JP2004073752A - Magnetic field homogeneity adjusting method for open type mri apparatus - Google Patents

Magnetic field homogeneity adjusting method for open type mri apparatus Download PDF

Info

Publication number
JP2004073752A
JP2004073752A JP2002242147A JP2002242147A JP2004073752A JP 2004073752 A JP2004073752 A JP 2004073752A JP 2002242147 A JP2002242147 A JP 2002242147A JP 2002242147 A JP2002242147 A JP 2002242147A JP 2004073752 A JP2004073752 A JP 2004073752A
Authority
JP
Japan
Prior art keywords
magnetic field
space
uniformity
adjusting
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242147A
Other languages
Japanese (ja)
Other versions
JP3934010B2 (en
JP2004073752A5 (en
Inventor
Munetaka Tsuda
津田 宗孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002242147A priority Critical patent/JP3934010B2/en
Publication of JP2004073752A publication Critical patent/JP2004073752A/en
Publication of JP2004073752A5 publication Critical patent/JP2004073752A5/ja
Application granted granted Critical
Publication of JP3934010B2 publication Critical patent/JP3934010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field homogeneity adjusting method by which a superconductive magnet is adjusted to improve accuracy of an examining result so that magnetic field homogeneity in a set space of a subject becomes optimum when the examination is carried out. <P>SOLUTION: An MRI apparatus is equipped with a static magnetic field generating magnet 2 to generate a homogeneous static magnetic field in a space 23 in which a subject is set and a patient table 13 to carry in/out the subject into the space 23. In the MRI apparatus, the patient table 13 is set in a position same as that where a tomographic image of the subject is taken when homogeneity of magnetic field intensity generated by a static magnetic field generating magnet 2 is adjusted, and magnetic field distribution on the surface of the space 23 is measured. An amount of magnetic field adjustment of the static magnetic field generating magnet 2 is calculated based on the distribution to adjust the magnetic field. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
この発明は磁気共鳴イメージング装置(以下、MRI装置という)に係わり、特に、被検者に圧迫感を与えない開放型の超電導磁石を採用したMRI装置において、被検者の検査時に最も高い磁場均一度を達成できるMRI装置の調整方法に関する。
【0002】
【従来の技術】
核磁気共鳴(NMR)現象を利用して人体の断層像を得るMRI検査法は広く医療機関で利用されている。MRI装置としては、従来、細長い筒状のソレノイドコイルを用いたものが主流であったが、近年、側面に開口部を設けたり、磁石前面の被検者搬入部を広くした磁石を採用したMRI装置が開発され、普及している。このようなMRI装置は、MRI検査下でのインターベンショナル(以下、MRインターベンショナルという)手技を可能にした。
【0003】
この開放型のMRI装置の磁石としては、開放構造の作りやすさから比較的磁場強度が低い常電導磁石や永久磁石が用いられている。NMRの信号強度は静磁場強度に比例することから、MRI検査での高画質を達成したり、高速での撮影を可能にするため、静磁場強度を高くしたいとする要望が常にあり、高磁場を実現できる超電導磁石を用いた開放型のMRI装置も開発されている(例えば、特開平10−179646号公報)。
【0004】
しかし、静磁場強度の増加に比例して磁石外部に存在する磁束密度の強度(漏洩磁場)も増加する。漏洩磁場は生命維持装置(例えば、心臓ペースメーカ)や医療施設の電子機器に悪影響を与える恐れがあることから、MRI装置の設置にあたっては5ミリテスラ以上の漏洩磁場空間の安全管理が義務付けられており、この安全管理区域が磁石の設置部屋内に収まるように漏洩磁場空間を抑えることが好ましい。
【0005】
一般に、漏洩磁場強度を低減する方法としては、1)鉄ヨークにより磁束の閉回路を構成して、鉄ヨーク以外の空間に磁束をできるだけ漏れ出さないようにするパッシブシールド方式、2)静磁場を発生するコイルに対して、反磁界を発生するキャンセルコイルを組合わせ、トータルとして磁石の外部に発生する磁界をキャンセルするアクティブシールド方式がある。高磁場を発生する開放構造の超電導磁石を用いたMRI装置では、さらに超電導磁石を設置する部屋の壁面に磁気シールド材を配置し、磁石室の外部の磁束を低減する外部シールド方式を組合わせることにより、漏洩磁場強度を低磁場オープン型のMRI装置と同等に低減することが可能になっている。
【0006】
【発明が解決しようとする課題】
一方、磁石が発生する磁場の均一度は、画質に大きな影響を与えるため、高い均一度(例えば数ppm)が要求される。通常、MRI装置をシールド室内に設置する際に、必要な均一度となるような調整がなされる。磁場均一度の調整は、1)磁石表面に磁性体小片を貼り付けるパッシブシムと、2)磁場の不均一成分を打ち消すような磁場を発生するシムコイルを用いるアクティブシムとがあり、高度な均一度が要求されるMRI装置では、これらを組み合わせて調整される。
【0007】
しかし、上述した高磁場の開放型MRI装置において上述した調整を行なっても、実際の検査時に磁場均一度が劣化するという問題がある。磁場の不均一度は、前述のように画像精度を低下させ、脂肪組織からのNMR信号を選択的に抑制するアプリケーションや高い磁場均一度を要するエコー・プレナー・イメージングの実施を制限する。
【0008】
そこで本発明は、高磁場の開放型MRI装置において、検査時に最も高い磁場均一度を実現することができ、高精度の画像を取得することができるMRI装置と、そのための磁場調整方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明者は、高磁場の開放型MRI装置について、検査時の磁場均一度の劣化の原因を解析した結果、超電導磁石を用いた開放型MRI装置では、近傍の磁束密度は静磁場強度に比例して高いままであるため、この磁石外の高密度の磁束が、周辺に配置された機器の磁性体に大きな影響を及ぼし、その作用と逆の関係で、磁石周辺の磁性体が磁石中心の検査空間の磁場に影響し、検査空間の磁場均一度の低下として現れることがわかった。特に磁石に隣接して配設される患者テーブルは、できるだけ非磁性材で構成されているものの、その電動機構には磁性材料である鉄を使わざるを得ず、また重量を支える非磁性の金属材料にも僅かな鉄分が含有しているため、磁場の影響を完全には避けることができず、その結果として検査空間の磁場均一度を劣化させていることがわかった。本発明はこのような知見に基きなされたもので、周辺機器、特に患者テーブルを検査時と同じ状態でMRI装置の調整を図ることにより、検査時における磁場均一度の向上を達成したものである。
【0010】
即ち、本発明のMRI装置の磁場均一度調整方法は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間に被検体を搬入・搬出する搬送手段とを備えたMRI装置の磁場の均一度を調整する方法であって、前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記磁場調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含むものである。
【0011】
また、本発明のMRI装置の磁場均一度調整方法は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備えたMRI装置の磁場の均一度を調整する方法であって、空間に前記磁場発生コイルを配置する前に前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度が所定の均一度以上のときに前記磁場コイルを前記空間内に配置するステップ、前記磁場コイルを配置した後に前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記磁場調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含むものである。
【0012】
本発明の磁場均一度調整方法によれば、搬送手段を検査時と同じ位置に設定した状態で、磁場調整手段による調整量を求めることにより、静磁場発生手段の漏洩磁場により搬送手段に生じる磁場が磁場均一度に与える影響を排除し、検査時に最も高い磁場均一度を達成することができる。
【0013】
本発明において、磁場調整手段としては、例えば、静磁場発生手段の複数の位置に着脱可能に設けられる磁性片を採用することができ、調整量を求めるステップでは、静磁場発生手段に設けられる磁性片のシム量及び取付け位置を求める。
【0014】
また本発明の磁場均一度調製方法によれば、磁場均一度測定装置として、磁場測定器と、前記磁場測定器を前記空間の所望の位置に移動する移動手段と、前記磁場測定器が測定した前記空間の複数位置の磁場情報を元に前記空間の磁場不均一度を計測するとともに計測した不均一度を補正する補正量を算出する計算機とを備えたものを使用することができる。
【0015】
本発明のMRI装置は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備え、上記調整方法によって調整されたものである。
このMRI装置は、磁場調整手段として、具体的には、複数の磁性片をそれぞれ着脱可能に固定する複数の磁性片固定部を備える。磁性片固定部は、静磁場方向に直交する所望の方向に取付けられたバーに設けることも可能である。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳述する。
【0017】
図1は本発明が適用されるオープン構造のMRI装置の全体概要を示す図である。このMRI装置は、被検者1が設置される空間に均一な磁場を発生する静磁場発生磁石2と、この静磁場発生磁石2より内側に配置された傾斜磁場コイル3と、さらにそれより内側に配置された高周波コイル5と、被検者1から発生するNMR信号を検出する検出コイル7とを備えている。さらに上述の各コイルを駆動する電源やNMR信号の増幅器や、それらの動作タイミングを制御するシーケンサ9と装置の制御を行うと共にNMR信号を処理し画像化するコンピュータ10と被検者1を静磁場発生磁石2の中心空間に配設する患者テーブル13を備えている。
【0018】
通常、静磁場発生磁石2と各コイルと患者テーブル13は電磁波遮蔽効果を有するシールド部屋14に設置され、外部から検査室内に侵入したり、MRI装置のコンピュータ10などが発生する電磁波ノイズが検出コイル7に混入するのを防いでいる。このため各コイルを駆動する電源やNMR信号の増幅器との接続はシールド部屋14の一部に組み込まれたフィルター回路15を介して行われる。更に、このシールド部屋14には壁面の一部に3から6ミリメートルの珪素鋼板16が組み込まれており、部屋の外部に漏洩する磁束の強度が1ミリテスラ以下になるようになっている。
【0019】
静磁場発生磁石2は、図示する実施形態では、上下一対の超電導磁石からなり、これらは被検体1の配設される空間に上下方向の均一度の高い静磁場を発生する。例えば静磁場強度は0.7テスラで、磁場均一度は磁石中心の直径35cmの球空間で約3ppm以下となるように調整されている。この磁場均一度は、後述する磁場調整手段によって達成される。磁場調整手段として、具体的には、超電導磁石2の表面に取付けられる複数の磁性体小片と、磁場の不均一成分であるZ2項とZ4項を打ち消すような磁場を発生するシムコイル(図では示されない)が組み合わされている。
【0020】
更に、これら一対の超電導磁石2は、その上下と側部を囲むように磁気回路を構成する鉄ヨーク27が組み合わされている。鉄ヨーク27には傾斜磁場コイル3や高周波コイル5を取付けるための支持金具17(図では一部のみ示されている)やガントリーカバー(図では示されていない)が取付けられている。
【0021】
傾斜磁場コイル3は、互いに直交するx、y、zの3軸方向に磁束密度を変化させるように巻かれた3組のコイルからなり、それぞれ傾斜磁場電源4に接続されている。シーケンサ9からの制御信号に従って傾斜磁場電源4を駆動して傾斜磁場コイル3に流れる電流値を変化させることにより3軸からなる傾斜磁場Gx、Gy、Gzを被検者1の配設空間の静磁場に重畳するようになっている。この傾斜磁場は、被検者1の検査部位から得られるNMR信号の空間的な分布を識別するのに用いられる。この傾斜磁場コイル3には上述のシムコイルが組み込まれている。
【0022】
高周波コイル5は、高周波コイル5に高周波電流を流すための高周波電力アンプ6に接続され、被検者1の検査部位の原子核を共鳴励起するための高周波磁場を発生する。原子核としては、通常、水素原子核が用いられるため、高周波コイル5と高周波電力アンプ6はその共鳴周波数(例えば30MHz)にチューニングされている。高周波電力アンプ6もシーケンサ9の制御信号で制御されている。
【0023】
検出コイル7は受信回路8に接続されており、受信回路8は検出コイル7で検出したNMR信号を増幅・検波するとともに、コンピュータ10による処理が可能なディジタル信号に変換する。受信回路8もシーケンサ9でその動作タイミングが制御されている。
【0024】
コンピュータ10はディジタル量に変換されたNMR信号を用いて画像再構成、スペクトル計算等の演算を行うとともに、シーケンサ9を介してMRI装置の各ユニットの動作を定められたタイミングで制御する。コンピュータ10と処理後のデータを表示するディスプレイ装置11と操作入力する操作卓12とで演算処理系が構成される。
【0025】
図2は、図1に示した静磁場発生磁石2と磁場調整手段の詳細な構成を示した図である。図において、静磁場発生磁石2は、上下一対から成るクライオスタット21、22の容器内に収められた超電導コイル(図示はされてない)を備えている。超電導コイルは被検者1が配設される空間23の磁場均一度が最良になるようにその形状と位置が設定されている。また上下クライオスタット21、22の外部には磁気回路を構成する鉄ヨーク27が取付けられている。この鉄ヨーク27によって超伝導コイルが発生する磁束の外部への漏洩磁束が極力低減されると共に、上下クライオスタット21、22が固定される。
【0026】
超電導コイルを収めるクライオスタット21、22の大きさや上下の間隙はMRI装置の使い勝手や設置性から決められ、磁場均一度のみを優先して決定できる訳ではない。そこで、磁場均一度を改善するため、クライオスタット21、22の空間23側には、磁場均一度を調整するための手段として、一対からなるシムトレー24、25が組み込まれている。このシムトレー24、25には磁性体小片26が組込まれるための穴が同心円上に複数設けられている。なお、図では穴の一部のみを示しているが、実際にはこのような穴がシムトレー24、25の全面に設けられている。更にシムトレー21、22には、精細なシム調整を実施するための微調整用シムバー28が組み込まれている。この微調整用シムバー28にも、その長手方向に沿って磁性体小片26を組み込むための複数の穴が設けられている。シムバー28は、シムトレー24、25周囲に穿設された凹部に差し込むことにより、シムトレー24、25に取付けることができる。凹部は複数箇所に設けられ、その取付け位置及びシムバー28に組み込む磁性体小片26の位置、量を変更することにより、磁場均一度の微調整を行なうことができる。
【0027】
次にこのような構成におけるMRI装置の調整方法(シミング手順)を説明する。図3は、調整に用いるための磁場測定装置を示す図、図4はシミング手順の一実施形態を示すフローチャートである。
【0028】
まず磁場測定装置の概要を説明する。図3に示すように、測定装置30は、磁場強度を測定するNMRプローブ31と、このNMRプローブ31を空間23内で3次元方向に移動するためのプロッタ32と、プロッタ32の駆動部とNMRプローブ31とを連結する非磁性材料(例えばファイバーガラス繊維)からなるバー33と、NMRプローブ31からの信号をもとに磁場強度を求めるテスラメータ34と、プロッタ32の駆動を制御するプロッタ制御部35と、テスラメータ34からの信号をもとに磁場調整量を算出するとともにプロッタ制御部35を制御する計算機36とを備えている。
【0029】
NMRプローブ31としては、磁場をppmオーダーで測定する必要から、例えば直径5mmの水を詰めたガラス球にNMR信号検出用のコイルが巻かれたもの等が用いられる。プロッタ32は、その鉄製部品が空間23の磁場均一度に影響しないように患者テーブル13の後部に配置され、NMRプローブ31は非磁性材料のバー33を介してプロッタ32に接続されている。計算機36は、汎用のパーソナルコンピュータを利用することができる。テスラメータ34、パーソナルコンピュータ36、プロッタ制御機35は空間23の磁場均一度に影響しないように患者テーブル13の後方に配置されている。
【0030】
次にこのような磁場測定装置30を用いた調整方法を説明する。シミング作業を始める前に、静磁場発生磁石2の前面に患者テーブル13を配置する。この位置は被検者1を空間23に配設する時と同じ位置になるようにし、この位置で鉄ヨーク27と患者テーブル13のベース部分を固定金具31で固定する(ステップ42)。次にプロッタ32にNMRプローブ31を取付け(ステップ43)、プロッタ32を操作して、NMRプローブ31により空間23(本実施例では直径35cmの球空間の表面)の複数点の磁場強度を計測する(ステップ44)。測定点の数は、前掲の球空間の場合、例えば図5に示すように、球表面のz方向(磁束の向き)に15面を設定し、上下頂点を除く各設定面において15°毎に24点(計312点)、さらにz軸上19点、合計331点とする。パーソナルコンピュータ36がプロッタ制御機35にNMRプローブ31のxyz座標に対応した位置情報を出力することにより任意の位置の磁場強度を測定することができる。
【0031】
テスラメータ34はNMRプローブ31の信号は処理し、NMRプローブ31の位置の磁場強度として数値出力する。テスラメータ34の出力はパーソナルコンピュータ36に取り込まれる。パーソナルコンピュータ36は、NMRプローブ31の位置情報と磁場強度が対応した331点のデータを取り込み、磁場の均一度を次式により求める(ステップ45)。
【0032】
【数1】

Figure 2004073752
求めた空間23の磁場均一度が目標仕様内(例えば3ppm以下)であればシミング作業は終了となる(ステップ46)。
【0033】
3ppmに達しない場合は、磁場不均一成分を補償する鉄片シムの位置をパーソナルコンピュータ36で更に計算する。具体的には、331点の計測データを球面調和関数(ルジャンドル関数)で展開して、x,y,z,x2,y2,z2,・・・など119の磁場不均一項の成分を求める。一方、シム片の貼り付け位置によって同じように119項の変化量を求めておき、補正すべき総量に近いシム片の組み合わせを計算で求める。
【0034】
このような磁場分布とシムトレー上の磁性体小片を組み込む穴の位置及び鉄シム量との関係は、パーソナルコンピュータ36によって、例えばテーブルとして出力される(ステップ47)。この表に従って所定の鉄片シムを組込む(ステップ48)。組込み後、図3の磁場測定装置を用いて空間23の表面の磁場強度を測定するステップ44に戻る。以後、ステップ44〜48までの操作を空間23の磁場均一度が目標仕様に達するまで繰返し、一連のシミング作業を完了する。
【0035】
このように本実施形態によれば、磁場環境を被検者検査時の状態と同一にして磁場均一度の調整を行なっているので、検査時に磁石近傍に設置される患者テーブル13が漏洩磁場によって逆に磁場均一度に与える影響を排除しておくことができ、検査時に極めて高い磁場均一度を達成することができる。
【0036】
以上説明した磁場調整法では、調整の初期段階から目的磁場均一度となるように調整を行なう場合を示したが、初期段階には静磁場磁石のみで粗調整を行い、その後、被検者の検査時と同じ状態になるように磁石周辺のユニットを配置して、目標磁場均一度まで調整することも可能である。
【0037】
このような段階的調整の手順を図6に示す。この実施形態では、傾斜磁場コイル3、高周波コイル5等の周辺機器を組合わせない状態で、10ppm程度の磁場均一度が達成されるまで、調整を行なう。即ち、静磁場発生磁石2にプロッタ32とNMRプローブ31を組合わせて(ステップ61)、空間23表面の磁場強度を計測する(ステップ62)。計測された複数点のデータをパーソナルコンピュータ36で計算処理して、磁場の不均一成分を求める(ステップ63)。計算された空間23の磁場均一度が例えば10ppmより大きいか小さいか判定し(ステップ64)、10ppmに達しない場合は、磁場不均一成分を補償する鉄片シムの位置をパーソナルコンピュータ36で更に計算する(ステップ65)。計算結果は上下シムトレー24、25の磁性体小片を組み込む穴26の位置情報と組み込む鉄シム量とが表となって出力される。この表に従って所定の鉄片シムをシムトレーに組込む(ステップ66)。組込み後、再び、複数点の磁場強度を測定するステップ62に戻る。
【0038】
ステップ64で、空間23の磁場均一度が例えば10ppm以下であると判断された場合は、静磁場発生磁石2の周辺ユニット例えば、傾斜磁場コイル3、高周波コイル5、これらの固定金具17を組み込む(ステップ67)。組込み後、空間23の表面の磁場強度を測定し(ステップ68)、複数点のデータから空間23の磁場均一度を計算する(ステップ69)。計算結果が目標仕様の3ppmより大きいか低いかを判定し(ステップ70)、3ppmに達しない場合は磁場不均一成分を補償する鉄片シムの位置をパーソナルコンピュータ36で更に計算する。傾斜磁場コイル3やRFコイル5の組込み後は微調整用シムバー28に取付ける鉄片シムの位置計算となり、その計算結果は微調整用シムバー28の位置情報と組み込む鉄シム量とが表となって出力される(ステップ71)。この表に従って所定の鉄片シムを微調シムバー28に組込む(ステップ72)。以後、ステップ68からステップ72までのステップを空間23の磁場均一度が目標仕様の例えば3ppm以下になるまで繰返し、一連のシミング作業を完了する。
【0039】
なお、本実施形態において患者テーブル13の位置は、図4の実施形態のように最初の粗調整時(ステップ61〜66)に検査時と同じ位置にしてもよいし、周辺ユニット組み込み後の微調整時(ステップ67〜72)に検査時と同じ位置にしてもよい。
また上記実施形態では、磁場均一度の調整をシム片の位置と鉄シム量とで調整する場合を説明したが、シム電流で調整する場合にも本発明を適用することが可能である。
【0040】
本実施形態によれば、初期の粗調整時には、作業しやすい静磁場発生磁石2の形態でシミングを行なうことができ、また磁場環境を実際の被検者を検査する状態に近づけた後では、シムトレーへの磁性体小片の貼り付けを伴わないシムバーのみの調整で高精度なシミングを達成できるので、作業性を大幅に改善することができる。
【0041】
【発明の効果】
本発明によれば、磁場環境の観点では磁場均一度の調整時と被検者の検査時の状態が同一になるので、調整時の磁場均一度を向上させておけば被検者の検査時の磁場均一度が最も良くなる。よって、高均一度の磁場空間でMRIの検査を実施することができ、検査結果の画像やスペクトルに対して高い信頼性を確保することができる。更に、高均一度を反映した、新しい検査手法の適用が可能となる効果がある。
【図面の簡単な説明】
【図1】本発明が適用されるMRI装置の全体構成を示す図。
【図2】図1のMRI装置の静磁場発生磁石と磁場調整手段を示す図。
【図3】本発明の磁場調整方法に用いる磁場測定装置の概略を示す図。
【図4】本発明の磁場均一度調整方法の一手順を示すフローチャート図。
【図5】磁場不均一度の測定を説明する図
【図6】本発明の磁場均一度調整方法の他の手順を示すフローチャート図。
【符号の説明】
1……被検体
2……静磁場発生磁石
3……傾斜磁場コイル
5……高周波コイル
13……患者テーブル
17……固定金具
24、25……シムトレー
26……磁性体小片
28……微調整用シムバー
32……プロッタ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus), and particularly to an MRI apparatus using an open superconducting magnet that does not give a feeling of oppression to a subject, the highest magnetic field uniformity when the subject is examined. The present invention relates to a method of adjusting an MRI apparatus that can achieve one time.
[0002]
[Prior art]
An MRI examination method for obtaining a tomographic image of a human body using a nuclear magnetic resonance (NMR) phenomenon is widely used in medical institutions. Conventionally, an MRI apparatus using an elongated cylindrical solenoid coil has been mainly used. However, in recent years, an MRI adopting a magnet provided with an opening on a side surface or a wide subject carrying portion in front of the magnet has been adopted. Devices have been developed and are widely used. Such an MRI apparatus enables an interventional (hereinafter, MR interventional) procedure under an MRI examination.
[0003]
As a magnet of this open type MRI apparatus, a normal conducting magnet or a permanent magnet having a relatively low magnetic field strength is used because of the ease of forming an open structure. Since the signal strength of NMR is proportional to the strength of the static magnetic field, there is always a demand to increase the static magnetic field strength in order to achieve high image quality in MRI examinations and to enable high-speed imaging. An open type MRI apparatus using a superconducting magnet capable of achieving the above has been developed (for example, Japanese Patent Application Laid-Open No. H10-179646).
[0004]
However, the intensity of magnetic flux density existing outside the magnet (leakage magnetic field) increases in proportion to the increase in static magnetic field intensity. Leakage magnetic fields may adversely affect life support devices (eg, cardiac pacemakers) and electronic equipment in medical facilities. It is preferable to suppress the leakage magnetic field space so that the safety management area is accommodated in the magnet installation room.
[0005]
In general, methods for reducing the leakage magnetic field strength include: 1) a passive shield method in which a closed circuit of magnetic flux is formed by an iron yoke so that magnetic flux does not leak to a space other than the iron yoke as much as possible; There is an active shield system in which a cancel coil that generates a demagnetizing field is combined with a generated coil to cancel a magnetic field generated outside the magnet as a whole. In an MRI system using an open-structure superconducting magnet that generates a high magnetic field, a magnetic shield material must be placed on the wall of the room where the superconducting magnet is installed, and an external shield method that reduces magnetic flux outside the magnet room must be combined. This makes it possible to reduce the leakage magnetic field intensity to the same level as in a low magnetic field open type MRI apparatus.
[0006]
[Problems to be solved by the invention]
On the other hand, since the uniformity of the magnetic field generated by the magnet greatly affects the image quality, high uniformity (for example, several ppm) is required. Normally, when the MRI apparatus is installed in a shielded room, adjustments are made so that the required uniformity is achieved. The adjustment of the magnetic field uniformity includes: 1) a passive shim that attaches a magnetic piece to the magnet surface; and 2) an active shim that uses a shim coil that generates a magnetic field that cancels the non-uniform component of the magnetic field. In an MRI apparatus that requires the above, adjustment is performed by combining these.
[0007]
However, even if the above-described adjustment is performed in the above-described open-field MRI apparatus with a high magnetic field, there is a problem that the magnetic field uniformity is deteriorated during an actual inspection. The inhomogeneity of the magnetic field reduces the image accuracy as described above, and limits the application of selectively suppressing NMR signals from adipose tissue and the implementation of echo planar imaging that requires high magnetic field homogeneity.
[0008]
Therefore, the present invention provides an MRI apparatus capable of achieving the highest magnetic field uniformity during an examination and acquiring a high-precision image in an open MRI apparatus having a high magnetic field, and a magnetic field adjustment method therefor. The purpose is to:
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor analyzed the cause of deterioration of magnetic field uniformity at the time of inspection of an open MRI apparatus having a high magnetic field. Since the density remains high in proportion to the strength of the static magnetic field, the high-density magnetic flux outside the magnet has a great effect on the magnetic material of the equipment placed around it, and in the opposite relation to the action, the magnetic flux around the magnet It has been found that the magnetic material affects the magnetic field in the inspection space at the center of the magnet and appears as a decrease in the magnetic field uniformity in the inspection space. In particular, the patient table placed adjacent to the magnet is made of non-magnetic material as much as possible, but its electric mechanism has to use iron, which is a magnetic material, and non-magnetic metal that supports weight It was found that the influence of the magnetic field could not be completely avoided because the material also contained a small amount of iron, and as a result, the magnetic field uniformity of the inspection space was deteriorated. The present invention is based on such knowledge, and achieves an improvement in magnetic field uniformity at the time of examination by adjusting peripheral devices, particularly a patient table, in an MRI apparatus in the same state as at the time of examination. .
[0010]
That is, the magnetic field uniformity adjusting method of the MRI apparatus of the present invention comprises a static magnetic field generating means for generating a uniform static magnetic field in a space where a subject is placed, and a magnetic field adjusting means for adjusting the uniformity of the static magnetic field generating means. A method for adjusting the uniformity of a magnetic field of an MRI apparatus including a transport unit for loading and unloading a subject into and out of the space, wherein the transport unit is set at the same position as that used for examination by a magnetic resonance imaging apparatus. Measuring the uniformity of the magnetic field in the space after setting the transfer unit, obtaining an adjustment amount by the magnetic field adjustment unit based on the measured magnetic field uniformity, and causing the adjustment unit to function based on the adjustment amount. Is included.
[0011]
Further, the magnetic field uniformity adjusting method of the MRI apparatus of the present invention includes a static magnetic field generating means for generating a uniform static magnetic field in a space where the subject is placed, and a magnetic field adjusting means for adjusting the uniformity of the static magnetic field generating means. Adjusting the uniformity of the magnetic field of an MRI apparatus including a magnetic field generating coil disposed in the space and generating a high-frequency magnetic field and a gradient magnetic field in the space, respectively, and transporting means for loading and unloading a subject into and from the space. A step of setting the transfer means to the same position as when inspecting with a magnetic resonance imaging apparatus before arranging the magnetic field generating coil in a space, and after setting the transfer means, the magnetic field uniformity of the space is set. Measuring, disposing the magnetic field coil in the space when the measured magnetic field uniformity is equal to or greater than a predetermined uniformity, and disposing the magnetic field uniformity in the space after disposing the magnetic field coil. Measuring a, determining the adjustment amount by the magnetic field adjusting means based on the measured magnetic field uniformity, and is intended to include steps to function the adjusting means based on the adjustment amount.
[0012]
According to the magnetic field uniformity adjusting method of the present invention, the amount of adjustment by the magnetic field adjusting unit is obtained in a state where the conveying unit is set at the same position as that at the time of the inspection, so that the magnetic field generated in the conveying unit due to the leakage magnetic field of the static magnetic field generating unit Can be eliminated, and the highest magnetic field uniformity can be achieved during inspection.
[0013]
In the present invention, as the magnetic field adjusting means, for example, a magnetic piece detachably provided at a plurality of positions of the static magnetic field generating means can be adopted. Determine the shim amount and mounting position of the piece.
[0014]
According to the magnetic field uniformity adjusting method of the present invention, as the magnetic field uniformity measuring device, a magnetic field measuring device, a moving unit for moving the magnetic field measuring device to a desired position in the space, and the magnetic field measuring device measured. A computer may be used that has a calculator that measures the magnetic field inhomogeneity in the space based on magnetic field information at a plurality of positions in the space and calculates a correction amount for correcting the measured inhomogeneity.
[0015]
The MRI apparatus of the present invention is a static magnetic field generating means for generating a uniform static magnetic field in the space where the subject is placed, a magnetic field adjusting means for adjusting the uniformity of the static magnetic field generating means, and disposed in the space, A magnetic field generating coil for generating a high-frequency magnetic field and a gradient magnetic field in the space, and a transport unit for loading and unloading a subject into and from the space are provided and adjusted by the adjustment method.
This MRI apparatus includes, as a magnetic field adjusting means, specifically, a plurality of magnetic piece fixing portions for respectively fixing a plurality of magnetic pieces in a detachable manner. The magnetic piece fixing portion may be provided on a bar attached in a desired direction orthogonal to the direction of the static magnetic field.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a diagram showing an overall outline of an MRI apparatus having an open structure to which the present invention is applied. The MRI apparatus includes a static magnetic field generating magnet 2 that generates a uniform magnetic field in a space where a subject 1 is installed, a gradient magnetic field coil 3 disposed inside the static magnetic field generating magnet 2, and a further inside. And a detection coil 7 for detecting an NMR signal generated from the subject 1. Further, a power supply for driving the above-mentioned coils, an amplifier for NMR signals, a sequencer 9 for controlling the operation timing of the coils and a device, and a computer 10 for processing and imaging the NMR signals and the subject 1 are subjected to a static magnetic field. A patient table 13 is provided in the center space of the generating magnet 2.
[0018]
Normally, the static magnetic field generating magnet 2, each coil, and the patient table 13 are installed in a shield room 14 having an electromagnetic wave shielding effect, and the electromagnetic noise generated by the computer 10 or the like of the MRI apparatus or the like enters the examination room from the outside. 7 is prevented. For this reason, connection to a power supply for driving each coil and an amplifier for NMR signals is performed via a filter circuit 15 incorporated in a part of the shield room 14. Furthermore, a silicon steel plate 16 of 3 to 6 mm is incorporated in a part of the wall surface of the shield room 14 so that the intensity of magnetic flux leaking to the outside of the room is 1 mT or less.
[0019]
In the illustrated embodiment, the static magnetic field generating magnet 2 includes a pair of upper and lower superconducting magnets, and these generate a static magnetic field having a high degree of uniformity in the vertical direction in the space where the subject 1 is disposed. For example, the static magnetic field strength is adjusted to 0.7 Tesla, and the magnetic field uniformity is adjusted to be about 3 ppm or less in a spherical space having a diameter of 35 cm at the center of the magnet. This magnetic field uniformity is achieved by a magnetic field adjustment unit described later. As the magnetic field adjusting means, specifically, a plurality of magnetic pieces attached to the surface of the superconducting magnet 2 and a shim coil (shown in the figure) for generating a magnetic field that cancels out the non-uniform components of the magnetic field, the Z2 term and the Z4 term. Is not combined).
[0020]
Further, the pair of superconducting magnets 2 are combined with an iron yoke 27 constituting a magnetic circuit so as to surround the upper, lower, and side portions thereof. To the iron yoke 27, a support bracket 17 (only a part is shown in the drawing) for mounting the gradient magnetic field coil 3 and the high-frequency coil 5 and a gantry cover (not shown) are mounted.
[0021]
The gradient magnetic field coil 3 is composed of three sets of coils wound so as to change the magnetic flux density in three x, y, and z axes orthogonal to each other, and is connected to the gradient magnetic field power supply 4. The gradient magnetic field power supply 4 is driven in accordance with the control signal from the sequencer 9 to change the value of the current flowing through the gradient magnetic field coil 3 so that the three-axis gradient magnetic fields Gx, Gy, Gz can be statically arranged in the space where the subject 1 is placed. It is designed to be superimposed on a magnetic field. This gradient magnetic field is used to identify the spatial distribution of NMR signals obtained from the examination site of the subject 1. The above-mentioned shim coil is incorporated in the gradient magnetic field coil 3.
[0022]
The high-frequency coil 5 is connected to a high-frequency power amplifier 6 for supplying a high-frequency current to the high-frequency coil 5, and generates a high-frequency magnetic field for resonantly exciting the nucleus of the subject 1 at the inspection site. Since a hydrogen nucleus is usually used as the nucleus, the high-frequency coil 5 and the high-frequency power amplifier 6 are tuned to the resonance frequency (for example, 30 MHz). The high frequency power amplifier 6 is also controlled by the control signal of the sequencer 9.
[0023]
The detection coil 7 is connected to a reception circuit 8, and the reception circuit 8 amplifies and detects the NMR signal detected by the detection coil 7, and converts the NMR signal into a digital signal that can be processed by the computer 10. The operation timing of the receiving circuit 8 is also controlled by the sequencer 9.
[0024]
The computer 10 performs operations such as image reconstruction and spectrum calculation using the NMR signal converted into a digital quantity, and controls the operation of each unit of the MRI apparatus at a predetermined timing via the sequencer 9. An arithmetic processing system is composed of the computer 10, the display device 11 for displaying the processed data, and the console 12 for inputting operations.
[0025]
FIG. 2 is a diagram showing a detailed configuration of the static magnetic field generating magnet 2 and the magnetic field adjusting means shown in FIG. In the figure, the static magnetic field generating magnet 2 has a superconducting coil (not shown) housed in a container of a pair of upper and lower cryostats 21 and 22. The shape and position of the superconducting coil are set so that the uniformity of the magnetic field in the space 23 in which the subject 1 is disposed is optimized. Outside the upper and lower cryostats 21 and 22, an iron yoke 27 constituting a magnetic circuit is attached. The iron yoke 27 reduces the magnetic flux generated by the superconducting coil to the outside as much as possible, and fixes the upper and lower cryostats 21 and 22.
[0026]
The size of the cryostats 21 and 22 for accommodating the superconducting coils and the upper and lower gaps are determined from the ease of use and installation of the MRI apparatus, and cannot be determined by giving priority only to the magnetic field uniformity. Therefore, in order to improve the magnetic field uniformity, a pair of shim trays 24 and 25 are incorporated on the space 23 side of the cryostats 21 and 22 as means for adjusting the magnetic field uniformity. The shim trays 24 and 25 are provided with a plurality of concentric holes for incorporating the magnetic small pieces 26. Although only some of the holes are shown in the drawing, such holes are actually provided on the entire surfaces of the shim trays 24 and 25. Further, the shim trays 21 and 22 incorporate a fine adjustment shim bar 28 for performing fine shim adjustment. The fine adjustment shim bar 28 is also provided with a plurality of holes for incorporating the magnetic small pieces 26 along the longitudinal direction. The shim bar 28 can be attached to the shim trays 24 and 25 by being inserted into recesses formed around the shim trays 24 and 25. The concave portions are provided at a plurality of positions, and the magnetic field uniformity can be finely adjusted by changing the mounting position and the position and amount of the magnetic small pieces 26 incorporated in the shim bar 28.
[0027]
Next, an adjustment method (a shimming procedure) of the MRI apparatus in such a configuration will be described. FIG. 3 is a diagram showing a magnetic field measuring device used for adjustment, and FIG. 4 is a flowchart showing an embodiment of a shimming procedure.
[0028]
First, the outline of the magnetic field measurement device will be described. As shown in FIG. 3, the measuring device 30 includes an NMR probe 31 for measuring the magnetic field intensity, a plotter 32 for moving the NMR probe 31 in a three-dimensional direction in the space 23, a driving unit of the plotter 32, and an NMR probe. A bar 33 made of a non-magnetic material (for example, fiber glass fiber) connecting the probe 31, a Tesla meter 34 for obtaining a magnetic field strength based on a signal from the NMR probe 31, and a plotter control unit 35 for controlling the driving of the plotter 32 And a calculator 36 that calculates a magnetic field adjustment amount based on a signal from the Tesla meter 34 and controls the plotter control unit 35.
[0029]
Since it is necessary to measure the magnetic field on the order of ppm, for example, a probe in which a coil for NMR signal detection is wound around a glass sphere filled with water having a diameter of 5 mm is used as the NMR probe 31. The plotter 32 is arranged at the rear of the patient table 13 so that its iron parts do not affect the magnetic field uniformity of the space 23, and the NMR probe 31 is connected to the plotter 32 via a bar 33 made of a non-magnetic material. As the computer 36, a general-purpose personal computer can be used. The Tesla meter 34, the personal computer 36, and the plotter controller 35 are arranged behind the patient table 13 so as not to affect the magnetic field uniformity of the space 23.
[0030]
Next, an adjustment method using such a magnetic field measuring device 30 will be described. Before starting the shimming operation, the patient table 13 is arranged in front of the static magnetic field generating magnet 2. This position is set to the same position as when the subject 1 is arranged in the space 23, and the iron yoke 27 and the base portion of the patient table 13 are fixed at this position by the fixing bracket 31 (step 42). Next, the NMR probe 31 is attached to the plotter 32 (step 43), and the plotter 32 is operated to measure the magnetic field strength at a plurality of points in the space 23 (the surface of a spherical space having a diameter of 35 cm in this embodiment) by the NMR probe 31. (Step 44). In the case of the above-mentioned spherical space, for example, as shown in FIG. 5, the number of measurement points is set to 15 in the z direction (direction of magnetic flux) of the spherical surface, and every 15 ° on each set surface except the upper and lower vertices. 24 points (312 points in total) and 19 points on the z axis, for a total of 331 points. When the personal computer 36 outputs position information corresponding to the xyz coordinates of the NMR probe 31 to the plotter controller 35, the magnetic field intensity at an arbitrary position can be measured.
[0031]
The Tesla meter 34 processes the signal of the NMR probe 31 and outputs a numerical value as the magnetic field strength at the position of the NMR probe 31. The output of the Tesla meter 34 is taken into a personal computer 36. The personal computer 36 fetches data of 331 points corresponding to the position information of the NMR probe 31 and the magnetic field strength, and obtains the uniformity of the magnetic field by the following equation (step 45).
[0032]
(Equation 1)
Figure 2004073752
If the obtained magnetic field uniformity of the space 23 is within the target specification (for example, 3 ppm or less), the shimming operation is completed (step 46).
[0033]
If it does not reach 3 ppm, the personal computer 36 further calculates the position of the iron piece shim for compensating the non-uniform magnetic field component. Specifically, the measurement data at 331 points is expanded by a spherical harmonic function (Legendre function) to obtain components of 119 such as x, y, z, x2, y2, z2,. On the other hand, the amount of change in the 119 items is determined in the same manner according to the position where the shim pieces are attached, and a combination of shim pieces close to the total amount to be corrected is calculated.
[0034]
The relationship between the magnetic field distribution and the positions of the holes for incorporating the magnetic pieces on the shim tray and the amount of the iron shim is output as a table by the personal computer 36 (step 47). A predetermined iron piece shim is assembled according to this table (step 48). After the incorporation, the process returns to the step 44 of measuring the magnetic field intensity on the surface of the space 23 by using the magnetic field measuring device of FIG. Thereafter, the operations of steps 44 to 48 are repeated until the magnetic field uniformity of the space 23 reaches the target specification, and a series of shimming operations is completed.
[0035]
As described above, according to the present embodiment, the magnetic field environment is adjusted to be the same as the state at the time of the subject examination, and the uniformity of the magnetic field is adjusted. Conversely, the influence on the magnetic field uniformity can be eliminated, and an extremely high magnetic field uniformity can be achieved at the time of inspection.
[0036]
In the magnetic field adjustment method described above, the case where the adjustment is performed so that the target magnetic field uniformity is obtained from the initial stage of the adjustment has been described, but in the initial stage, the coarse adjustment is performed only with the static magnetic field magnet, and thereafter, the subject is It is also possible to arrange units around the magnet so as to be in the same state as at the time of inspection, and to adjust the target magnetic field uniformity.
[0037]
FIG. 6 shows such a stepwise adjustment procedure. In this embodiment, the adjustment is performed until a magnetic field uniformity of about 10 ppm is achieved without combining peripheral devices such as the gradient magnetic field coil 3 and the high-frequency coil 5. That is, the plotter 32 and the NMR probe 31 are combined with the static magnetic field generating magnet 2 (step 61), and the magnetic field intensity on the surface of the space 23 is measured (step 62). The measured data of the plurality of points is processed by the personal computer 36 to determine the non-uniform component of the magnetic field (step 63). It is determined whether the calculated magnetic field uniformity of the space 23 is larger or smaller than, for example, 10 ppm (step 64). If the calculated magnetic field uniformity does not reach 10 ppm, the personal computer 36 further calculates the position of the iron piece shim for compensating the non-uniform magnetic field component. (Step 65). The calculation result is output as a table of the position information of the hole 26 for incorporating the magnetic small pieces of the upper and lower shim trays 24 and 25 and the amount of the iron shim to be incorporated. According to this table, a predetermined iron piece shim is incorporated into the shim tray (step 66). After the incorporation, the process returns to step 62 for measuring the magnetic field strengths at a plurality of points.
[0038]
If it is determined in step 64 that the magnetic field uniformity of the space 23 is, for example, 10 ppm or less, peripheral units of the static magnetic field generating magnet 2, for example, the gradient magnetic field coil 3, the high frequency coil 5, and these fixtures 17 are assembled ( Step 67). After the incorporation, the magnetic field intensity on the surface of the space 23 is measured (step 68), and the magnetic field uniformity of the space 23 is calculated from the data of a plurality of points (step 69). It is determined whether the calculation result is higher or lower than the target specification of 3 ppm (step 70). If the calculation result does not reach 3 ppm, the position of the iron piece shim for compensating the non-uniform magnetic field component is further calculated by the personal computer 36. After the gradient magnetic field coil 3 and the RF coil 5 are assembled, the position calculation of the iron piece shim attached to the fine adjustment shim bar 28 is performed, and the calculation result is output as a table of the position information of the fine adjustment shim bar 28 and the amount of the iron shim to be incorporated. Is performed (step 71). According to this table, a predetermined iron piece shim is assembled into the fine shim bar 28 (step 72). Thereafter, the steps from step 68 to step 72 are repeated until the magnetic field uniformity of the space 23 becomes, for example, 3 ppm or less of the target specification, thereby completing a series of shimming operations.
[0039]
In the present embodiment, the position of the patient table 13 may be the same as the position of the examination at the time of the first rough adjustment (steps 61 to 66) as in the embodiment of FIG. At the time of adjustment (steps 67 to 72), the same position as at the time of inspection may be used.
In the above embodiment, the case where the adjustment of the magnetic field uniformity is adjusted by the position of the shim piece and the amount of the iron shim has been described. However, the present invention can be applied to the case of adjusting by the shim current.
[0040]
According to the present embodiment, at the time of the initial coarse adjustment, shimming can be performed in the form of the static magnetic field generating magnet 2 that is easy to work, and after the magnetic field environment is brought close to the state of inspecting an actual subject, Since high-accuracy shimming can be achieved by adjusting only the shim bar without attaching the magnetic substance pieces to the shim tray, workability can be greatly improved.
[0041]
【The invention's effect】
According to the present invention, from the viewpoint of the magnetic field environment, the state at the time of the adjustment of the magnetic field uniformity and the state at the time of the examination of the subject become the same. Of the magnetic field becomes the best. Therefore, an MRI inspection can be performed in a highly uniform magnetic field space, and high reliability can be ensured for an image or spectrum of the inspection result. Furthermore, there is an effect that a new inspection method that reflects high uniformity can be applied.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an MRI apparatus to which the present invention is applied.
FIG. 2 is a diagram showing a static magnetic field generating magnet and a magnetic field adjusting unit of the MRI apparatus of FIG. 1;
FIG. 3 is a diagram schematically showing a magnetic field measuring device used in the magnetic field adjustment method of the present invention.
FIG. 4 is a flowchart showing one procedure of a magnetic field uniformity adjustment method of the present invention.
FIG. 5 is a view for explaining the measurement of the magnetic field inhomogeneity; FIG. 6 is a flowchart showing another procedure of the magnetic field homogeneity adjustment method of the present invention;
[Explanation of symbols]
1 ... subject 2 ... static magnetic field generating magnet 3 ... gradient magnetic field coil 5 ... high frequency coil 13 ... patient table 17 ... fixtures 24 and 25 ... shim tray 26 ... magnetic piece 28 ... fine adjustment Shimbar 32 for plotter

Claims (7)

被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間に被検体を搬入・搬出する搬送手段とを備えた磁気共鳴イメージング装置の磁場の均一度を調整する方法であって、
前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含む磁気共鳴イメージング装置の磁場均一度調整方法。
Static magnetic field generating means for generating a uniform static magnetic field in the space where the subject is placed, magnetic field adjusting means for adjusting the uniformity of the static magnetic field generating means, and transport means for loading / unloading the subject into / from the space. A method for adjusting the uniformity of the magnetic field of a magnetic resonance imaging apparatus comprising:
Setting the transfer means at the same position as that at the time of inspection by a magnetic resonance imaging apparatus, measuring the magnetic field uniformity in the space after setting the transfer means, and adjusting the adjustment means based on the measured magnetic field uniformity. And a step of operating the adjusting means based on the adjustment amount.
被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備えた磁気共鳴イメージング装置の磁場の均一度を調整する方法であって、
前記空間に前記磁場発生コイルを配置する前に前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度が所定の均一度以上のときに前記磁場コイルを前記空間内に配置するステップ、前記磁場コイルを配置した後に前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含む磁気共鳴イメージング装置の磁場均一度調整方法。
Static magnetic field generating means for generating a uniform static magnetic field in the space where the subject is placed, magnetic field adjusting means for adjusting the uniformity of the static magnetic field generating means, and a high-frequency magnetic field and a gradient disposed in the space. A method of adjusting the uniformity of the magnetic field of a magnetic resonance imaging apparatus including a magnetic field generating coil that generates a magnetic field, and a transport unit that loads and unloads a subject into and out of the space,
Setting the transfer means at the same position as that at the time of inspection by a magnetic resonance imaging apparatus before arranging the magnetic field generating coil in the space; measuring the magnetic field uniformity of the space after setting the transfer means; Disposing the magnetic field coil in the space when the obtained magnetic field uniformity is equal to or more than a predetermined uniformity, measuring the magnetic field uniformity of the space after disposing the magnetic field coil, based on the measured magnetic field uniformity A method for adjusting a magnetic field uniformity of a magnetic resonance imaging apparatus, comprising: a step of obtaining an adjustment amount by the adjustment unit; and a step of causing the adjustment unit to function based on the adjustment amount.
前記磁場調整手段は、前記静磁場発生手段の複数の位置に着脱可能に設けられる磁性片であり、前記調整量を求めるステップは、前記静磁場発生手段に設けられる磁性片のシム量及び取付け位置を求めるステップを含むことを特徴とする請求項1または2に記載の磁気共鳴イメージング装置の磁場均一度調整方法。The magnetic field adjusting means is a magnetic piece that is detachably provided at a plurality of positions of the static magnetic field generating means, and the step of obtaining the adjustment amount includes: a shim amount and a mounting position of the magnetic piece provided in the static magnetic field generating means. 3. The method for adjusting the magnetic field uniformity of a magnetic resonance imaging apparatus according to claim 1, further comprising: 請求項1ないし3いずれか1項記載の調整方法において、磁場均一度を測定するステップ及び調整量を求めるステップを、磁場測定器と、前記磁場測定器を前記空間の所望の位置に移動する移動手段と、前記磁場測定器が測定した前記空間の複数位置の磁場情報を元に前記空間の磁場不均一度を計測するとともに計測した不均一度を補正する補正量を算出する計算機とを備えた磁場均一度測定装置を用いて行うことを特徴とする磁気共鳴イメージング装置の磁場均一度調整方法。4. The adjustment method according to claim 1, wherein the step of measuring the magnetic field uniformity and the step of obtaining the adjustment amount are performed by moving the magnetic field measurement device and the magnetic field measurement device to a desired position in the space. Means, and a calculator for calculating a correction amount for measuring the magnetic field inhomogeneity in the space and correcting the measured inhomogeneity based on magnetic field information of a plurality of positions in the space measured by the magnetic field measuring device. A magnetic field uniformity adjustment method for a magnetic resonance imaging apparatus, wherein the method is performed using a magnetic field uniformity measuring apparatus. 被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備え、請求項1〜4のいずれか1項記載の調整方法により前記静磁場発生手段の磁場均一度が調整された磁気共鳴イメージング装置。Static magnetic field generating means for generating a uniform static magnetic field in the space where the subject is placed, magnetic field adjusting means for adjusting the uniformity of the static magnetic field generating means, and a high-frequency magnetic field and a gradient disposed in the space. 5. A magnetic field generating coil for generating a magnetic field, and transport means for loading and unloading a subject into and out of the space, wherein the uniformity of the magnetic field of the static magnetic field generating means is adjusted by the adjusting method according to claim 1. Adjusted magnetic resonance imaging apparatus. 前記静磁場発生手段は、磁場調整手段として、複数の磁性片をそれぞれ着脱可能に固定する複数の磁性片固定部を備えたことを特徴とする請求項5記載の磁気共鳴イメージング装置。6. The magnetic resonance imaging apparatus according to claim 5, wherein the static magnetic field generation unit includes a plurality of magnetic piece fixing units that removably fix the plurality of magnetic pieces, respectively, as a magnetic field adjustment unit. 前記静磁場発生手段は、磁場調整手段として、静磁場方向に直交する所望の方向に取付けられ、複数の磁性片をそれぞれ着脱可能に固定する複数の磁性片固定部を有するバーを備えたことを特徴とする請求項5又は6記載の磁気共鳴イメージング装置。The static magnetic field generating means includes, as a magnetic field adjusting means, a bar having a plurality of magnetic piece fixing portions that are mounted in a desired direction orthogonal to the direction of the static magnetic field and that removably fix the plurality of magnetic pieces, respectively. 7. The magnetic resonance imaging apparatus according to claim 5, wherein:
JP2002242147A 2002-08-22 2002-08-22 Method for adjusting magnetic field uniformity of open MRI apparatus Expired - Fee Related JP3934010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242147A JP3934010B2 (en) 2002-08-22 2002-08-22 Method for adjusting magnetic field uniformity of open MRI apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242147A JP3934010B2 (en) 2002-08-22 2002-08-22 Method for adjusting magnetic field uniformity of open MRI apparatus

Publications (3)

Publication Number Publication Date
JP2004073752A true JP2004073752A (en) 2004-03-11
JP2004073752A5 JP2004073752A5 (en) 2005-07-07
JP3934010B2 JP3934010B2 (en) 2007-06-20

Family

ID=32024420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242147A Expired - Fee Related JP3934010B2 (en) 2002-08-22 2002-08-22 Method for adjusting magnetic field uniformity of open MRI apparatus

Country Status (1)

Country Link
JP (1) JP3934010B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067516A (en) * 2009-09-28 2011-04-07 Hitachi Medical Corp Static magnetic field homogeneity adjusting method, static magnetic field homogeneity measuring jig, and magnetic resonance imaging apparatus
ITGE20100008A1 (en) * 2010-01-22 2011-07-23 Esaote Spa MACHINE FOR NUCLEAR MAGNETIC RESONANCE WITH MEANS OF CORRECTION OF THE MAGNETIC FIELD HOMOGENEITY
CN113466765A (en) * 2020-03-31 2021-10-01 通用电气精准医疗有限责任公司 Magnetic resonance scanning method and system, computer readable storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067516A (en) * 2009-09-28 2011-04-07 Hitachi Medical Corp Static magnetic field homogeneity adjusting method, static magnetic field homogeneity measuring jig, and magnetic resonance imaging apparatus
ITGE20100008A1 (en) * 2010-01-22 2011-07-23 Esaote Spa MACHINE FOR NUCLEAR MAGNETIC RESONANCE WITH MEANS OF CORRECTION OF THE MAGNETIC FIELD HOMOGENEITY
WO2011089115A1 (en) * 2010-01-22 2011-07-28 Esaote S.P.A. Magnetic resonance imaging apparatus with means for correcting magnetic field homogeneity
US9188652B2 (en) 2010-01-22 2015-11-17 Esaote S.P.A. Magnetic resonance imaging apparatus with means for correcting magnetic field homogeneity
CN113466765A (en) * 2020-03-31 2021-10-01 通用电气精准医疗有限责任公司 Magnetic resonance scanning method and system, computer readable storage medium

Also Published As

Publication number Publication date
JP3934010B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4037272B2 (en) Magnetic resonance imaging apparatus and static magnetic field generator used therefor
JP2015039635A (en) Patient-adaptive static magnetic field homogenization of magnetic resonance tomography system using different types of shim coils
US11209513B2 (en) Method and system for compensating stray magnetic fields in a magnetic resonance imaging system
US6799366B2 (en) Magnetic resonance imaging apparatus assembly method
JP6308794B2 (en) MR apparatus having a pulsed compensation gradient magnetic field
JP2005515051A (en) Coil system for MR apparatus and MR apparatus provided with the coil system
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
KR20150020108A (en) Magnetic resonance imaging device and manufacturing method thereof
RU2716870C2 (en) Magnetic resonance imaging system having probes for field investigation
EP0154996B1 (en) Magnetic resonance imaging apparatus using shim coil correction
JPS62189056A (en) Method for improving homogeneity of magnetic field
JP3934010B2 (en) Method for adjusting magnetic field uniformity of open MRI apparatus
US20180003784A1 (en) Magnetic moment arrangement calculation method for magnetic field adjustment, magnetic field adjustment device and program
JP2006518242A (en) Compensation of magnetic field disturbance due to vibration of MRI system
JP5670037B2 (en) Static magnetic field measuring instrument
US9182465B2 (en) MRT gradient system with integrated main magnetic field generation
WO1998042256A1 (en) Magnetic resonance inspector
JP4107799B2 (en) MRI equipment
Schwerter et al. Advanced software and hardware control methods for improved static and dynamic B0 shimming in magnetic resonance imaging
JP3748657B2 (en) Magnetic resonance inspection equipment
WO2015072301A1 (en) Magnetic resonance imaging apparatus
JP2002017706A (en) Magnetic resonance imaging device with function of measuring magnetic field fluctuation with high accuracy
JP2013146283A (en) Magnetic resonance imaging apparatus
JP2019180826A (en) Magnetic resonance imaging device and static magnetic field correction method
HAYES et al. Equipment requirements

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees