JP2004074301A - Polishing pad and substrate polishing method - Google Patents

Polishing pad and substrate polishing method Download PDF

Info

Publication number
JP2004074301A
JP2004074301A JP2002233413A JP2002233413A JP2004074301A JP 2004074301 A JP2004074301 A JP 2004074301A JP 2002233413 A JP2002233413 A JP 2002233413A JP 2002233413 A JP2002233413 A JP 2002233413A JP 2004074301 A JP2004074301 A JP 2004074301A
Authority
JP
Japan
Prior art keywords
polishing pad
polishing
substrate
fiber
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002233413A
Other languages
Japanese (ja)
Inventor
Masaya Nishiyama
西山 雅也
Yasuo Shimamura
島村 泰夫
Katsuharu Takahashi
高橋 克治
Koichi Hiraoka
平岡 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002233413A priority Critical patent/JP2004074301A/en
Publication of JP2004074301A publication Critical patent/JP2004074301A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing pad and a substrate polishing method efficiently flattening recesses/projections of a workpiece such as a silicon oxide film at high speed and simultaneously reducing the formation of polishing damage on the substrate in CMP (Chemical Mechanical Polishing) technology for flattening an interlayer dielectric, a BPSG (Boron Phosphorous Silicon Glass) film, and an insulation film for a shallow trench isolation in a manufacturing process of a semiconductor element. <P>SOLUTION: This polishing pad is a sheet body formed by accumulating fibers and heat-compressing them and, at least, the surface layer of the polishing pad abutting on the workpiece substantially comprises an organic fiber containing the organic fiber A of a melting point of 250°C or more, and the organic fibers are fixed to each other by fusion of the organic fibers A of the melting point of 250°C or more. The substrate is so polished that the surface of the substrate is pushed against the surface layer of the polishing pad, abrasives are fed between the substrate and the polishing pad, and the substrate and the polishing pad are slid relatively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被研磨物の表面研磨に適用する研磨パッドに関する。特に、半導体素子等の製造において、CMP(Chemical Mechanical Polishing)研磨剤と共に用いられるものであり、層間絶縁膜やBPSG膜(ボロン、リンをドープした二酸化珪素膜)の平坦化工程、シャロー・トレンチ分離の形成工程等に使用するのに適した研磨パッドに関する。また、本発明は、シリコンウエハ、ハードディスク等を被研磨物とし、その表面研磨をするのにも適した研磨パッドに関する。さらに、本発明は、この研磨パッドを使用して研磨をする基板の研磨方法に関する。
【0002】
【従来の技術】
超々大規模集積回路の実装密度を高めるために、種々の微細加工技術が研究、開発されている。既に、デザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化の要求を満足するために開発されている技術の一つにCMP技術がある。この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化し、露光技術の負担を軽減し、製造歩留まりを高いレベルで安定させることに寄与する。例えば、層間絶縁膜やBPSG膜の平坦化、シャロー・トレンチ分離等を行なう際に必須となる技術である。
【0003】
従来、半導体装置の製造工程においては、プラズマ−CVD(Chemical VaporDeposition、化学的蒸着法)や低圧−CVD等の手段により酸化珪素絶縁膜等の無機絶縁膜を基板上に形成し、この無機絶縁膜(被研磨物)を平坦化するために次のような研磨を実施している。被研磨物を研磨パッドに押し当て、CMP研磨剤スラリを被研磨物と研磨パッドの間に供給しながら、研磨パッドを被研磨物との間で相対的に摺動させる技術である。
CMP研磨剤としてはフュームドシリカ系が、研磨パッドとしては発泡ウレタン系が一般的に用いられている。このような研磨パッドとCMP研磨剤による研磨は、被研磨物に微細な研磨傷を発生させることがあり、被研磨物に要求される品質・性能が高くなるに伴い、微細な研磨傷の発生も問題となってくる。また、ウレタン系のパッドでは研磨速度に限界があり速度アップの要求も高まっている。
【0004】
このような要求に対して、有機繊維不織布に熱硬化性樹脂を含浸・乾燥して得たプリプレグの層を加熱加圧成形した板状体のパッド(マトリックス樹脂により有機繊維を固定したパッド)が提案されている。その系では、高い研磨速度が得られるものの、樹脂の配合工程、含浸・乾燥工程で微量な異物の混入が避けられないため、研磨傷を解消するには十分でなかった。
また、特開平11−90809号公報には、熱融着繊維と非熱融着繊維からなる不織布で構成した研磨パッドが開示されている。しかし、当該公報に開示されている熱融着繊維は、融点180℃以下の低融点樹脂からなるものであり、当該不織布には、表面に塗布したポリウレタン樹脂が加熱圧縮により保持されている。そのため、このような低融点熱融着繊維を含む研磨パッドは、概して摩耗しやすく耐久性(パッドの寿命)が十分であるとは言えなかった。さらに、研磨作業においては、パッドの摩耗粉(繊維粉やポリウレタン樹脂の破砕片)発生が多くなるので、研磨傷や局部的な欠陥が生じるおそれもあった。
【0005】
【発明が解決しようとする課題】
本発明は、半導体素子製造工程における層間絶縁膜、BPSG膜、シャロー・トレンチ分離用絶縁膜等を平坦化するCMP技術において、酸化珪素膜等の被研磨物の凹凸の平坦化を効率的かつ高速に行い、同時に基板上の研磨傷の発生を低減できる研磨パッド及び基板の研磨方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、以下の(1)〜(7)に関する。
(1) 繊維を集積し加熱圧縮した板状体であって、少なくとも被研磨物に当接する表面層を、融点250℃以上の有機繊維(A)を含有する有機繊維で実質的に構成し、有機繊維同士が前記融点250℃以上の有機繊維(A)の熱融着により固定された層とすることを特徴とする研磨パッド。
(2) 有機繊維が、融点を有しない有機繊維(B)と融点250℃以上の有機繊維(A)を含有するものであって、少なくとも被研磨物に当接する表面層が、有機繊維同士が前記融点250℃以上の有機繊維(A)の熱融着により固定された層であることを特徴とする上記(1)に記載の研磨パッド。
(3) 融点250℃以上の有機繊維(A)が、メタ系アラミド繊維であることを特徴とする上記(1)又は(2)に記載の研磨パッド。
【0007】
(4) 被研磨物に当接する表面層中の融点250℃以上の有機繊維(A)が、繊維径が相対的に太い有機繊維と細い有機繊維の組合せからなることを特徴とする上記(1)〜(3)のいずれかに記載の研磨パッド。
(5) 被研磨物に当接する表面層を実質的に構成する有機繊維が、不織布形態であることを特徴とする上記(1)〜(4)のいずれかに記載の研磨パッド。
(6) 被研磨物に当接しない層を構成する繊維が、被研磨物に当接する表面層を実質的に構成する有機繊維より低弾性の繊維であることを特徴とする上記(1)〜(5)のいずれかに記載の研磨パッド。
(7) 所定の基板の表面を上記(1)〜(6)のいずれかに記載の研磨パッドの上記表面層の表面に押し当て、研磨剤を基板と研磨パッドとの間に供給しながら、基板と研磨パッドを相対的に摺動させて基板を研磨することを特徴とする基板の研磨方法。
【0008】
本発明の、繊維を集積し加熱圧縮した板状体であって、少なくとも被研磨物に当接する表面層を、融点250℃以上の有機繊維(A)を含有する有機繊維で実質的に構成し、有機繊維同士が前記融点250℃以上の有機繊維(A)の熱融着により固定された層とすることを特徴とする研磨パッドを用いて半導体基板を研磨すれば、高い研磨速度での平坦化の進行と、研磨傷の低減を図ることが可能となる。これは以下のように推測される。
【0009】
研磨パッドを所定の押圧力で基板に押し当て、研磨剤を研磨膜と研磨パッドとの間に供給しながら、基板と研磨パッドを相対的に摺動させて研磨する方法では、研磨作業中に、パッドから剥がれ落ちたパッド成分が異物となって被研磨物と研磨パッドの間に入り込む。このような状態で研磨を実施すると、前記異物によって被研磨物に通常よりも深く削られる部分が発生し、研磨傷(スクラッチや局部的な欠点)が生じる。特に、発泡ウレタン系や無機材質系パッドから生成する異物はサイズが大きくしかも硬いために、前記不具合が顕著になる。
一方、マトリックス樹脂により有機繊維を固定したパッドでは、その表面から剥がれ落ちる異物はサイズが小さく、その点では発泡ウレタン系パッドよりはスクラッチや局部的な欠点が生じ難くはなっている。しかし、マトリックス樹脂の調製、マトリックス樹脂の含浸・乾燥など樹脂に関係する工程の中で、微細な金属粉、ゲル化物、炭化物の混入が避けられず、これらの異物は固いために、やはり研磨傷発生の原因となる。
【0010】
本発明に係る研磨パッドは、その製造に、マトリックス樹脂の調製、マトリックス樹脂の含浸・乾燥など樹脂に関係する工程を必要としないので、そのような工程に起因する異物は皆無となり、スクラッチや局部的な欠陥が生じ難く、不良になるような深さの研磨傷は皆無あるいは激減する。
また、本発明に係る研磨パッドを用いて研磨を始めると、研磨パッドの表面が摩耗して有機繊維の毛羽立ちが顕著になる。表面に露出した多数の有機繊維の繊維間に、あるいは繊維表面に、研磨剤の粒子を保持できるようになるので、研磨膜とパッドとの間に供給される研磨剤の量を実質的に増やして、研磨速度を上げることが可能になる。
【0011】
【発明の実施の形態】
本発明に係る研磨パッドは、少なくとも研磨膜に当接する表面層を、融点250℃以上の有機繊維(A)を含有する有機繊維で実質的に構成し、有機繊維同士が有機繊維(A)の熱融着により固定された層としたものである。また、少なくとも研磨膜に当接する表面層を、融点を有しない有機繊維(B)と融点250℃以上の有機繊維(A)を含有する有機繊維で実質的に構成し、前記融点250℃以上の有機繊維(A)の熱融着により有機繊維同士が固定された層としてもよい。こうすることによって、研磨パッドの表面に露出する有機繊維量が多くなり、含まれる異物も少ないことから、研磨傷の発生を低減する効果が極めて大きいことが分かった。
【0012】
融点250℃以上の有機繊維としては、メタ系アラミド、全芳香族ポリエステルなど高融点材料からなる有機繊維が好ましく、単繊維を所定長に切断したチョップやチョップを叩解したパルプ、さらには、前記材料のフィルムを叩解したフィブリドをその概念に含む。
【0013】
有機繊維は、織布や不織布の形態で用いると取扱いが容易であり、このような形態の繊維同士を加熱加圧により熱融着させて研磨パッドの表面層を構成する。不織布形態で繊維同士を熱融着した構成の研磨パッドは、基板に押し当てる表面の毛羽立ちがより良好となるので好ましい。不織布は、前記チョップ、パルプ、フィブリドを単体で抄造して、あるいは適宜混抄して製造する。不織布形態を保持するために、多少の樹脂バインダーを適用して繊維同士を結着することは差し支えない。本発明において、実質的に有機繊維からなるとは、このように多少の樹脂バインダーを適用した構成もその概念に含む。
【0014】
融点を有しない有機繊維は、パラ系アラミド繊維等の高強度有機繊維である。上記融点250℃以上の有機繊維の中で、メタ系アラミド繊維の選択(単独で用いるか又は主たる繊維として用いる)は、好ましいものである。その理由は、アラミド繊維は一般的な有機繊維に比べて引張り強度が高く、研磨パッドの耐久性を向上させ使用寿命を延ばせるからである。メタ系アラミド繊維は、溶融温度が340℃近辺であることから、繊維同士を熱融着することが十分に可能である。また、メタ系アラミド繊維は、研磨膜と接触した際に、その形状がパラ系アラミド繊維に比べて破壊されやすいので、微細な研磨傷発生をより低減できる。メタ系アラミド繊維としてはポリ−m−フェニレンイソフタルアミド繊維(PMIA)(デュポン製「ノ−メックス」や帝人製「コーネックス」)が市販されており、これらが一般的である。
【0015】
本発明の研磨パッドの製造に用いられる繊維(有機繊維(A)、有機繊維(B)及びその他必要に応じて用いられる繊維を含む)は、繊維径が1μm〜1mmであることが好ましく、10μm〜50μmであることがより好ましい。また、本発明の研磨パッドの製造に用いられる繊維の繊維長は、1μm〜30mmであることが好ましく、10μm〜10mmであることがより好ましい。
【0016】
研磨膜に当接される表面層は、材質、形状、繊維径、繊維長の少なくとも一つが異なる2種類以上の有機繊維を組合せて構成し、その繊維の組合せ方を選択することによって特有の効果を奏することができる。
【0017】
同じ繊維材質で、相対的に太い繊維(例えば、径10μm〜1mm、特に、径:1.5デニール(=12.5μm)前後)と相対的に細い繊維(例えば、径0.1μm〜5μm、特に、径:0.1デニール(=0.83μm)前後)の組合せは、両繊維の相互作用により、研磨速度と研磨の平坦度の両特性確保に有効である。前者の繊維は研磨速度の向上に寄与し、後者の繊維は平坦度の確保に寄与する。例えば、メタ系アラミド繊維のチョップとパルプの組合せである。相対的に長い繊維(例えば、長さ3〜30mm、特に、長さ:5mm前後)と相対的に短い繊維(例えば、長さ10μm〜3mm、特に、長さ:1mm前後)の組合せも同様によい。前記のような異なる有機繊維の組合せは、当該種類の異なる有機繊維を混抄して不織布形態とすることにより容易に実現可能である。
【0018】
有機繊維同士の熱融着は、上記した不織布や織布などシート形態の有機繊維基材を平坦な金属板に挟み、これを加熱加圧成形して行なう。加熱加圧成形する有機繊維の不織布や織布は、1枚であってもよいし複数枚を重ね合せたものであってもよい。シリコンウエハなど研磨膜の種類や研磨条件により、重ね合せ枚数を変えて繊維同士の熱融着をする。前記重ね合せにおいては、シート形態の他の繊維基材を適宜選択し組合せてもよい。加熱加圧成形の温度は、有機繊維(A)の融点以上であれば特に制限はないが、通常、250〜500℃が好ましい。
【0019】
このようにして得られる本発明の研磨パッド全体の厚みは、0.1〜5mmであることが好ましく、0.5〜2mmであることがより好ましい。
本発明の研磨パッドには、必要に応じて、被研磨物に当接する表面に、ドレス処理等の表面粗さを調節する処理を施してもよく、また、研磨剤の供給を均一にするための溝加工を行なってもよい。
【0020】
本発明の基板の研磨方法では、所定の基板の表面を本発明の研磨パッドの上記表面層の表面に押し当て、研磨剤を基板と研磨パッドとの間に供給しながら、基板と研磨パッドを相対的に摺動させて基板を研磨する。
基板としては、半導体基板、即ち、回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板上に酸化珪素膜、窒化珪素膜等の層間絶縁膜や、BPSG膜が形成された半導体基板等が挙げられ、これらの膜等を研磨して表面を平坦化する。また、本発明の研磨方法は、半導体基板のシャロー・トレンチ分離にも使用できる。
【0021】
本発明に使用する研磨剤は、特に定めないが、例えば、酸化セリウム粒子と分散剤と水からなる組成物を分散させ、さらに添加剤を添加することによって得られる酸化セリウム粒子含有量が0.5〜20重量%のものが好ましい。
研磨する装置に制限はなく、円盤型研磨装置、リニア型研磨装置、ウェヴ型研磨装置等を用いることができる。一例としては、基板を保持するホルダーと研磨パッドを貼り付けた(回転数が変更可能なモーター等を取り付けてある)定盤を有する一般的な研磨装置がある。研磨条件に特に制限はないが、研磨対象にあわせ最適化を図ることが好ましい。研磨している間、基板と研磨パッドの間に、研磨剤を連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。研磨する際の研磨圧力は、100kPa以下とすることが好ましく、10kPa〜50kPaとすることがより好ましい。
【0022】
本発明の研磨パッドは、上記のような半導体基板上の膜等だけでなく、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する膜、フォトマスク、レンズ、プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレーター等の光学用単結晶、固体レーザー反結晶、青色レーザーLED用サファイヤ基板、SiC、GaP、GaAS等の半導体単結晶、磁気ディスク用ガラス或いはアルミ基板、磁気ヘッド等を研磨することができる。
【実施例】
以下、実施例により、本発明を説明する。本発明はこれらの実施例により限定されるものではない。
【0023】
(パッドの作製)
材料の有機繊維として、以下のものを準備した。
[アラミド繊維不織布(1)]
パラ系アラミド繊維チョップ(繊維径:1.5デニール(=12.5μm),繊維長:5mm,帝人製「テクノーラ」、融点:なし)とメタ系アラミド繊維チョップ(繊維径:3デニール(=25μm),繊維長:6mm,融点340℃,帝人製「コーネックス」)を混抄し、水溶性エポキシ樹脂バインダー(ガラス転移温度110℃,大日本インキ化学(株)製、商品名Vコート)の20重量%水溶液をスプレーして加熱乾燥(150℃、3分)し、さらに、一対の熱ロール間(温度300℃、線圧力196kN/m)に通すことにより加熱圧縮し、繊維同士を結着した不織布である。この不織布は、厚さ80μm、単位質量70g/mで、パラ系アラミド繊維チョップ/メタ系アラミド繊維チョップ/エポキシ樹脂バインダーの配合質量比10/80/10である。前記パラ系アラミド繊維チョップは、具体的には、ポリp−フェニレン3,4′−ジフェニルエーテルテレフタラミド繊維チョップである。
【0024】
[アラミド繊維不織布(2)]
パラ系アラミド繊維チョップを使用せず、メタ系アラミド繊維チョップ(繊維径:3デニール(=25μm),繊維長:6mm,融点340℃,帝人製「コーネックス」)だけを使用し、以下、アラミド繊維不織布(1)と同様に製造した不織布である。
【0025】
[アラミド繊維不織布(3)]
パラ系アラミド繊維チョップを使用せず、メタ系アラミド繊維チョップ(繊維径:3デニール(=25μm),繊維長:6mm,融点340℃,帝人製「コーネックス」)とメタ系アラミドフィブリド(繊維径:1.5デニール(=12μm),繊維長:5mm,融点260℃,デュポン製「ノーメックスフィブリド」を混抄し、エポキシ樹脂バインダーを用いずに製造した不織布である。この不織布は、厚さ80μm、単位質量70g/mで、メタ系アラミド繊維チョップ/メタ系アラミドフィブリドの質量比90/10である。
【0026】
[アラミド繊維不織布(4)]
メタ系アラミド繊維チョップ(繊維径:3デニール(=25μm),繊維長:6mm,融点280℃,帝人製「コーネックス」)とメタ系アラミド繊維パルプ(繊維径:0.1デニール(=0.83μm),繊維長:1mm,融点280℃,デュポン製「ノーメックス」)とを混抄し、以下、アラミド繊維不織布(1)と同様に製造した不織布である。この不織布は、厚さ80μm、単位質量70g/mで、メタ系アラミド繊維チョップ/メタ系アラミド繊維パルプ/エポキシ樹脂バインダーの配合質量比65/35/10である。
【0027】
[ポリエステル繊維不織布(1)]
融点130℃のポリエステル繊維チョップ(単糸繊度4デニール(=33.3μm),繊維長51mm)と、非熱融着ポリエステル繊維チョップ(単糸繊度2デニ−ル(=16.7μm),繊維長51mm,融点260℃)を準備し、これらを33/67の質量比率で混合してウェブとなし、ニードリングした不織布である。この不織布は、単位質量600g/m、見掛け密度0.34である。
【0028】
実施例1
アラミド繊維不織布(1)を15枚重ねた層の両表面に離型フィルムを配置しこれをステンレス製鏡面板に挟み込み、その複数組をプレス熱盤間に投入し、熱盤との間にはクラフト紙層からなる厚さ10mmのクッション材を介在させて、温度350℃、圧力4MPaで加熱加圧成形し、厚さ1.0mmの研磨パッド材を得た。この研磨パッド材は、繊維同士の熱融着により、重ね合せた15枚のアラミド繊維不織布層は完全に一体化している。
【0029】
実施例2
アラミド繊維不織布(2)を15枚重ね、実施例1と同様に加熱加圧成形し厚さ1.0mmの研磨パッド材を得た。
【0030】
実施例3
アラミド繊維不織布(3)を15枚重ね、実施例1と同様に加熱加圧成形し厚さ1.0mmの研磨パッド材を得た。
【0031】
実施例4
アラミド繊維不織布(4)を15枚重ね、実施例1と同様に加熱加圧成形し厚さ1.0mmの研磨パッド材を得た。
【0032】
従来例1
発泡ポリウレタン系樹脂からなる研磨パッド材(厚み1.5mm、ロデール・ニッタ製「IC−1000」)である。
【0033】
従来例2
ポリエステル不織布(1)を10枚重ねたものにポリウレタン樹脂を塗布し、温度160℃、圧力4MPaで加熱加圧成形して研磨パッド材(厚み1.0mm)を得た。
【0034】
比較例1
ビスフェノ−ルA型エポキシ樹脂100重量部に硬化剤としてジシアンジアミド20重量部を、硬化促進剤として2−エチル−4−メチルイミダゾール0.1重量部を配合したエポキシ樹脂ワニスを調製した。
上記のワニスをアラミド繊維不織布(4)に含浸し加熱乾燥してプリプレグを製造した。このプリプレグは、その加熱加圧成形後の厚さが0.1mmになるように、また、加熱加圧成形後のアラミド繊維含有率が50質量%になるように、樹脂付着量を調整したものである。
上記プリプレグを15枚重ね、実施例1と同様にプレス熱盤間に投入し、温度165℃、圧力4MPaで加熱加圧成形して、厚さ1.0mmの研磨パッド材を得た。
以上の各例における研磨パッド材の仕様を表1に纏めて示す。
【0035】
【表1】

Figure 2004074301
【0036】
上記各実施例、従来例及び比較例における研磨パッド材に、以下の処理を行なった。研磨パッド材を研磨機の380mmの定盤上に貼付けて固定し、ドレス処理、即ち、研磨機に付随するダイヤモンドドレッサー(150番手)を用いて、圧力8800Pa(90kgf/cm)、回転数38rpmで、10分間、研磨パッド材表面を磨き、研磨パッド材の表面あらさを調製し、研磨パッドとした。また、シリコンウエハ1枚を研磨するごとに17秒間、同様にドレス処理を行ない、研磨パッド表面の状態を維持することとした。これら研磨パッドとCMP研磨剤により、シリコンウエハ(φ127mmのSi基板上に2000nm厚の酸化珪素膜をTEOS−プラズマCVD法で形成したブランケットウエハ)の研磨を次のように実施した。
上記シリコンウエハをホルダにセットし保持する。ホルダはワーク取付用の吸着パッドを貼付けたものであり、この吸着パッドにシリコンウエハを保持する。また、研磨パッドをφ380mmの定盤上に貼付けて固定する。シリコンウエハの酸化珪素膜形成面を研磨パッドに当接して、研磨荷重を30kPaに設定する。酸化セリウム研磨剤(酸化セリウム粒子:1重量%、添加剤(ポリアクリル酸アンモニウム塩40重量%水溶液):0.23重量%、水:89.8重量%)を150ml/分の量で定盤上に滴下しながら、定盤及びウエハをそれぞれ同一方向に38rpmで2分間回転させて、酸化珪素膜を研磨する。そして、研磨後のシリコンウエハを純水で十分に洗浄後、乾燥する。
研磨を次の観点から評価した。評価結果を表2に示す。
研磨傷数:シリコンウエハ酸化珪素膜表面の4cmの範囲を顕微鏡観察し研磨傷(大きさ1mm以上)をカウントする。
研磨速度:研磨前後の酸化珪素膜厚差を光干渉式膜厚測定装置により測定し、酸化珪素膜厚の平均研磨速度を求める。
耐久性:従来例のウレタンパッドの使用寿命を100とした指数で示す。
【0037】
【表2】
Figure 2004074301
【0038】
表2の評価結果から、本発明に係る研磨パッドを用いることにより、研磨傷の発生を抑制し、しかも研磨速度を速くできることが判る。
上記本発明の実施例に係る研磨パッドは、シリコンウエハやハードディスクなどの製造工程において、その表面を研磨するために用いても、研磨傷の発生を抑制しながら、高速に研磨を実施することができる。
【0039】
【発明の効果】
上述したように、本発明に係る研磨パッドを使用することにより、酸化珪素膜等の研磨を高速に行い、かつ研磨傷の発生を低減することができる。これらによって、半導体素子の生産歩留まり向上を図り、大幅なコストを低減することが可能となる。特に、有機繊維の中でも強度の高いアラミド繊維を選択することにより、研磨パッドの強度を大きくでき、摩耗に対する耐久性が高まるので、上記効果を保持しつつ研磨パッドの使用寿命を延ばすことも可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing pad applied to surface polishing of an object to be polished. In particular, it is used together with a CMP (Chemical Mechanical Polishing) polishing agent in the manufacture of semiconductor devices and the like, and is used for flattening an interlayer insulating film or a BPSG film (a silicon dioxide film doped with boron or phosphorus), and a shallow trench isolation. The present invention relates to a polishing pad suitable for use in a step of forming a polishing pad. The present invention also relates to a polishing pad suitable for polishing a surface of a silicon wafer, a hard disk or the like as an object to be polished. Further, the present invention relates to a substrate polishing method for polishing using the polishing pad.
[0002]
[Prior art]
Various microfabrication techniques have been studied and developed in order to increase the packaging density of ultra-large-scale integrated circuits. Already, design rules are on the order of sub-half microns. One of the technologies that have been developed to satisfy such strict requirements for miniaturization is a CMP technology. This technique contributes to completely flattening a layer to be exposed in a semiconductor device manufacturing process, reducing the burden of the exposure technique, and stabilizing the manufacturing yield at a high level. For example, it is a technique that is essential when flattening an interlayer insulating film or a BPSG film, isolating a shallow trench, and the like.
[0003]
2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor device, an inorganic insulating film such as a silicon oxide insulating film is formed on a substrate by means such as plasma-CVD (Chemical Vapor Deposition, chemical vapor deposition) or low-pressure-CVD. The following polishing is performed to flatten the (polished object). This is a technique in which an object to be polished is pressed against a polishing pad, and a polishing pad is slid relatively between the object to be polished while a CMP slurry is supplied between the object to be polished and the polishing pad.
Fumed silica is generally used as a CMP abrasive, and urethane foam is generally used as a polishing pad. Polishing with such a polishing pad and a CMP polishing agent may cause fine polishing flaws on an object to be polished. Is also a problem. Further, in the case of urethane-based pads, the polishing rate is limited, and there is an increasing demand for increasing the polishing rate.
[0004]
In response to such demands, a pad of a plate-like body (a pad in which organic fibers are fixed with a matrix resin), in which a prepreg layer obtained by impregnating and drying a thermosetting resin into an organic fiber non-woven fabric, is heated and pressed, is used. Proposed. In this system, although a high polishing rate can be obtained, a minute amount of foreign matter is unavoidably mixed in the resin compounding step and the impregnation / drying step, so that it is not sufficient to eliminate polishing scratches.
Further, Japanese Patent Application Laid-Open No. 11-90809 discloses a polishing pad formed of a nonwoven fabric composed of heat-fused fibers and non-heat-fused fibers. However, the heat-fused fiber disclosed in this publication is made of a low-melting resin having a melting point of 180 ° C. or lower, and the polyurethane resin applied to the surface of the non-woven fabric is held by heat compression. Therefore, the polishing pad containing such a low-melting-point heat-fusible fiber is generally worn easily and cannot be said to have sufficient durability (life of the pad). Further, in the polishing operation, since abrasion powder (fiber powder or crushed pieces of polyurethane resin) of the pad is increased, polishing scratches and local defects may occur.
[0005]
[Problems to be solved by the invention]
The present invention relates to a CMP technology for flattening an interlayer insulating film, a BPSG film, an insulating film for isolating a shallow trench in a semiconductor element manufacturing process, and to efficiently and rapidly flatten unevenness of an object to be polished such as a silicon oxide film. The present invention also provides a polishing pad and a method for polishing a substrate, which can reduce the occurrence of polishing scratches on the substrate at the same time.
[0006]
[Means for Solving the Problems]
The present invention relates to the following (1) to (7).
(1) A plate-like body in which fibers are accumulated and heated and compressed, wherein at least a surface layer in contact with an object to be polished substantially comprises an organic fiber containing an organic fiber (A) having a melting point of 250 ° C. or more; A polishing pad, wherein organic fibers are fixed to each other by heat-sealing the organic fibers (A) having a melting point of 250 ° C. or higher.
(2) The organic fiber contains an organic fiber (B) having no melting point and an organic fiber (A) having a melting point of 250 ° C. or more, and at least a surface layer in contact with the object to be polished has The polishing pad according to (1), wherein the polishing pad is a layer fixed by heat fusion of the organic fiber (A) having a melting point of 250 ° C. or higher.
(3) The polishing pad according to the above (1) or (2), wherein the organic fiber (A) having a melting point of 250 ° C. or more is a meta-aramid fiber.
[0007]
(4) The organic fiber (A) having a melting point of 250 ° C. or more in the surface layer in contact with the object to be polished is a combination of an organic fiber having a relatively large fiber diameter and an organic fiber having a relatively small fiber diameter. The polishing pad according to any one of (1) to (3).
(5) The polishing pad according to any one of the above (1) to (4), wherein the organic fibers substantially constituting the surface layer in contact with the object to be polished are in a nonwoven fabric form.
(6) The above-mentioned (1) to (1) to (1) to (1), wherein the fibers constituting the layer not in contact with the object to be polished are fibers having lower elasticity than the organic fibers constituting the surface layer substantially in contact with the object to be polished. The polishing pad according to any one of (5).
(7) While pressing the surface of a predetermined substrate against the surface of the surface layer of the polishing pad according to any one of (1) to (6) above, while supplying an abrasive between the substrate and the polishing pad, A method for polishing a substrate, characterized in that the substrate is polished by relatively sliding the substrate and a polishing pad.
[0008]
The plate-like body of the present invention, in which fibers are accumulated and heated and compressed, wherein at least a surface layer in contact with the object to be polished is substantially constituted by an organic fiber containing an organic fiber (A) having a melting point of 250 ° C. or more. When the semiconductor substrate is polished using a polishing pad, the organic fibers are fixed to each other by heat fusion of the organic fibers (A) having a melting point of 250 ° C. or more, and flattening at a high polishing rate is achieved. It is possible to promote the progress of the polishing and reduce polishing scratches. This is assumed as follows.
[0009]
In a method in which the polishing pad is pressed against the substrate with a predetermined pressing force and the polishing agent is supplied between the polishing film and the polishing pad while the substrate and the polishing pad are relatively slid, the polishing is performed during the polishing operation. The pad component peeled off from the pad becomes foreign matter and enters between the object to be polished and the polishing pad. When the polishing is performed in such a state, a portion to be polished deeper than usual by the foreign matter is generated, and polishing scratches (scratch and local defects) are generated. In particular, the foreign matter generated from the urethane foam-based or inorganic material-based pad is large in size and hard, so that the above-mentioned problem is remarkable.
On the other hand, in the pad on which the organic fibers are fixed by the matrix resin, the size of the foreign matter peeling off from the surface is small, and in that respect, scratches and local defects are less likely to occur than the urethane foam pad. However, in the process related to the resin, such as the preparation of the matrix resin and the impregnation and drying of the matrix resin, the incorporation of fine metal powders, gels, and carbides is unavoidable. It causes the occurrence.
[0010]
The polishing pad according to the present invention does not require steps related to the resin such as preparation of a matrix resin, impregnation and drying of the matrix resin, in the production thereof, so that there is no foreign matter caused by such a step, and scratches and localized areas are eliminated. There is no or a sharp decrease in the polishing scratches to such a depth that it is unlikely to cause mechanical defects and becomes defective.
Further, when polishing is started using the polishing pad according to the present invention, the surface of the polishing pad is worn and the fuzz of the organic fibers becomes remarkable. Abrasive particles can be retained between a large number of organic fibers exposed on the surface or on the fiber surface, so that the amount of the abrasive supplied between the polishing film and the pad is substantially increased. Thus, the polishing rate can be increased.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the polishing pad according to the present invention, at least the surface layer in contact with the polishing film is substantially composed of an organic fiber containing the organic fiber (A) having a melting point of 250 ° C. or higher, and the organic fibers are formed of the organic fiber (A). This is a layer fixed by heat fusion. Further, at least the surface layer in contact with the polishing film is substantially composed of an organic fiber (B) having no melting point and an organic fiber containing an organic fiber (A) having a melting point of 250 ° C. or higher, and having the melting point of 250 ° C. or higher. A layer in which the organic fibers are fixed to each other by heat fusion of the organic fibers (A) may be used. By doing so, the amount of organic fibers exposed on the surface of the polishing pad was increased, and the amount of foreign matters contained was small. Thus, it was found that the effect of reducing the occurrence of polishing scratches was extremely large.
[0012]
As the organic fiber having a melting point of 250 ° C. or more, an organic fiber composed of a high melting point material such as meta-aramid and wholly aromatic polyester is preferable, and a chop obtained by cutting a single fiber into a predetermined length or a pulp obtained by beating the chop, and further, the material The concept includes fibrids obtained by beating the film.
[0013]
Organic fibers are easy to handle when used in the form of a woven or non-woven fabric, and the fibers in such a form are thermally fused by heating and pressing to form a surface layer of a polishing pad. A polishing pad having a configuration in which fibers are heat-fused with each other in a non-woven fabric form is preferable because the fluffing of the surface pressed against the substrate becomes better. The nonwoven fabric is manufactured by making the chops, pulp and fibrids individually or by mixing them as appropriate. In order to maintain the nonwoven fabric form, it is possible to apply some resin binder to bind the fibers together. In the present invention, the term “consist substantially of organic fibers” includes the concept of applying a small amount of a resin binder as described above.
[0014]
Organic fibers having no melting point are high-strength organic fibers such as para-aramid fibers. Among the organic fibers having a melting point of 250 ° C. or more, selection of a meta-aramid fiber (used alone or as a main fiber) is preferable. The reason for this is that aramid fiber has higher tensile strength than general organic fiber, and can improve the durability of the polishing pad and extend the service life. Since the meta-aramid fiber has a melting temperature around 340 ° C., it is sufficiently possible to heat-bond the fibers to each other. Further, when the meta-aramid fiber comes into contact with the polishing film, its shape is more easily broken than the para-aramid fiber, so that the occurrence of fine polishing scratches can be further reduced. Poly-m-phenylene isophthalamide fibers (PMIA) ("Nomex" manufactured by DuPont and "Conex" manufactured by Teijin) are commercially available as meta-aramid fibers, and these are common.
[0015]
The fibers (including the organic fibers (A), the organic fibers (B) and other fibers used as necessary) used for producing the polishing pad of the present invention preferably have a fiber diameter of 1 μm to 1 mm, preferably 10 μm. More preferably, it is 50 μm. Further, the fiber length of the fiber used for producing the polishing pad of the present invention is preferably 1 μm to 30 mm, more preferably 10 μm to 10 mm.
[0016]
The surface layer to be in contact with the polishing film is constituted by combining two or more kinds of organic fibers different in at least one of the material, shape, fiber diameter, and fiber length, and has a unique effect by selecting a combination of the fibers. Can be played.
[0017]
In the same fiber material, relatively thick fibers (for example, diameter of 10 μm to 1 mm, especially diameter: about 1.5 denier (= 12.5 μm)) and relatively thin fibers (for example, diameter of 0.1 μm to 5 μm, In particular, a combination having a diameter of about 0.1 denier (= 0.83 μm) is effective for securing both the polishing rate and the flatness of polishing due to the interaction between both fibers. The former fiber contributes to the improvement of the polishing rate, and the latter fiber contributes to securing the flatness. For example, a combination of chop and pulp of meta-aramid fiber. Similarly, a combination of a relatively long fiber (for example, a length of 3 to 30 mm, particularly, a length: about 5 mm) and a relatively short fiber (for example, a length of 10 μm to 3 mm, particularly, a length of about 1 mm) is also used. Good. The combination of different organic fibers as described above can be easily realized by mixing the different types of organic fibers to form a nonwoven fabric.
[0018]
The heat fusion between the organic fibers is performed by sandwiching the sheet-shaped organic fiber base material such as the above-described nonwoven fabric or woven fabric between flat metal plates, and heating and pressing the flat metal plates. The nonwoven fabric or woven fabric of the organic fiber to be heated and pressed may be one sheet or a plurality of sheets laminated. Depending on the type of polishing film such as a silicon wafer and polishing conditions, the number of superposed fibers is changed and the fibers are thermally fused. In the superposition, other fiber base materials in a sheet form may be appropriately selected and combined. The temperature of the heat and pressure molding is not particularly limited as long as it is equal to or higher than the melting point of the organic fiber (A), but usually 250 to 500 ° C is preferable.
[0019]
The thickness of the entire polishing pad of the present invention thus obtained is preferably from 0.1 to 5 mm, more preferably from 0.5 to 2 mm.
The polishing pad of the present invention, if necessary, may be subjected to a process for adjusting the surface roughness, such as a dressing process, on the surface in contact with the object to be polished, and for uniform supply of the abrasive. May be performed.
[0020]
In the method for polishing a substrate of the present invention, the surface of a predetermined substrate is pressed against the surface of the above-mentioned surface layer of the polishing pad of the present invention, and while the polishing agent is supplied between the substrate and the polishing pad, the substrate and the polishing pad are removed. The substrate is polished by relatively sliding.
As the substrate, a semiconductor substrate, that is, a semiconductor substrate on which circuit elements and wiring patterns are formed, an interlayer insulating film such as a silicon oxide film and a silicon nitride film on a semiconductor substrate on which circuit elements are formed, or BPSG Examples include a semiconductor substrate on which a film is formed, and the film is polished to flatten the surface. Further, the polishing method of the present invention can also be used for shallow trench isolation of a semiconductor substrate.
[0021]
The abrasive used in the present invention is not particularly limited. For example, the content of cerium oxide particles obtained by dispersing a composition composed of cerium oxide particles, a dispersant, and water and further adding an additive is set to 0.1. Those having 5 to 20% by weight are preferred.
There is no limitation on a polishing apparatus, and a disk-type polishing apparatus, a linear-type polishing apparatus, a web-type polishing apparatus, or the like can be used. As an example, there is a general polishing apparatus having a surface plate on which a holder for holding a substrate and a polishing pad are attached (a motor or the like whose rotation speed can be changed is attached). The polishing conditions are not particularly limited, but it is preferable to optimize the polishing conditions. During polishing, an abrasive is continuously supplied between the substrate and the polishing pad. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the abrasive. The polishing pressure at the time of polishing is preferably 100 kPa or less, more preferably 10 kPa to 50 kPa.
[0022]
The polishing pad of the present invention includes not only a film on a semiconductor substrate as described above, but also a silicon oxide film formed on a wiring board having predetermined wiring, glass, an inorganic insulating film such as silicon nitride, polysilicon, Al , A film mainly containing Cu, Ti, TiN, W, Ta, TaN, etc., an optical glass such as a photomask, a lens, a prism, an inorganic conductive film such as ITO, an optical integrated circuit composed of glass and a crystalline material. Optical switching elements / optical waveguides, end faces of optical fibers, optical single crystals such as scintillators, solid-state laser anti-crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, GaAs, glass or aluminum substrates for magnetic disks, The magnetic head and the like can be polished.
【Example】
Hereinafter, the present invention will be described with reference to examples. The present invention is not limited by these examples.
[0023]
(Production of pad)
The following were prepared as organic fibers of the material.
[Aramid fiber non-woven fabric (1)]
Para-aramid fiber chop (fiber diameter: 1.5 denier (= 12.5 μm), fiber length: 5 mm, Teijin “Technola”, melting point: none) and meta-aramid fiber chop (fiber diameter: 3 denier (= 25 μm) ), Fiber length: 6 mm, melting point 340 ° C, Teijin's “Cornex”), and a water-soluble epoxy resin binder (glass transition temperature 110 ° C, trade name V coat, manufactured by Dainippon Ink and Chemicals, Inc.) A weight% aqueous solution is sprayed, heated and dried (150 ° C., 3 minutes), and further heated and compressed by passing between a pair of hot rolls (temperature: 300 ° C., linear pressure: 196 kN / m) to bind the fibers together. It is a non-woven fabric. This nonwoven fabric has a thickness of 80 μm, a unit mass of 70 g / m 2 , and a mixing ratio of para-aramid fiber chop / meta-aramid fiber chop / epoxy resin binder of 10/80/10. The para-aramid fiber chop is specifically a poly p-phenylene 3,4'-diphenyl ether terephthalamide fiber chop.
[0024]
[Aramid fiber non-woven fabric (2)]
Without using para-aramid fiber chops, only meta-aramid fiber chops (fiber diameter: 3 denier (= 25 μm), fiber length: 6 mm, melting point 340 ° C., Teijin's “Cornex”) were used. This is a nonwoven fabric manufactured in the same manner as the fibrous nonwoven fabric (1).
[0025]
[Aramid fiber non-woven fabric (3)]
Without using para-aramid fiber chops, meta-aramid fiber chops (fiber diameter: 3 denier (= 25 μm), fiber length: 6 mm, melting point 340 ° C, Teijin “Cornex”) and meta-aramid fibrids (fiber Diameter: 1.5 denier (= 12 μm), fiber length: 5 mm, melting point: 260 ° C., mixed with DuPont “Nomex Fibrid” and manufactured without using an epoxy resin binder. 80 μm, unit mass 70 g / m 2 , and the mass ratio of meta-aramid fiber chop / meta-aramid fibrid is 90/10.
[0026]
[Aramid fiber non-woven fabric (4)]
Meta-aramid fiber chop (fiber diameter: 3 denier (= 25 μm), fiber length: 6 mm, melting point: 280 ° C., Teijin “Cornex”) and meta-aramid fiber pulp (fiber diameter: 0.1 denier (= 0. 83 μm), a fiber length of 1 mm, a melting point of 280 ° C., and “Nomex” manufactured by DuPont), and then produced in the same manner as the aramid fiber nonwoven fabric (1). This nonwoven fabric has a thickness of 80 μm, a unit mass of 70 g / m 2 , and a mixing mass ratio of meta-aramid fiber chop / meta-aramid fiber pulp / epoxy resin binder of 65/35/10.
[0027]
[Polyester nonwoven fabric (1)]
Polyester fiber chop (single fiber fineness 4 denier (= 33.3 μm), fiber length 51 mm) having a melting point of 130 ° C., non-heat-fused polyester fiber chop (single fiber fineness 2 denier (= 16.7 μm), fiber length) 51 mm, melting point 260 ° C.), and these were mixed at a mass ratio of 33/67 to form a web, which was a needling nonwoven fabric. This nonwoven fabric has a unit mass of 600 g / m 2 and an apparent density of 0.34.
[0028]
Example 1
Release films are arranged on both surfaces of a layer of fifteen aramid fiber nonwoven fabrics (1), sandwiched between stainless steel mirror plates, and a plurality of sets are put between press hot plates, and between the hot plates. It was heated and pressed at a temperature of 350 ° C. and a pressure of 4 MPa with a cushion material having a thickness of 10 mm made of a kraft paper layer interposed therebetween to obtain a polishing pad material having a thickness of 1.0 mm. In this polishing pad material, the fifteen laminated aramid fiber nonwoven fabric layers are completely integrated by thermal fusion of the fibers.
[0029]
Example 2
Fifteen aramid fiber non-woven fabrics (2) were stacked and heated and pressed in the same manner as in Example 1 to obtain a polishing pad material having a thickness of 1.0 mm.
[0030]
Example 3
Fifteen aramid fiber non-woven fabrics (3) were stacked and heated and pressed in the same manner as in Example 1 to obtain a polishing pad material having a thickness of 1.0 mm.
[0031]
Example 4
Fifteen aramid fiber non-woven fabrics (4) were stacked and heated and pressed in the same manner as in Example 1 to obtain a polishing pad material having a thickness of 1.0 mm.
[0032]
Conventional example 1
A polishing pad material (1.5 mm thick, “IC-1000” manufactured by Rodale Nitta) made of foamed polyurethane resin.
[0033]
Conventional example 2
A polyurethane resin was applied to 10 polyester non-woven fabrics (1) stacked and heated and pressed at a temperature of 160 ° C. and a pressure of 4 MPa to obtain a polishing pad material (1.0 mm thick).
[0034]
Comparative Example 1
An epoxy resin varnish was prepared by mixing 20 parts by weight of dicyandiamide as a curing agent and 0.1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator in 100 parts by weight of a bisphenol A type epoxy resin.
The varnish was impregnated into the aramid fiber nonwoven fabric (4) and dried by heating to produce a prepreg. This prepreg was prepared by adjusting the amount of resin attached so that the thickness after the heat and pressure molding became 0.1 mm and the aramid fiber content after the heat and pressure molding became 50% by mass. It is.
Fifteen prepregs were stacked, put between press hot plates in the same manner as in Example 1, and heated and pressed at a temperature of 165 ° C. and a pressure of 4 MPa to obtain a polishing pad material having a thickness of 1.0 mm.
Table 1 summarizes the specifications of the polishing pad material in each of the above examples.
[0035]
[Table 1]
Figure 2004074301
[0036]
The following treatments were performed on the polishing pad materials in each of the above Examples, Conventional Examples and Comparative Examples. The polishing pad material was stuck and fixed on a 380 mm platen of a polishing machine, and was dressed, that is, using a diamond dresser (150-count) attached to the polishing machine, at a pressure of 8800 Pa (90 kgf / cm 2 ) and a rotation speed of 38 rpm. Then, the surface of the polishing pad material was polished for 10 minutes, and the surface roughness of the polishing pad material was adjusted to obtain a polishing pad. In addition, each time one silicon wafer is polished, dressing is similarly performed for 17 seconds to maintain the state of the polishing pad surface. Polishing of a silicon wafer (a blanket wafer in which a 2000-nm-thick silicon oxide film was formed on a Si substrate with a diameter of 127 mm by a TEOS-plasma CVD method) using the polishing pad and the CMP polishing agent was performed as follows.
The silicon wafer is set and held in a holder. The holder has a suction pad for attaching a work attached thereto, and holds the silicon wafer on the suction pad. Further, the polishing pad is attached and fixed on a surface plate of φ380 mm. The silicon oxide film forming surface of the silicon wafer is brought into contact with the polishing pad, and the polishing load is set to 30 kPa. Cerium oxide abrasive (cerium oxide particles: 1% by weight, additive (polyacrylic acid ammonium salt 40% by weight aqueous solution): 0.23% by weight, water: 89.8% by weight) at a rate of 150 ml / min. The surface plate and the wafer are respectively rotated in the same direction at 38 rpm for 2 minutes while being dropped on the top, and the silicon oxide film is polished. Then, the polished silicon wafer is sufficiently washed with pure water and then dried.
Polishing was evaluated from the following viewpoints. Table 2 shows the evaluation results.
Number of polishing flaws: A range of 4 cm 2 on the silicon wafer silicon oxide film surface is observed with a microscope, and polishing flaws (size 1 mm or more) are counted.
Polishing rate: The difference in silicon oxide film thickness before and after polishing is measured by an optical interference type film thickness measuring apparatus, and the average polishing rate of the silicon oxide film thickness is determined.
Durability: Indicated by an index when the service life of the conventional urethane pad is set to 100.
[0037]
[Table 2]
Figure 2004074301
[0038]
From the evaluation results in Table 2, it can be seen that the use of the polishing pad according to the present invention can suppress the occurrence of polishing scratches and can increase the polishing rate.
The polishing pad according to the embodiment of the present invention can be used for polishing a surface of a silicon wafer or a hard disk in a manufacturing process, and can perform high-speed polishing while suppressing generation of polishing scratches. it can.
[0039]
【The invention's effect】
As described above, by using the polishing pad according to the present invention, polishing of a silicon oxide film or the like can be performed at high speed and generation of polishing scratches can be reduced. As a result, it is possible to improve the production yield of semiconductor devices and to significantly reduce costs. In particular, by selecting high strength aramid fiber among the organic fibers, the strength of the polishing pad can be increased and the durability against abrasion is increased, so that it is possible to extend the service life of the polishing pad while maintaining the above effect. Become.

Claims (7)

繊維を集積し加熱圧縮した板状体であって、少なくとも被研磨物に当接する表面層を、融点250℃以上の有機繊維(A)を含有する有機繊維で実質的に構成し、有機繊維同士が前記融点250℃以上の有機繊維(A)の熱融着により固定された層とすることを特徴とする研磨パッド。A plate-like body in which fibers are accumulated and heated and compressed, wherein at least a surface layer in contact with an object to be polished is substantially composed of an organic fiber containing an organic fiber (A) having a melting point of 250 ° C. or more; A layer fixed by heat-sealing the organic fiber (A) having a melting point of 250 ° C. or higher. 有機繊維が、融点を有しない有機繊維(B)と融点250℃以上の有機繊維(A)を含有するものであって、少なくとも被研磨物に当接する表面層が、有機繊維同士が前記融点250℃以上の有機繊維(A)の熱融着により固定された層であることを特徴とする請求項1に記載の研磨パッド。The organic fiber contains an organic fiber (B) having no melting point and an organic fiber (A) having a melting point of 250 ° C. or more, and at least a surface layer in contact with the object to be polished has an organic fiber having the melting point of 250 ° C. 2. The polishing pad according to claim 1, wherein the polishing pad is a layer fixed by heat-sealing the organic fibers (A) at a temperature of not less than ° C. 3. 融点250℃以上の有機繊維(A)が、メタ系アラミド繊維であることを特徴とする請求項1又は2記載の研磨パッド。The polishing pad according to claim 1, wherein the organic fiber (A) having a melting point of 250 ° C. or more is a meta-aramid fiber. 被研磨物に当接する表面層中の融点250℃以上の有機繊維(A)が、繊維径が相対的に太い有機繊維と細い有機繊維の組合せからなることを特徴とする請求項1〜3のいずれかに記載の研磨パッド。The organic fiber (A) having a melting point of 250 ° C. or more in the surface layer in contact with the object to be polished is composed of a combination of an organic fiber having a relatively large diameter and an organic fiber having a relatively small diameter. The polishing pad according to any one of the above. 被研磨物に当接する表面層を実質的に構成する有機繊維が、不織布形態であることを特徴とする請求項1〜4のいずれかに記載の研磨パッド。The polishing pad according to any one of claims 1 to 4, wherein the organic fibers substantially constituting the surface layer in contact with the object to be polished are in a non-woven fabric form. 被研磨物に当接しない層を構成する繊維が、被研磨物に当接する表面層を実質的に構成する有機繊維より低弾性の繊維であることを特徴とする請求項1〜5のいずれかに記載の研磨パッド。The fiber constituting the layer not in contact with the object to be polished is a fiber having a lower elasticity than the organic fiber constituting the surface layer substantially in contact with the object to be polished. A polishing pad according to item 1. 所定の基板の表面を請求項1〜6のいずれかに記載の研磨パッドの上記表面層の表面に押し当て、研磨剤を基板と研磨パッドとの間に供給しながら、基板と研磨パッドを相対的に摺動させて基板を研磨することを特徴とする基板の研磨方法。The surface of the predetermined substrate is pressed against the surface of the surface layer of the polishing pad according to any one of claims 1 to 6, and the substrate and the polishing pad are relatively moved while the abrasive is supplied between the substrate and the polishing pad. A method for polishing a substrate, characterized in that the substrate is polished by sliding in a horizontal direction.
JP2002233413A 2002-08-09 2002-08-09 Polishing pad and substrate polishing method Pending JP2004074301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233413A JP2004074301A (en) 2002-08-09 2002-08-09 Polishing pad and substrate polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233413A JP2004074301A (en) 2002-08-09 2002-08-09 Polishing pad and substrate polishing method

Publications (1)

Publication Number Publication Date
JP2004074301A true JP2004074301A (en) 2004-03-11

Family

ID=32018547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233413A Pending JP2004074301A (en) 2002-08-09 2002-08-09 Polishing pad and substrate polishing method

Country Status (1)

Country Link
JP (1) JP2004074301A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629554B2 (en) 2006-07-03 2009-12-08 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
US7789738B2 (en) 2006-07-03 2010-09-07 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
JP2018060871A (en) * 2016-10-03 2018-04-12 株式会社ディスコ Manufacturing method for device chip
WO2018155288A1 (en) * 2017-02-23 2018-08-30 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629554B2 (en) 2006-07-03 2009-12-08 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
US7789738B2 (en) 2006-07-03 2010-09-07 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
JP2018060871A (en) * 2016-10-03 2018-04-12 株式会社ディスコ Manufacturing method for device chip
WO2018155288A1 (en) * 2017-02-23 2018-08-30 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
JPWO2018155288A1 (en) * 2017-02-23 2019-12-12 東レ株式会社 Porous film, secondary battery separator and secondary battery
JP7103338B2 (en) 2017-02-23 2022-07-20 東レ株式会社 Porous film, rechargeable battery separator and rechargeable battery

Similar Documents

Publication Publication Date Title
JP4317016B2 (en) Polishing pad for CMP, substrate polishing method using the same, and method for manufacturing CMP polishing pad
TW486407B (en) Substrate polishing article
US7534163B2 (en) Polishing pad
US6852020B2 (en) Polishing pad for use in chemical—mechanical planarization of semiconductor wafers and method of making same
US10213895B2 (en) Polishing pad and method for manufacturing same
US20040231245A1 (en) Composite material and processing method using the material
US20060199473A1 (en) Polishing pad, process for producing the same and method of polishing therewith
US7037184B2 (en) Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
TW200305483A (en) Conditioner and conditioning methods for smooth pads
KR20120042674A (en) Planarization process for hard-brittle wafer and pad for planarization process
JP2974007B1 (en) Polishing object holding material and method of manufacturing polishing object
JP2004074301A (en) Polishing pad and substrate polishing method
WO2003074227A2 (en) Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
JP2004311731A (en) Polishing pad and method for polishing article using the same
US6607428B2 (en) Material for use in carrier and polishing pads
JP2004311732A (en) Polishing pad and method for manufacturing polished article
WO2002100595A1 (en) Polishing sheet and method of manufacturing the sheet
JP2004266186A (en) Polishing pad and manufacturing method for polished article
JP3812526B2 (en) Workpiece holding material
JP2003124163A (en) Manufacturing method of polishing pad and polishing object
JP2006043803A (en) Polishing pad and method for polishing object to be polished
TW581716B (en) Material for use in carrier and polishing pads
JP6212789B2 (en) Polishing pad
JP3528507B2 (en) Laminated plate for holding material to be polished
JP3539244B2 (en) Material to be polished