への駆動出力軸である前輪駆動出力軸への動力伝達状態を、前輪を後輪の周速と略同速に駆動する四輪駆動状態と、前輪を後輪の周速よりも増速して駆動する前輪増速駆動状態と、後輪のみを駆動する二輪駆動状態に切換可能とした走行車両において、前記前輪駆動出力軸上に前記切り換えを行う切換クラッチを設け、該切換クラッチは、摩擦式クラッチと爪式クラッチより構成しそれぞれアクチュエータで作動可能に構成し、摩擦式クラッチと爪式クラッチのアクチュエータの非作動時に四輪駆動状態とし、爪式クラッチのアクチュエータの作動時に二輪駆動状態とし、摩擦式クラッチと爪式クラッチのアクチュエータの作動時に前輪増速駆動状態とすることを特徴とする二輪・四輪駆動切換機構。The state of power transmission to the front wheel drive output shaft, which is the drive output shaft to the front wheels, is four-wheel drive in which the front wheels are driven at substantially the same speed as the peripheral speed of the rear wheels, and the front wheels are faster than the peripheral speed of the rear wheels. In a traveling vehicle capable of being switched between a front wheel speed-up driving state in which the rear wheel is driven and a two-wheel driving state in which only the rear wheels are driven, a switching clutch for performing the switching is provided on the front wheel drive output shaft, and the switching clutch is It is composed of a friction clutch and a pawl clutch, and can be operated by actuators respectively.When the actuators of the friction clutch and the pawl clutch are not operated, the four-wheel drive state is set. When the actuator of the pawl clutch is operated, the two-wheel drive state is set. A two-wheel / four-wheel drive switching mechanism wherein the front wheel speed-up driving state is set when the actuators of the friction clutch and the pawl clutch are operated. 請求項1に記載の二輪・四輪駆動切換機構において、前記爪式クラッチは弾性体にて咬合するよう常時付勢されていることを特徴とする二輪・四輪駆動切換機構。2. The two-wheel / four-wheel drive switching mechanism according to claim 1, wherein the pawl clutch is constantly urged to engage with an elastic body. 3. 請求項1又は請求項2に記載の二輪・四輪駆動切換機構において、前記爪式クラッチを、標準駆動入力歯車に設けたクラッチ爪と、クラッチケース内を摺動するクラッチ爪とから構成し、両爪の咬合時に回転方向においてクラッチ爪とクラッチ爪の間に所定の隙間を設けたことを特徴とする二輪・四輪駆動切換機構。The two-wheel / four-wheel drive switching mechanism according to claim 1 or 2, wherein the pawl-type clutch comprises a clutch pawl provided on a standard drive input gear, and a clutch pawl sliding in a clutch case, A two-wheel / four-wheel drive switching mechanism, wherein a predetermined gap is provided between the clutch claws in the rotation direction when the two claws are engaged.
JP2002238312A 2002-08-19 2002-08-19 Two-wheel / four-wheel drive switching mechanism Expired - Lifetime JP4106252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238312A JP4106252B2 (en) 2002-08-19 2002-08-19 Two-wheel / four-wheel drive switching mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238312A JP4106252B2 (en) 2002-08-19 2002-08-19 Two-wheel / four-wheel drive switching mechanism

Publications (3)

Publication Number Publication Date
JP2004074928A true JP2004074928A (en) 2004-03-11
JP2004074928A5 JP2004074928A5 (en) 2008-02-14
JP4106252B2 JP4106252B2 (en) 2008-06-25

Family

ID=32021766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238312A Expired - Lifetime JP4106252B2 (en) 2002-08-19 2002-08-19 Two-wheel / four-wheel drive switching mechanism

Country Status (1)

Country Link
JP (1) JP4106252B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127840A (en) * 2007-11-28 2009-06-11 Toyota Motor Corp Power transmission device
WO2012046960A2 (en) * 2010-10-05 2012-04-12 동양물산기업 주식회사 Front wheel speed up 4-wheel driving apparatus of agricultural tractor
KR101408865B1 (en) 2012-12-12 2014-06-19 동양물산기업 주식회사 Driving apparatus for tractors
CN105209777A (en) * 2013-04-03 2015-12-30 博格华纳扭矩输出***公司 A hydraulic system with a dog clutch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127840A (en) * 2007-11-28 2009-06-11 Toyota Motor Corp Power transmission device
WO2012046960A2 (en) * 2010-10-05 2012-04-12 동양물산기업 주식회사 Front wheel speed up 4-wheel driving apparatus of agricultural tractor
KR101143049B1 (en) 2010-10-05 2012-05-15 동양물산기업 주식회사 4wd with front wheel speed up of tractor
WO2012046960A3 (en) * 2010-10-05 2012-06-21 동양물산기업 주식회사 Front wheel speed up 4-wheel driving apparatus of agricultural tractor
KR101408865B1 (en) 2012-12-12 2014-06-19 동양물산기업 주식회사 Driving apparatus for tractors
CN105209777A (en) * 2013-04-03 2015-12-30 博格华纳扭矩输出***公司 A hydraulic system with a dog clutch
US9797459B2 (en) 2013-04-03 2017-10-24 Borgwarner Sweden Ab Hydraulic system with a dog clutch

Also Published As

Publication number Publication date
JP4106252B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP5833168B2 (en) Gearbox for work vehicle
JP5426731B2 (en) Transmission device for work vehicle
JP4106252B2 (en) Two-wheel / four-wheel drive switching mechanism
JP5346456B2 (en) Transmission device for work vehicle
JP5592539B2 (en) Transmission device for work vehicle
JP4233498B2 (en) Tractor operation structure
JP4981463B2 (en) Driving transmission structure of work vehicle
JP4104149B2 (en) Tractor PTO transmission structure
JP4106234B2 (en) Four-wheel drive / front-wheel acceleration drive switching mechanism
JP4104148B2 (en) Tractor transmission structure
JP4528006B2 (en) Four-wheel drive tractor travel device
JP5083497B2 (en) Tractor
JP4189144B2 (en) Brake device for tractor
JPH11192849A (en) Front wheel drive device for working vehicle
JP4551573B2 (en) Braking device for work vehicle
JP4899752B2 (en) Traveling vehicle
JP3773830B2 (en) Emergency traveling mechanism for work vehicles
JP2004224164A (en) Power vehicle
JP4519503B2 (en) Four-wheel drive / front-wheel acceleration drive switching mechanism
JP3541169B2 (en) Agricultural work equipment steering device
JP6368966B2 (en) Control valve mechanism for hydraulic transmission clutch
JPH08170657A (en) Hydraulic clutch
JP5547389B2 (en) Hydraulic-mechanical transmission
JP2003226231A (en) Parking brake device for working vehicle
JP2002249033A (en) Brake device for traveling vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350