JP2004074687A - Heat shrinkable laminated film - Google Patents

Heat shrinkable laminated film Download PDF

Info

Publication number
JP2004074687A
JP2004074687A JP2002240568A JP2002240568A JP2004074687A JP 2004074687 A JP2004074687 A JP 2004074687A JP 2002240568 A JP2002240568 A JP 2002240568A JP 2002240568 A JP2002240568 A JP 2002240568A JP 2004074687 A JP2004074687 A JP 2004074687A
Authority
JP
Japan
Prior art keywords
film
elastic modulus
resin
laminated film
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002240568A
Other languages
Japanese (ja)
Other versions
JP4082662B2 (en
Inventor
Takashi Hiruma
比留間 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002240568A priority Critical patent/JP4082662B2/en
Publication of JP2004074687A publication Critical patent/JP2004074687A/en
Application granted granted Critical
Publication of JP4082662B2 publication Critical patent/JP4082662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat shrinkable laminated film which has excellent low-temperature shrinkability, rigid and stiff, provided with excellent natural shrinkability or the like and particularly proper balance in quality as for a shrinkable label. <P>SOLUTION: In the heat shrinkable laminated film including at least three layers of laminating front and rear layers and an intermediate layer, resins for constituting the front and rear layers each has a storage elastic modulus (E') at 25°C of 1.5×10<SP>9</SP>Pa or more, and at least one peak temperature of a loss elastic modulus (E") exists in the range of 30-70°C, a resin for constituting a central layer has a storage elastic modulus (E') of 1.0×10<SP>9</SP>Pa or less and at least one peak temperature of a loss elastic modulus (E") exists in the range of -80 to -30°C. The laminated film is obtained by laminating these resins and at least uniaxially stretching the resins in such a manner that the heat shrinkage in a main contracting direction and a tensile elastic modulus measured in a direction perpendicular to the main contracting direction fall within specific ranges. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低温収縮性に優れるとともに、剛性のある腰の強い、自然収縮性等に優れた特に収縮ラベル用として品質上のバランスが良好な熱収縮性積層フィルムに関する。
【0002】
【従来の技術とその課題】
収縮包装や収縮結束包装、あるいはプラスチック容器の収縮ラベル、ガラス容器の破壊飛散防止包装やキャップシ−ルなどに広く利用される熱収縮性フィルムの材質としては、ポリ塩化ビニル(PVC)が最もよく知られている。これは、PVCから作られた熱収縮性フィルムが、機械強度、剛性、光学特性、収縮特性等の実用特性、およびコスト性も含めて、ユーザーの要求を比較的広く満足するからである。しかしながら、PVCは廃棄物処理の問題等があることから、PVC以外の材料からなる熱収縮性フィルムが要望されていた。
【0003】
このようなPVC以外の材料の一つとして、ポリエステル系樹脂を主たる材料としたポリエステル系熱収縮性フィルムが提案され使用されている。このポリエステル系熱収縮性フィルムは室温での剛性、いわゆる腰の強さが良好で、自然収縮(常温よりやや高い温度、例えば夏場においてフィルムが本来の使用前に少し収縮してしまうこと)率が小さく自然収縮性は非常に良好なものの、PVC系と比較すると、加熱収縮時に収縮斑やしわが発生し易い問題や、ラベルの回収のために消費者が実施するミシン目での開封が困難という問題があった。
【0004】
また、スチレン−ブタジエンブロック共重合体(SBS)を主たる材料とするポリスチレン系熱収縮性フィルムが提案され使用されているが、このポリスチレン系フィルムは、PVCフィルムに比べ、収縮仕上がり性は良好であるが、より低温収縮性を付与すると自然収縮率が大きくなり、スリ−ブ状に加工したラベルの折り径が減少しラベルを容器に被覆できにくくなるという問題があった。
ポリスチレン系熱収縮性フィルムとしては、上記SBSやスチレン系エラストマー樹脂等の各種ポリスチレン系樹脂を組合せて積層構造とした熱収縮性積層フィルムも提案されている。(例えば特開平11−77917号、特開平11−
284313号)
これらの積層フィルムは自然収縮性、低温収縮性、腰の強さ等に改善はある程度みられるものの、耐破断性を満足するものはなかった。
積層フィルムでは、通常、中心層にてフィルムの腰の強さを付与することが層構成の基本的考え方となっている。そこで、フィルムに耐破断性を付与するためには表裏層に耐破断性に優れた樹脂を配したり、中間層に耐破断性に優れた樹脂を混合したり、中間層を薄くすることがなされている。しかし、その結果フィルム全体の腰の強さが低下してしまうという欠点があった。そのため、腰の強さを維持したまま耐破断性を付与することが困難であった。
【0005】
近年、ペットボトルに被覆する収縮ラベル用途では、需要の増大が見込まれているため、ボトルへのラベル被覆工程において比較的短時間、なおかつ比較的低温で高度な収縮仕上がり外観が得られることが要求され、また、自然収縮性の小さいフィルムが要求されるようになってきている。
つまり、最近のペットボトルおよびビンにおけるシュリンクフィルムのラベリング工程は主に蒸気シュリンカーが主流となっており、さらに無菌充填や、内容物の温度による品質低下等を回避するために、シュリンカーの温度を下げる必要が出てきている。
そのため、フィルムはなるべく低温で収縮を開始することを要求され、シュリンカーに入り、ラベルが低温の状態において収縮を開始するとともに、シュリンカー通過後、優れた収縮仕上がりが得られることを要求されている。
【0006】
また廃棄物の量を減少するという問題から、フィルムを薄肉化することが要求されており、それに伴い肉厚が薄くても腰の強いフィルムが要求されている。さらにラベルを被覆した容器をリサイクルして使用するために、使用後の容器とラベルを分別して回収する必要があり、ラベルを容器から剥がし易くするためにラベルにミシン目を入れているが、ラベルを被覆した容器が落下等でミシン目より破れて商品価値を損なうというトラブルが発生し、耐破断性の改良が要求されている。
【0007】
従って、主に低温収縮性を兼ね備えつつ、自然収縮率を抑えられ、収縮仕上がり性に優れ、更にフィルムの腰が強く、かつ耐破断性に優れた品質バランスのとれた熱収縮性積層フィルムの開発が望まれている。
【0008】
【課題を解決するための手段】
本発明者は、積層フィルムの表裏層に高弾性率樹脂を配することによりフィルム全体の腰の強さを付与し、中間層において耐破断性を付与することによって従来の積層構成、すなわち中間層によりフィルムの腰の強さを維持する構成では達成困難であったフィルムの腰の強さと耐破断性の両特性を満足できることを見出したものである。
その要旨とするところは表裏層を構成する樹脂は25℃での貯蔵弾性率(E’)が1.5×10Pa以上で、かつ損失弾性率(E”)のピーク温度が30℃以上70℃以下に少なくとも一つ存在し、中心層を構成する樹脂は25℃での貯蔵弾性率(E’)が1.0×10Pa以下でかつ損失弾性率(E”)の少なくとも1つのピーク温度が−30℃以下−80℃以上に存在する樹脂であり、これらの樹脂を用いて積層し、少なくとも1軸に延伸したフィルムであって、主収縮方向の70℃温水中の10秒間の熱収縮率が7%以上であり、主収縮方向と直角方向に測定した引張弾性率が1200MPa以上あることを特徴とする熱収縮性積層フィルムにある。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の熱収縮性積層フィルムでは、表裏層に弾性率の高い樹脂を配することによって、従来の中間層に弾性率の高い樹脂を配してきた積層フィルムでは達成困難であった耐破断性とフィルムの腰の強さを両立することが可能となったのである。つまり、本発明の熱収縮性積層フィルムでは、そのフィルムの腰の強さは外側の表裏層の弾性率に支配されることになる。
従って、従来の積層フィルムのように中間層においてフィルムの腰の強さを維持しようとした場合には、積層構成の厚みの半分以上は中間層にする必要があったため、耐破断性を付与するために軟質系樹脂を中間層にブレンドしたり、表裏層に耐破断性を付与する樹脂を配する必要があった。しかし、フィルムの腰の強さを担う中間層に軟質樹脂をブレンドした場合はその弾性率が低下してしまい、表裏層において耐破断性を付与する場合にはやはり相当の厚み比を必要としてしまい、フィルムの腰の強さと耐破断性を両立することが困難となるのである。
【0010】
一方、本発明のように表裏層においてフィルムの腰の強さを維持しようとした場合には中間層に配するよりも積層比を占める割合が少なくてすむことが判明した。
従って、耐破断性を付与する中心層を厚くした場合でも、表裏層に高弾性率の樹脂を配することによって、フィルムの腰を強く維持したまま耐破断性を付与することが可能となるのである。
腰の強さを付与する表裏層は25℃での貯蔵弾性率(E’)が1.5×10Pa以上で、かつ損失弾性率(E”)のピーク温度が30℃以上70℃以下に一つ存在することが好ましい。25℃での貯蔵弾性率(E’)が1.5×10Pa以下ではフィルムの腰を強く維持することが困難となり、さらにまた、損失弾性率(E”)のピ−ク温度が30℃未満に存在する樹脂では、常温におけるフィルムの腰の強さが確保されず、また自然収縮率が大きくなるという問題があり、ピ−ク温度が70℃を超える温度域に存在する樹脂では、低温での収縮性が充分発現できない。
【0011】
一方、中間層は耐破断性を付与する役割を担っているため、表裏層よりも低くかつ損失弾性率(E”)の少なくとも1つのピーク温度が−30℃以下−80℃以上に存在する樹脂を使用する必要がある。損失弾性率(E”)のピ−ク温度が−30℃を超える温度域にしかない樹脂では、フィルムの伸び特性を充分に付与することができない。
【0012】
本発明フィルムを構成する樹脂としては下記の樹脂を用いることが好ましい。つまり、表裏層および中心層を構成する樹脂が(a)スチレン含有量が80重量%以上であり、25℃での貯蔵弾性率(E’)が2.00×10Pa以上で、かつ損失弾性率(E”)のピーク温度が30℃以上70℃以下に一つ存在するスチレン−ブタジエンブロック共重合体と(b)ブタジエン含有量が20〜50重量%であり、損失弾性率(E”)の少なくとも1つのピーク温度が−30℃以下(−80℃以上)に存在スチレン−ブタジエンブロック共重合体の混合物であり、表裏層においては(a)が70重量%以上含まれ、中心層においては(b)が40重量%以上60重量%以下含まれることが好ましい。
【0013】
先に記載した(a)の樹脂は主にフィルムの腰の強さを付与するために用いる樹脂であり、(b)は耐破断性を付与する樹脂である。
従って、表裏層には弾性率の高い(a)樹脂を主体とし、中心層には耐破断性を付与する(b)を表裏層より多く含ませることによって、本件が発明したフィルムを作成することが可能となる。
従来の積層フィルムはフィルムの腰の強さを維持する原料として主にスチレン−ブチルアクリレート共重合体や透明性を維持するため連続相にアクリル系樹脂が共重合されたゴム分散型ポリスチレンを用いてきた。しかし、これらの原料は重合成分としアクリル成分が含まれているため、表裏層に配した場合、印刷前のフィルム物性においては非常に良好な耐破断性とフィルムの腰の強さを示すものの、印刷時のインキによって劣化してしまうという欠点があった。また、ゴム分散型ポリスチレン系樹脂を用いた場合は白化してしまうという欠点があった。従って、印刷を必要とする用途や透明性を必要とする用途には展開することが困難であった。
一方、腰の強さを付与する原料がスチレン−ブタジエンのブロック共重合体の場合には表裏層に配し印刷しても、先に述べたアクリルが重合されているポリマーのようり大幅な溶剤劣化が生じなくなる。従って、腰の強さを付与する樹脂としてはスチレン−ブタジエンのブロック共重合体を使用することが好ましいのである。
【0014】
次に各(a)、(b)の樹脂について説明する。腰の強さを付与することを目的とする(a)樹脂はスチレン含有量が80重量%以上であり、25℃での貯蔵弾性率(E’)が2.00×10Pa以上で、かつ損失弾性率(E”)のピーク温度が30℃以上70℃以下に一つ存在するスチレン−ブタジエンブロック共重合体であることが好ましく、表裏層においては70重量%以上含まれることが好ましい。貯蔵弾性率(E’)が2.00×10Pa未満の樹脂では、常温におけるフィルムの腰の強さが確保されず好ましくなく、表裏層はフィルムの腰の強さを付与する役割を担っているため(a)樹脂が70重量%以上、より好ましくは80重量%以上必要である。本フィルムの表裏層を構成する(a)樹脂は上記のスチレン−ブタジエンブロック共重合体の単独でもよいし、また2種以上の組み合わせでも構わない。
【0015】
また、損失弾性率(E”)のピ−ク温度が30℃未満に存在する樹脂では、常温におけるフィルムの腰の強さが確保されず、また自然収縮率が大きくなるという問題があり、ピ−ク温度が70℃を超える温度域に存在する樹脂では、低温での収縮性が充分発現できない。よって、フィルムの腰の強さと低温収縮のバランスから損失弾性率(E”)のピ−ク温度は、30〜70℃、好ましくは40℃〜68℃の範囲にあるものを用いる。
【0016】
次に耐破断性を付与する樹脂(b)はブタジエン含有量が20〜50重量%であり、損失弾性率(E”)の少なくとも1つのピーク温度が−30℃以下−80℃以上に存在するスチレン−ブタジエンブロック共重合体であることが好ましい。損失弾性率(E”)のピ−ク温度が−30℃を超える温度域にしかない樹脂では、フィルムの伸び特性を充分に付与することができない。またブタジエンが20重量%未満では伸び特性をやはり十分に付与することが困難となり、60重量%を越えると、腰の強さの低下および加工時のブタジエンの架橋によるゲルなどによってフィルム外観を損なうこととなる。中心層では本フィルムの耐破断性を付与する役割を担っているため40重量%以上60重量%以下含まれることが、より好ましい。
40重量%未満ではフィルムの耐破断性を付与することが困難となり、一方60重量%を越えるとフィルム中間層の弾性率が大幅に低下してしまい、フィルムの腰の強さを維持することが困難となる。
【0017】
本発明で使用するスチレン−ブタジエンブロック共重合体(SBS)については、工業的に非常に多くの種類のスチレン−ブタジエンブロック共重合体が生産され、共重合組成比、共重合の構造、ブロック部分の構造、分子量等が様々に異なっている。
つまり屈折率や熱的性質をはじめとする特性が異なったスチレン−ブタジエンブロック共重合体が生産されており、要求に応じて様々なスチレン−ブタジエンブロック共重合体を重合することが可能である。これは主にスチレン−ブタジエンブロック共重合体が溶液中におけるリビング重合によって重合されているため、スチレンブロックとブタジエンブロックを各々重合過程において添加量を調整したりスチレンとブタジエンの重合反応速度の違いを利用して、組成比、構造、熱的特性を調整することが可能であるからである。
【0018】
具体的に述べると、スチレン−ブタジエンブロック共重合体においてピュアブロックの場合−90℃付近と110℃付近の2個所にそれぞれブタジエンブロック、スチレンブロックに起因する損失弾性率のピークが存在する。また、ピュアブロックのスチレンおよびブタジエンブロックにブタジエン成分およびスチレン成分を各々導入されたランダムブロックになると損失弾性率の各ピークは低温側のピークは高温側へ、高温側のピークは低温側へそれぞれシフトする。また、各ブロックの分子量や全体の分子量、ブタジエンにおいては1,4結合と1,2結合によっても損失弾性率のピーク温度や貯蔵弾性率の低下具合が変化する。従って、ブロックの共重合過程を調整することによって、損失弾性率の2つのピーク温度の位置、そのピークにおける貯蔵弾性率の低下度合いを調整することによって所定の粘弾性特性を持つポリマーを合成させることが可能となる。
スチレンとブタジエンによって重合されるスチレンーブタジエンブロック共重合体(SBS)において上記粘弾性条件を満たすことが出来れば特に限定しないが、本発明に示した、表裏層を主に構成するスチレン−ブタジエンブロック共重合体の損失弾性率のピーク温度範囲と25℃での貯蔵弾性率の両方を満たすことが可能となる重合方法を以下に述べる。
【0019】
通常スチレンの一部を仕込んで重合を完結させた後、スチレンモノマーとブタジエンモノマーの混合物を仕込んで重合反応を続行させる。このようにすると重合活性の高いブタジエンの方から優先的に重合し、最後にスチレンの単独モノマーからなるブロックが生じる。例えば先ず、スチレンを単独重合させ、重合完結後、スチレンモノマーとブタジエンモノマーの混合物を仕込んで重合を続行させると両スチレンブロックの中間にスチレン・ブタジエンモノマー比が次第に変化するスチレン・ブタジエン共重合体部位をもつスチレン−ブタジエンブロック共重合体が得られる。この重合過程をスチレンとブタジエンの混合割合を変え複数回実施することもあるが、この様な部位を持たせることによって上記粘弾性特性を持つポリマーを得ることが可能となる。この場合には前述したブタジエンブロックとスチレンブロックに起因する2つのピークが明確には確認出きず、見かけ上1つのピークのみが存在するようになる。つまりピュアブロック、ランダムブロックのSBSのようなブロック構造ではブタジエンブロックに起因するTgが0℃以下に主に存在してしまうために25℃での貯蔵弾性率が所定の値にすることが難しくなってしまう。
【0020】
一方中間層を主に構成するスチレン−ブタジエンブロック共重合体の損失弾性率のピ−ク温度を満たすためには、スチレン−ブタジエンブロック共重合体をピュアブロックかランダムブロックとなるように重合させるが、その際、ブタジエンの組成比や、ブタジエンブロック内のスチレン組成比を調整することで実施可能となる。
また、本発明の熱収縮性積層フィルムでは、特性を阻害しない範囲で他の樹脂や添加剤を組み合わせることも可能である。但し、透明性を維持する目的からは屈折率が出来るだけ近い樹脂、または透明性を大きく低下させない樹脂(主にポリスチレン系樹脂、例えばポリスチレン、スチレン−ブタジエンブロック共重合体、スチレン−ブタジエンエラストマー、スチレン−アクリル酸エステル共重合体、スチレン−アクリロニトリル共重合、エチレン−スチレン共重合、水添スチレンーブタジエン共重合体等)を選択することが好ましい。
【0021】
上記樹脂組成からなる本発明の熱収縮性積層フィルムについては、主収縮方向の70℃温水中での10秒間の熱収縮率が7%以上であることが必要である。本収縮率が7%未満であると、低温収縮性が不十分となってしまい、本来の目的は達成できない。また、自然収縮性を小さくするという意味では、30℃環境下にて30日後の収縮率が1.5%以下であることが好ましい。
また主収縮方向の23℃における引張伸び率が70%以上でありかつ主収縮方向と直角方向の0℃における引張伸び率が100%以上であることが好ましい。
【0022】
フィルムの主収縮方向の23℃における伸び率が低いと、PETボトルのラベル等に設けられたミシン目でラベル破袋をおこし易くなり、また、顕著に低い場合にはスリ−ブ加工時の折り目に引き裂きの力が加わると破れて穴開きとなってしまう。主収縮方向と直角方向(フィルム流れ方向)の低温での伸び率が低いと、低温環境下の印刷、スリ−ブ加工等フィルム流れ方向に張力が加わるときに破断して、トラブルを起こし易くなる。よって、上記トラブルがなく使用できるためには、主収縮方向の23℃における伸び率は70%以上、主収縮方向と直角方向の0℃における伸び率は100%以上のフィルムが好ましい。
さらに、上記樹脂組成からなる本発明の熱収縮性積層フィルムについては主収縮方向と直角の方向に測定した引張弾性率が1200MPa以上あることが必要である。本フィルムの腰の強さは収縮仕上がり性を向上させる一因となり得る。これは、収縮フィルムが印刷・製袋された後にボトルの上からボトルに被せられる時に機械的に押し込まれる状態となるためにある一定のフィルムの腰の強さがない場合にはフィルムが折れてしまい収縮後にシワになる原因となっているからである。
従って、本発明にて規定した引張弾性率が1200MPa未満では先に述べたフィルムをボトルに被せる時にフィルムが折れてしまうことが多くなる。
【0023】
先に述べたフィルム特性を満たすことが可能であれば、表裏層、中心層の積層厚み比は特に限定されないが、腰の強さと耐破断性を両立する方法は各層のブレンド比によっても大幅に変わるが、耐破断性を付与する中間層が50%以上あることが好ましく、60%以上あることがより好ましい。
本フィルムは本規定を満たしていれば、中心層と表裏層の間に何層あって構わない。例えば、2種3層、3種5層などでも良いのである。
つぎに本発明積層フィルムの製造方法を具体的に説明するが下記製造方法には限定されない。中間層用、表裏層用に各々上記内容で配合されたポリスチレン系樹脂を別々の押出機によって溶融させ、得られた溶融体をダイ内で合流させて押出す製造方法が一般的である。押出に際しては、Tダイ法、チューブラ法等の既存の方法を採用してもよい。溶融押出された積層樹脂は、冷却ロール、空気、水等で冷却された後、熱風、温水、赤外線、マイクロウエーブ等の適当な方法で再加熱され、ロール法、テンター法、チューブラ法等により、1軸または2軸に延伸される。
【0024】
延伸温度は積層フィルムを構成している樹脂の軟化温度や熱収縮性積層フィルムに要求される用途によって変える必要があるが、概ね60〜130℃、好ましくは80〜120℃の範囲で制御される。
延伸倍率は、フィルム構成組成、延伸手段、延伸温度、目的の製品形態に応じて2〜7倍の範囲で適宜決定される。また、1軸延伸にするか2軸延伸にするかは目的の製品の用途によって決定される。
また、延伸した後フィルムの分子配向が緩和しない時間内に速やかに、当フィルムの冷却を行うことも、収縮性を付与して保持する上で重要な技術である。
【0025】
【実施例】
以下に実施例を示すが、これらにより本発明は何ら制限を受けるものではない。なお、実施例に示す測定値および評価は次のように行った。
【0026】
1)熱収縮率
フィルムを、MD100mm、TD100mmの大きさに切り取り、主収縮方向(TD)の収縮量を70℃の温水バスに10秒間浸漬し測定した。熱収縮率は、収縮前の原寸に対する収縮量の比率を%値で表示した。
【0027】
2)自然収縮率
フィルムをTDに1000mmの長さでけがき、30℃の雰囲気の恒温槽に30日間放置後、けがき間の長さA(mm)を測定し、下記式より自然収縮率(%)を算出した。
自然収縮率(%)=(1000−A)/1000×100
【0028】
3)引張弾性率
フィルムのMDの引張弾性率を測定しその値を腰の強さとした。
測定方法は、MDに350mmの長さで5mm幅の試験片を切り出し、これをチャック間300mmで23℃の恒温室に設置した引張試験機にセットする。これを、引張試験速度5mm/分で応力−歪曲線を求め試験開始直後の直線部を用いて、下記式より引張弾性率を求めた。
引張弾性率=直線上の2点間の元の平均断面積による応力差/同じ2点間の歪差
【0029】
4)引張伸び率
フィルムの各方向に幅15mm、長さ100mmで試験片を切り取り、その試験片をチャック間40mmで恒温槽付引張試験機(株式会社インテスコ製 IM20型)にセットする。これを23℃なら200mm/分で、0℃なら100mm/分の試験速度で引張り、下記式より引張伸び率を求めた。TDの伸び率は23℃で、MDの伸び率は0℃で各々求めた。
引張伸び率=[(破断した時のチャック間長さ−40mm)/40mm]×100
【0030】
5)粘弾性測定(貯蔵弾性率、損失弾性率)
粘弾性スペクトロメーターDVA−200(アイティ−計測制御(株)製)を用い、振動周波数10Hz、昇温速度3℃/分、測定温度−120℃から120℃の範囲で測定した。測定試験片は測定する樹脂を1mm程度の厚みに無配向の状態となるように熱プレスした板を用いた。
【0031】
[実施例1]
樹脂▲1▼(スチレン/ブタジエン=92/8、E’=2.7×10Pa、E”ピーク温度62℃)50重量%、樹脂▲2▼(スチレン/ブタジエン=70/30、E’=3.2×10Pa、E”ピーク温度−43℃/100℃)50重量%の混合樹脂を中間層樹脂(E’=1.4×10Pa、E”ピーク温度−48/66℃)とし、樹脂▲1▼80重量%、樹脂▲2▼20重量%の混合樹脂を表裏層樹脂(E’=2.3×10Pa、E”ピーク温度−48/66℃)として、それぞれの原料を別々の押出機で溶融押出しし、ダイ内で合流させて、2種3層の層構成の溶融体をキャストロールで冷却し厚さ300μmの未延伸フィルムを得た。この未延伸フィルムを流れ方向(MD)に90℃で1.3倍延伸後、その直角方向(TD)に6倍延伸し、厚さ約50μm(積層比1/6/1)のフィルムを製作した。但し延伸温度は熱収縮率が12%となるように設定した。
得られたフィルムの特性データを表1に示した。
【0032】
[比較例1]
樹脂▲1▼80重量%、樹脂▲2▼20重量%の混合樹脂を中間層樹脂とし、樹脂▲1▼50重量%、樹脂▲2▼50重量%の混合樹脂を表裏層樹脂とした以外は実施例1と同様な方法にてフィルムを製作した。
【0033】
[比較例2]
樹脂▲3▼(スチレン/ブチルアクリレート=84/17、E’=2.11×10Pa、E”ピーク温度77℃)50重量%、樹脂▲2▼50重量%の混合樹脂を中間層樹脂とし、樹脂▲3▼80重量%、樹脂▲2▼20重量%の混合樹脂を表裏層樹脂とした以外は実施例1と同様な方法にてフィルムを製作した。
【0034】
[比較例3]
樹脂▲1▼80重量%、樹脂▲2▼20重量%の混合樹脂を中間層および表裏層とした以外は実施例1同様な方法にてフィルムを製作した。
【0035】
【表1】

Figure 2004074687
【0036】
【表2】
Figure 2004074687
【0037】
【表3】
Figure 2004074687
【0038】
表1、2より本件規定を満たした積層フィルムを作成した熱収縮性積層フィルムは低温収縮性、自然収縮性、腰の強さに優れ、主収縮方向とその直角方向の両方向に一定の伸び率を付与できたバランスのとれたものとなっている。一方、本件規定の粘弾性特性範囲外の規定の樹脂を使用した場合、いずれかの特性に問題があるアンバランスなものとなっていることが分かる。
【発明の効果】
本発明によれば、低温収縮性に優れるとともに、剛性のある腰の強い、自然収縮性等に優れた特に収縮ラベル用として品質上のバランスが良好な熱収縮性積層フィルムが得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-shrinkable laminated film which is excellent in low-temperature shrinkage, has high rigidity, is excellent in spontaneous shrinkage, and has a good quality balance especially for shrinkable labels.
[0002]
[Prior art and its problems]
Polyvinyl chloride (PVC) is the most widely used heat-shrinkable film material widely used for shrink wrapping, shrink wrapping, shrink labels for plastic containers, shatterproof packaging for glass containers, and cap seals. Are known. This is because a heat-shrinkable film made of PVC satisfies user requirements relatively widely, including practical properties such as mechanical strength, rigidity, optical properties, shrinkage properties, and cost. However, since PVC has a problem of waste treatment, a heat-shrinkable film made of a material other than PVC has been demanded.
[0003]
As one of such materials other than PVC, a polyester-based heat-shrinkable film using a polyester-based resin as a main material has been proposed and used. This polyester-based heat-shrinkable film has good rigidity at room temperature, so-called stiffness, and has a natural shrinkage (slightly higher than normal temperature, for example, the film shrinks slightly before its original use in summer). Although it is small and has very good natural shrinkability, it has a problem that spots and wrinkles are likely to occur during heat shrinkage, and it is difficult for consumers to open perforations for collecting labels, as compared to PVC. There was a problem.
[0004]
Further, a polystyrene-based heat-shrinkable film containing a styrene-butadiene block copolymer (SBS) as a main material has been proposed and used, but this polystyrene-based film has a better shrink finish than a PVC film. However, when the low-temperature shrinkage property is imparted, the natural shrinkage rate increases, and the folding diameter of the sleeve-processed label is reduced, so that there is a problem that the label cannot be coated on the container.
As the polystyrene-based heat-shrinkable film, a heat-shrinkable laminated film having a laminated structure formed by combining various polystyrene-based resins such as SBS and a styrene-based elastomer resin has also been proposed. (For example, JP-A-11-77917, JP-A-11-77917)
No. 284313)
Although these laminated films showed some improvement in spontaneous shrinkage, low-temperature shrinkage, stiffness, etc., none of them satisfied the rupture resistance.
In the case of a laminated film, the basic idea of the layer structure is to give the stiffness of the film in the center layer. Therefore, in order to impart rupture resistance to the film, it is necessary to provide a resin having excellent rupture resistance to the front and back layers, mix a resin having excellent rupture resistance to the intermediate layer, and make the intermediate layer thin. Has been done. However, as a result, there is a disadvantage that the stiffness of the entire film is reduced. Therefore, it has been difficult to impart rupture resistance while maintaining the stiffness.
[0005]
In recent years, the demand for shrink label applications for coating PET bottles is expected to increase, so it is necessary to obtain a highly shrink-finished appearance at a relatively short time and at a relatively low temperature in the label coating process for bottles. In addition, a film having a small natural shrinkage has been required.
In other words, in recent shrink film labeling processes for PET bottles and bottles, steam shrinkers are mainly used, and furthermore, in order to avoid aseptic filling and quality deterioration due to the temperature of the contents, the shrinker temperature is reduced. The need to lower is coming out.
For this reason, the film is required to start shrinking at a temperature as low as possible, enters the shrinker, and starts shrinking at a low temperature of the label, and after the shrinker, it is required that an excellent shrink finish is obtained. I have.
[0006]
Also, from the problem of reducing the amount of waste, it is required to reduce the thickness of the film, and accordingly, a film having a small thickness and a strong stiffness is required. Furthermore, in order to recycle and use the container covered with the label, it is necessary to separate and collect the used container from the label, and the label is perforated to make it easy to peel off the label from the container. There is a problem in that the container coated with is broken at the perforation due to dropping or the like, thereby impairing the commercial value, and improvement in rupture resistance is required.
[0007]
Therefore, the development of a heat-shrinkable laminated film that has low temperature shrinkage, suppresses natural shrinkage, excels in shrinkage finish, has strong film stiffness, and is excellent in rupture resistance is well balanced in quality. Is desired.
[0008]
[Means for Solving the Problems]
The inventor of the present invention provides a conventional laminated structure, i.e., an intermediate layer, by providing a high elasticity resin to the front and back layers of the laminated film to impart stiffness to the entire film and imparting break resistance to the intermediate layer. Thus, it has been found that both characteristics of the stiffness of the film and the rupture resistance can be satisfied, which were difficult to achieve with the configuration for maintaining the stiffness of the film.
The point is that the resin constituting the front and back layers has a storage elastic modulus (E ′) at 25 ° C. of 1.5 × 10 9 Pa or more and a peak temperature of the loss elastic modulus (E ″) of 30 ° C. or more. At least one resin having a storage elastic modulus (E ′) at 25 ° C. of not more than 1.0 × 10 9 Pa and at least one of a loss elastic modulus (E ″) is present at 70 ° C. or less. A resin having a peak temperature of −30 ° C. or lower and −80 ° C. or higher, a film laminated using these resins and stretched at least uniaxially for 10 seconds in 70 ° C. hot water in the main shrinkage direction. The heat-shrinkable laminated film has a heat shrinkage of 7% or more and a tensile modulus of elasticity of 1200 MPa or more measured in a direction perpendicular to the main shrinkage direction.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the heat-shrinkable laminated film of the present invention, by arranging a resin having a high elastic modulus on the front and back layers, it is difficult to achieve the rupture resistance which was difficult to achieve with a laminated film in which a conventional resin having a high elastic modulus was arranged on the intermediate layer. This made it possible to balance the stiffness of the film. That is, in the heat-shrinkable laminated film of the present invention, the stiffness of the film is governed by the elastic modulus of the outer front and back layers.
Therefore, in order to maintain the stiffness of the film in the intermediate layer as in a conventional laminated film, more than half of the thickness of the laminated structure needs to be the intermediate layer, so that it imparts rupture resistance. Therefore, it is necessary to blend a soft resin into the intermediate layer or to provide a resin that imparts rupture resistance to the front and back layers. However, if a soft resin is blended in the intermediate layer, which is responsible for the stiffness of the film, its elastic modulus will be reduced, and a considerable thickness ratio will still be required in the case of imparting rupture resistance to the front and back layers. In addition, it is difficult to achieve both the stiffness of the film and the rupture resistance.
[0010]
On the other hand, it has been found that when the rigidity of the film is to be maintained in the front and back layers as in the present invention, the ratio occupying the lamination ratio is smaller than when the film is disposed in the intermediate layer.
Therefore, even when the center layer that imparts rupture resistance is thickened, by arranging a resin having a high elastic modulus on the front and back layers, it becomes possible to impart rupture resistance while maintaining the rigidity of the film. is there.
The front and back layers imparting the stiffness have a storage elastic modulus (E ') at 25 ° C of 1.5 × 10 9 Pa or more and a peak temperature of loss elastic modulus (E ″) of 30 ° C or more and 70 ° C or less. When the storage elastic modulus (E ′) at 25 ° C. is equal to or less than 1.5 × 10 9 Pa, it is difficult to maintain the stiffness of the film, and furthermore, the loss elastic modulus (E ′). The resin having a peak temperature of less than 30 ° C.) has a problem that the stiffness of the film at room temperature is not secured and the natural shrinkage rate becomes large. A resin existing in a temperature range exceeding the above range cannot sufficiently exhibit shrinkage at low temperatures.
[0011]
On the other hand, since the intermediate layer has a role of imparting rupture resistance, the resin is lower than the front and back layers and has at least one peak temperature of loss elastic modulus (E ″) at −30 ° C. or lower and −80 ° C. or higher. When the resin has a peak temperature of the loss elastic modulus (E ") which is only in a temperature range exceeding -30 ° C, the film does not have sufficient elongation properties.
[0012]
The following resin is preferably used as the resin constituting the film of the present invention. That is, the resin constituting the front and back layers and the central layer has (a) a styrene content of 80% by weight or more, a storage elastic modulus (E ') at 25 ° C. of 2.00 × 10 9 Pa or more, and a loss A styrene-butadiene block copolymer having one peak temperature of elastic modulus (E ″) of 30 ° C. to 70 ° C. and (b) butadiene content of 20 to 50% by weight, and a loss elastic modulus (E ″); ) Is a mixture of a styrene-butadiene block copolymer having at least one peak temperature of -30 ° C or lower (-80 ° C or higher), wherein (a) is contained in the front and back layers in an amount of 70% by weight or more, and in the center layer, (B) is preferably contained in an amount of 40% by weight or more and 60% by weight or less.
[0013]
The resin (a) described above is a resin used mainly for imparting the stiffness of the film, and (b) is a resin imparting rupture resistance.
Accordingly, the film invented by the present invention can be prepared by mainly including a resin (a) having a high elastic modulus in the front and back layers and adding more (b) to the center layer to impart rupture resistance than the front and back layers. Becomes possible.
Conventional laminated films mainly use styrene-butyl acrylate copolymer or rubber-dispersed polystyrene in which an acrylic resin is copolymerized in the continuous phase to maintain transparency, as a raw material that maintains the rigidity of the film. Was. However, since these raw materials contain an acrylic component as a polymerization component, when disposed on the front and back layers, although the film properties before printing show very good rupture resistance and stiffness of the film, There is a disadvantage that the ink is deteriorated by printing ink. Further, when a rubber-dispersed polystyrene-based resin is used, there is a disadvantage that whitening occurs. Therefore, it has been difficult to develop it in applications that require printing or applications that require transparency.
On the other hand, when the raw material for imparting stiffness is a block copolymer of styrene-butadiene, even if it is disposed on the front and back layers and printed, a large solvent such as the above-mentioned polymer in which acrylic is polymerized is used. No degradation occurs. Therefore, it is preferable to use a styrene-butadiene block copolymer as the resin for imparting stiffness.
[0014]
Next, the resins (a) and (b) will be described. The resin (a) intended to impart stiffness has a styrene content of 80% by weight or more, a storage elastic modulus (E ') at 25 ° C. of 2.00 × 10 9 Pa or more, Further, it is preferable that the styrene-butadiene block copolymer has one peak temperature of the loss elastic modulus (E ″) of 30 ° C. or more and 70 ° C. or less, and it is preferably contained in the front and back layers at 70% by weight or more. In the case of a resin having a storage elastic modulus (E ') of less than 2.00 × 10 9 Pa, the stiffness of the film at room temperature is not secured, which is not preferable, and the front and back layers play a role of imparting the stiffness of the film. Therefore, (a) the resin is required to be 70% by weight or more, more preferably 80% by weight or more. (A) The resin constituting the front and back layers of the film may be a single styrene-butadiene block copolymer. And two more A combination of the above may be used.
[0015]
Further, a resin having a peak temperature of loss elastic modulus (E ″) of less than 30 ° C. has a problem that the stiffness of the film at room temperature is not secured and the natural shrinkage rate is large. A resin having a peak temperature exceeding 70 ° C. cannot sufficiently exhibit shrinkage at low temperatures, so that the peak of the loss modulus (E ″) is determined from the balance between the stiffness of the film and the shrinkage at low temperatures. The temperature is in the range of 30 to 70 ° C, preferably 40 to 68 ° C.
[0016]
Next, the resin (b) imparting rupture resistance has a butadiene content of 20 to 50% by weight, and at least one peak temperature of the loss modulus (E ") exists at -30C or lower and -80C or higher. A styrene-butadiene block copolymer is preferred, and a resin having a loss elastic modulus (E ") peak temperature exceeding -30 DEG C. cannot provide sufficient film elongation characteristics. . If the content of butadiene is less than 20% by weight, it is still difficult to impart sufficient elongation properties. If the content exceeds 60% by weight, the appearance of the film is impaired due to a decrease in stiffness and gel due to crosslinking of butadiene during processing. It becomes. Since the center layer plays a role of imparting the rupture resistance of the present film, it is more preferably contained in an amount of 40% by weight or more and 60% by weight or less.
If it is less than 40% by weight, it is difficult to impart the rupture resistance of the film, while if it exceeds 60% by weight, the modulus of elasticity of the intermediate layer of the film is greatly reduced, and the rigidity of the film can be maintained. It will be difficult.
[0017]
With respect to the styrene-butadiene block copolymer (SBS) used in the present invention, a great variety of styrene-butadiene block copolymers are industrially produced, and the copolymer composition ratio, copolymer structure, and block portion Have different structures, molecular weights, and the like.
That is, styrene-butadiene block copolymers having different properties such as refractive index and thermal properties are produced, and various styrene-butadiene block copolymers can be polymerized as required. This is mainly because the styrene-butadiene block copolymer is polymerized by living polymerization in a solution.Therefore, the amount of the styrene block and the butadiene block can be adjusted during the polymerization process, and the difference in the polymerization reaction rate between styrene and butadiene can be improved. This is because the composition ratio, the structure, and the thermal characteristics can be adjusted by utilizing the same.
[0018]
Specifically, in the case of the pure block in the styrene-butadiene block copolymer, peaks of the loss elastic modulus caused by the butadiene block and the styrene block are present at two places around -90 ° C and around 110 ° C, respectively. In addition, in the case of a random block in which the butadiene component and the styrene component are introduced into the styrene and butadiene blocks of the pure block, respectively, the peaks of the loss elastic modulus shift from the low-temperature peak to the high-temperature side, and the high-temperature peak to the low-temperature side. I do. In addition, the molecular weight of each block, the overall molecular weight, and in butadiene, the peak temperature of the loss elastic modulus and the degree of decrease in the storage elastic modulus also vary depending on the 1,4 bond and the 1,2 bond. Therefore, by adjusting the block copolymerization process, by adjusting the position of the two peak temperatures of the loss elastic modulus and the degree of decrease in the storage elastic modulus at the peak, a polymer having a predetermined viscoelastic property can be synthesized. Becomes possible.
The styrene-butadiene block copolymer (SBS) polymerized by styrene and butadiene is not particularly limited as long as the above viscoelastic condition can be satisfied, but the styrene-butadiene block mainly comprising the front and back layers shown in the present invention is not limited. A polymerization method capable of satisfying both the peak temperature range of the loss modulus of the copolymer and the storage modulus at 25 ° C. will be described below.
[0019]
Usually, after a part of styrene is charged to complete the polymerization, a mixture of a styrene monomer and a butadiene monomer is charged to continue the polymerization reaction. In this case, butadiene having higher polymerization activity is polymerized preferentially, and finally a block composed of a single monomer of styrene is produced. For example, first, styrene is homopolymerized, and after the polymerization is completed, a mixture of styrene monomer and butadiene monomer is charged, and the polymerization is continued. And a styrene-butadiene block copolymer having the following formula: This polymerization process may be carried out a plurality of times by changing the mixing ratio of styrene and butadiene. By providing such a site, it becomes possible to obtain a polymer having the above viscoelastic properties. In this case, two peaks attributable to the butadiene block and the styrene block cannot be clearly confirmed, and only one peak appears. In other words, in a block structure such as SBS of a pure block or a random block, the Tg caused by the butadiene block mainly exists at 0 ° C. or less, so that it is difficult to set the storage elastic modulus at 25 ° C. to a predetermined value. Would.
[0020]
On the other hand, in order to satisfy the peak temperature of the loss modulus of the styrene-butadiene block copolymer that mainly constitutes the intermediate layer, the styrene-butadiene block copolymer is polymerized so as to be a pure block or a random block. At this time, the adjustment can be performed by adjusting the butadiene composition ratio and the styrene composition ratio in the butadiene block.
Further, in the heat-shrinkable laminated film of the present invention, other resins and additives can be combined as long as the properties are not impaired. However, for the purpose of maintaining transparency, a resin having a refractive index as close as possible or a resin that does not greatly reduce transparency (mainly polystyrene resins such as polystyrene, styrene-butadiene block copolymer, styrene-butadiene elastomer, styrene -Acrylic ester copolymers, styrene-acrylonitrile copolymers, ethylene-styrene copolymers, hydrogenated styrene-butadiene copolymers and the like are preferably selected.
[0021]
The heat-shrinkable laminated film of the present invention comprising the above resin composition needs to have a heat-shrinkage ratio of 7% or more in hot water at 70 ° C. for 10 seconds in the main shrinkage direction. If the actual shrinkage is less than 7%, the low-temperature shrinkage becomes insufficient, and the original purpose cannot be achieved. In order to reduce the natural shrinkage, the shrinkage after 30 days in a 30 ° C. environment is preferably 1.5% or less.
Further, it is preferable that the tensile elongation at 23 ° C. in the main shrinkage direction is 70% or more and the tensile elongation at 0 ° C. in the direction perpendicular to the main shrinkage direction is 100% or more.
[0022]
If the elongation percentage at 23 ° C. in the main shrinkage direction of the film is low, it is easy to break the label at the perforation provided on the label of the PET bottle, etc. If a tearing force is applied to the lip, it will break and become a hole. If the elongation at a low temperature in the direction perpendicular to the main shrinkage direction (the film flow direction) is low, the film will break when a tension is applied in the film flow direction such as printing or sleeve processing in a low temperature environment, and troubles will easily occur. . Therefore, in order to use the film without the above troubles, a film having an elongation percentage at 23 ° C. in the main shrinkage direction of 70% or more and an elongation percentage at 0 ° C. in a direction perpendicular to the main shrinkage direction of 100% or more is preferable.
Further, for the heat-shrinkable laminated film of the present invention comprising the above resin composition, it is necessary that the tensile elastic modulus measured in a direction perpendicular to the main shrinkage direction is 1200 MPa or more. The stiffness of the film can contribute to improving the shrink finish. This is because if the shrink film does not have a certain film stiffness, it will be pushed mechanically when it is put on the bottle after the shrink film is printed and bagged. This is because it causes wrinkles after shrinkage.
Therefore, when the tensile elastic modulus specified in the present invention is less than 1200 MPa, the film often breaks when the above-described film is put on the bottle.
[0023]
The lamination thickness ratio of the front and back layers and the center layer is not particularly limited as long as the film characteristics described above can be satisfied.However, the method of achieving both the stiffness and the rupture resistance is also significantly depending on the blend ratio of each layer. Although it varies, the content of the intermediate layer imparting rupture resistance is preferably 50% or more, and more preferably 60% or more.
This film may have any number of layers between the center layer and the front and back layers as long as the film satisfies the requirements. For example, two types, three layers, three types, and five layers may be used.
Next, a method for producing the laminated film of the present invention will be specifically described, but is not limited to the following production method. A production method is generally used in which the polystyrene resins blended as described above for the intermediate layer and the front and back layers are melted by separate extruders, and the resulting melts are combined in a die and extruded. At the time of extrusion, an existing method such as a T-die method or a tubular method may be employed. The melt-extruded laminated resin is cooled by a cooling roll, air, water, etc., then heated again by a suitable method such as hot air, hot water, infrared ray, microwave, etc., by a roll method, a tenter method, a tubular method, etc. It is stretched uniaxially or biaxially.
[0024]
The stretching temperature needs to be changed depending on the softening temperature of the resin constituting the laminated film and the application required for the heat-shrinkable laminated film, but is generally controlled in the range of 60 to 130 ° C, preferably 80 to 120 ° C. .
The stretching ratio is appropriately determined in the range of 2 to 7 times according to the film composition, stretching means, stretching temperature, and the desired product form. Whether to perform uniaxial stretching or biaxial stretching is determined depending on the intended use of the product.
In addition, cooling the film quickly within a time period in which the molecular orientation of the film does not relax after stretching is also an important technique for imparting and maintaining shrinkage.
[0025]
【Example】
Examples are shown below, but the present invention is not limited by these. In addition, the measurement value and evaluation shown in an Example were performed as follows.
[0026]
1) The heat shrinkage rate film was cut into a size of 100 mm in MD and 100 mm in TD, and the shrinkage in the main shrinkage direction (TD) was immersed in a 70 ° C. hot water bath for 10 seconds and measured. As the heat shrinkage, the ratio of the amount of shrinkage to the original size before shrinkage was expressed as a percentage value.
[0027]
2) A natural shrinkage rate film is scribed on the TD with a length of 1000 mm, left in a thermostat at 30 ° C. for 30 days, and the length A (mm) between scribes is measured. (%) Was calculated.
Natural shrinkage (%) = (1000−A) / 1000 × 100
[0028]
3) Tensile modulus of the film The MD tensile modulus of the film was measured, and the value was defined as the stiffness.
The measuring method is as follows. A test piece having a length of 350 mm and a width of 5 mm is cut out from an MD, and the test piece is set in a constant temperature room at 23 ° C. with a chuck space of 300 mm. From this, a stress-strain curve was determined at a tensile test speed of 5 mm / min, and the tensile modulus was determined from the following equation using the straight line portion immediately after the start of the test.
Tensile modulus = Stress difference due to original average cross-sectional area between two points on a straight line / Strain difference between the same two points
4) Tensile elongation The test piece is cut out in a width of 15 mm and a length of 100 mm in each direction of the film, and the test piece is set on a tensile tester equipped with a thermostat (IM20 type manufactured by Intesco Corporation) with a chuck-to-chuck distance of 40 mm. This was pulled at a test speed of 200 mm / min at 23 ° C. and 100 mm / min at 0 ° C., and the tensile elongation was determined from the following equation. The elongation percentage of TD was determined at 23 ° C., and the elongation percentage of MD was determined at 0 ° C.
Tensile elongation = [(length between chucks at break-40 mm) / 40 mm] x 100
[0030]
5) Viscoelasticity measurement (storage modulus, loss modulus)
Using a viscoelastic spectrometer DVA-200 (manufactured by IT-Measurement Control Co., Ltd.), the measurement was performed at a vibration frequency of 10 Hz, a heating rate of 3 ° C./min, and a measurement temperature of −120 ° C. to 120 ° C. As a measurement test piece, a plate was used in which the resin to be measured was hot-pressed so as to have a thickness of about 1 mm in a non-oriented state.
[0031]
[Example 1]
50% by weight of resin (1) (styrene / butadiene = 92/8, E ′ = 2.7 × 10 9 Pa, E ″ peak temperature of 62 ° C.), resin (2) (styrene / butadiene = 70/30, E ′) = 3.2 × 10 8 Pa, E ″ peak temperature −43 ° C./100° C.) 50% by weight of the mixed resin was mixed with the intermediate layer resin (E ′ = 1.4 × 10 9 Pa, E ″ peak temperature −48/66). ° C), and a mixed resin of resin (1) 80% by weight and resin (2) 20% by weight is defined as a front and back layer resin (E ′ = 2.3 × 10 9 Pa, E ″ peak temperature −48 / 66 ° C.) Each raw material was melt-extruded by a separate extruder, merged in a die, and a melt having two and three layers was cooled by a cast roll to obtain an unstretched film having a thickness of 300 μm. This unstretched film is stretched 1.3 times at 90 ° C. in the machine direction (MD), and then stretched 6 times in the perpendicular direction (TD) to produce a film having a thickness of about 50 μm (lamination ratio 1/6/1). did. However, the stretching temperature was set so that the heat shrinkage rate was 12%.
Table 1 shows the characteristic data of the obtained film.
[0032]
[Comparative Example 1]
Resin (1) 80% by weight, Resin (2) 20% by weight mixed resin was used as intermediate layer resin, and resin (1) 50% by weight and resin (2) 50% by weight mixed resin was used as front and back layer resin. A film was produced in the same manner as in Example 1.
[0033]
[Comparative Example 2]
Resin (3) (styrene / butyl acrylate = 84/17, E ′ = 2.11 × 10 9 Pa, E ″ peak temperature 77 ° C.) 50% by weight, resin (2) 50% by weight mixed resin as intermediate layer resin A film was produced in the same manner as in Example 1, except that a mixed resin consisting of 80% by weight of resin (3) and 20% by weight of resin (2) was used as the front and back layer resin.
[0034]
[Comparative Example 3]
A film was produced in the same manner as in Example 1, except that a mixed resin of the resin (1) 80% by weight and the resin (2) 20% by weight was used as the intermediate layer and the front and back layers.
[0035]
[Table 1]
Figure 2004074687
[0036]
[Table 2]
Figure 2004074687
[0037]
[Table 3]
Figure 2004074687
[0038]
From Tables 1 and 2, the heat-shrinkable laminated film prepared from the laminated film satisfying the requirements of the present invention is excellent in low-temperature shrinkage, natural shrinkage, and stiffness, and has a constant elongation in both the main shrinkage direction and the direction perpendicular thereto. The balance was well balanced. On the other hand, it can be seen that when a specified resin out of the range of the viscoelastic characteristics specified in the present case is used, any one of the characteristics is unbalanced.
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being excellent in low-temperature shrinkage property, a heat-shrinkable laminated film excellent in rigidity, strong in stiffness, excellent in natural shrinkage property and the like, especially in a quality balance for shrink labels, can be obtained.

Claims (4)

表裏層と中間層を積層してなる少なくとも3層の熱収縮性積層フィルムにおいて、表裏層を構成する樹脂は25℃での貯蔵弾性率(E’)が1.5×10Pa以上で、かつ損失弾性率(E”)のピーク温度が30℃以上70℃以下に少なくとも一つ存在し、中心層を構成する樹脂は25℃での貯蔵弾性率(E’)が1.0×10Pa以下でかつ損失弾性率(E”)の少なくとも1つのピーク温度が−30℃以下−80℃以上に存在する樹脂であり、これらの樹脂を用いて積層し、少なくとも1軸に延伸したフィルムであって、主収縮方向の70℃温水中の10秒間の熱収縮率が7%以上であり、主収縮方向と直角方向に測定した引張弾性率が1200MPa以上であることを特徴とする熱収縮性積層フィルム。In a heat-shrinkable laminated film of at least three layers obtained by laminating the front and back layers and the intermediate layer, the resin constituting the front and back layers has a storage elastic modulus (E ′) at 25 ° C. of 1.5 × 10 9 Pa or more, In addition, at least one peak temperature of the loss elastic modulus (E ″) is present at 30 ° C. or more and 70 ° C. or less, and the resin constituting the central layer has a storage elastic modulus (E ′) at 25 ° C. of 1.0 × 10 9. A resin in which at least one peak temperature of Pa or lower and a loss elastic modulus (E ") is present at -30 ° C or lower and at -80 ° C or higher. A film laminated using these resins and stretched at least uniaxially is used. A heat shrinkage of 7% or more in hot water at 70 ° C. in a main shrinkage direction of 7% or more, and a tensile modulus of elasticity measured in a direction perpendicular to the main shrinkage direction of 1200 MPa or more. Laminated film. 表裏層、中心層を構成する樹脂が(a)スチレン含有量が80重量%以上であり、25℃での貯蔵弾性率(E’)が2.0×10Pa以上で、かつ損失弾性率(E”)のピーク温度が30℃以上70℃以下に一つ存在するスチレン−ブタジエンブロック共重合体と、(b)ブタジエン含有量が20〜50重量%であり、損失弾性率(E”)の少なくとも1つのピーク温度が−30℃以下−80℃以上に存在するスチレン−ブタジエンブロック共重合体のそれぞれ混合物であり、表裏層は(a)が70重量%以上含まれ、中心層は(b)が40重量%以上60重量%以下含まれることを特徴とする請求項1記載の熱収縮性積層フィルム。The resin constituting the front and back layers and the center layer has (a) a styrene content of 80% by weight or more, a storage elastic modulus (E ') at 25 ° C of 2.0 × 10 9 Pa or more, and a loss elastic modulus. (E ″) a styrene-butadiene block copolymer having one peak temperature of 30 ° C. or more and 70 ° C. or less, (b) a butadiene content of 20 to 50% by weight, and a loss modulus (E ″) Are each a mixture of styrene-butadiene block copolymers having at least one peak temperature of -30 ° C or lower and -80 ° C or higher, wherein the front and back layers contain (a) 70% by weight or more, and the center layer (b) The heat-shrinkable laminated film according to claim 1, wherein the content of the heat-shrinkable laminated film is from 40% by weight to 60% by weight. 主収縮方向の23℃における引張伸び率が70%以上であり、かつ主収縮方向と直角方向の0℃における引張伸び率が100%以上であることを特徴とする請求項1又は2記載の熱収縮性積層フィルム。3. The heat according to claim 1, wherein the tensile elongation at 23 ° C. in the main shrinkage direction is 70% or more, and the tensile elongation at 0 ° C. in the direction perpendicular to the main shrinkage direction is 100% or more. Shrinkable laminated film. 30℃環境下にて30日保管後の主収縮方向の収縮率が1.5以下であることを特徴とする請求項1乃至3のいずれか1項記載の熱収縮性積層フィルム。The heat-shrinkable laminated film according to any one of claims 1 to 3, wherein a shrinkage rate in a main shrinkage direction after storage for 30 days in a 30 ° C environment is 1.5 or less.
JP2002240568A 2002-08-21 2002-08-21 Heat shrinkable laminated film Expired - Fee Related JP4082662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240568A JP4082662B2 (en) 2002-08-21 2002-08-21 Heat shrinkable laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240568A JP4082662B2 (en) 2002-08-21 2002-08-21 Heat shrinkable laminated film

Publications (2)

Publication Number Publication Date
JP2004074687A true JP2004074687A (en) 2004-03-11
JP4082662B2 JP4082662B2 (en) 2008-04-30

Family

ID=32023311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240568A Expired - Fee Related JP4082662B2 (en) 2002-08-21 2002-08-21 Heat shrinkable laminated film

Country Status (1)

Country Link
JP (1) JP4082662B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013967A1 (en) * 2004-08-06 2006-02-09 Mitsubishi Plastics, Inc. Multilayer heat-shrinkable polystyrene film and heat -shrinkable labels and containers made by using the same
JP2007030411A (en) * 2005-07-28 2007-02-08 Asahi Kasei Chemicals Corp Heat-shrinkable laminated film
WO2008013113A1 (en) 2006-07-26 2008-01-31 Gunze Limited Heat-shrinkable multilayer styrene film and method for producing the same
JP2009214365A (en) * 2008-03-10 2009-09-24 Gunze Ltd Styrene-based heat-shrinkable film
JP2015073743A (en) * 2013-10-09 2015-04-20 旭化成ケミカルズ株式会社 Price rail

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013967A1 (en) * 2004-08-06 2006-02-09 Mitsubishi Plastics, Inc. Multilayer heat-shrinkable polystyrene film and heat -shrinkable labels and containers made by using the same
CN101018669B (en) * 2004-08-06 2010-06-16 三菱树脂株式会社 Multilayer heat-shrinkable polystyrene film and heat-shrinkable labels and containers made by using the same
JP2007030411A (en) * 2005-07-28 2007-02-08 Asahi Kasei Chemicals Corp Heat-shrinkable laminated film
WO2008013113A1 (en) 2006-07-26 2008-01-31 Gunze Limited Heat-shrinkable multilayer styrene film and method for producing the same
US9845386B2 (en) 2006-07-26 2017-12-19 Gunze Limited Multilayer heat-shrinkable styrene-based film and method for producing the same
JP2009214365A (en) * 2008-03-10 2009-09-24 Gunze Ltd Styrene-based heat-shrinkable film
JP2015073743A (en) * 2013-10-09 2015-04-20 旭化成ケミカルズ株式会社 Price rail

Also Published As

Publication number Publication date
JP4082662B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP3867095B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP4688750B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP4678637B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
US20080090036A1 (en) Heat-Shrinkable Laminate Film, and Molded Product and Container Using the Film
JP5057666B2 (en) Heat-shrinkable laminated film, molded product and container using the film
JP3845410B2 (en) Heat shrinkable laminated film
JP2011110780A (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP3164554B2 (en) Heat shrinkable polystyrene-based laminated film
US20080286540A1 (en) Multilayer Heat Shrinkable Polystyrene Film and Heat Shrinkable Label and Container Using the Film
JP2004034503A (en) Multi-layer heat shrinkable film
JP4082662B2 (en) Heat shrinkable laminated film
JP2003155356A (en) Heat shrinkable polystyrene film
JP4364085B2 (en) Heat-shrinkable laminated film and molded article and container using the film
JP3914666B2 (en) Heat shrinkable laminated film
JP3172137B2 (en) Heat shrinkable polystyrene laminated film
JP2000000932A (en) Heat-shrinkable polystyrenic laminated film
JP3547317B2 (en) Heat shrinkable polystyrene-based laminated film
JP4392202B2 (en) Heat shrinkable polystyrene laminated film
JP2002137292A (en) Heat-shrinkable polystyrene film
JPH11349704A (en) Heat-shrinkable polystyrene film
JP3734381B2 (en) Heat shrinkable polystyrene film
JP2002146052A (en) Thermally shrinkable polystyrene film
JPH11138708A (en) Heat-shrinkable polystyrene laminated film
JP4093840B2 (en) Heat shrinkable polystyrene film
JP2010023429A (en) Heat shrinkable film, heat shrinkable label, and receptacle with this label

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees