JP2004071487A - Distributed power generation system - Google Patents

Distributed power generation system Download PDF

Info

Publication number
JP2004071487A
JP2004071487A JP2002232306A JP2002232306A JP2004071487A JP 2004071487 A JP2004071487 A JP 2004071487A JP 2002232306 A JP2002232306 A JP 2002232306A JP 2002232306 A JP2002232306 A JP 2002232306A JP 2004071487 A JP2004071487 A JP 2004071487A
Authority
JP
Japan
Prior art keywords
power
power generation
hydrogen
generation system
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232306A
Other languages
Japanese (ja)
Other versions
JP4328069B2 (en
Inventor
Yoshitami Nonomura
野々村 善民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2002232306A priority Critical patent/JP4328069B2/en
Publication of JP2004071487A publication Critical patent/JP2004071487A/en
Application granted granted Critical
Publication of JP4328069B2 publication Critical patent/JP4328069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed power generation system which does not require any complex control circuit upon linking unstable electric powers obtained by various power generating means utilizing natural energy with each other. <P>SOLUTION: This distributed power generation system comprises a plurality of wind power generators 1, rectification circuits 2 for converting AC power outputted from each of the wind power generators 1 to DC power, a plurality of solar power generators (solar cell panels) 3, an electrolysis apparatus 4 for decomposing water into hydrogen and oxygen by the power from these wind power generators 1 and solar power generators 3, and a fuel cell 5 which combines the hydrogen from the electrolysis apparatus 4 with oxygen to be converted into the power and supplies the power to an electric load 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、異種の発電装置を連系して電力を負荷へ供給するための分散型発電システムに関する。
【0002】
【従来の技術】
風力発電や、太陽光発電は、そのエネルギ源がクリーンで無尽蔵であるというメリットがある反面、それらの発電装置は、風や太陽光などの自然エネルギから電力を取り出すため、風力発電装置の場合、出力電力は気象条件(風力)に依存され、太陽光発電の場合は太陽の高度や日照時間及び気象条件に依存され、いずれも安定した電力を得ることができない問題がある。そこで、このような風力発電や太陽光発電などの欠点を補い合うため、ハイブリッド化技術(自然エネルギを利用した分散型発電システム;以下、単に分散型発電システムという)の開発が進んでいる。
【0003】
図5は、従来の技術による分散型発電システムの概略構成を示すブロック図である。すなわち、図5に示される分散型発電システムにおいては、複数の風力発電装置101、及び複数の太陽電池パネル102など、異種の発電手段を備え、各風力発電装置101で発生した三相交流の電力をそれぞれ整流回路103で直流に変換して蓄電器104に充電し、また、各太陽電池パネル102で発生した直流電力をそれぞれ蓄電器105に充電し、これらの複数の電気系統を制御装置106を介して連系し、各種の電気機器である負荷107へ、その電力消費に応じて供給するようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の技術によれば、各風力発電装置101及び各太陽電池パネル102からの出力は不安定であるため、これを連系して安定した出力を得るには、各風力発電装置101及び各太陽電池パネル102からの出力を常にモニターして、耐電圧を超える電力を遮断したり、蓄電器104への充電電圧の一定化を保つ制御が必要となる。また、このような分散型発電システムは、コストの低減及び小型化が一層進むことが予想されるが、整流回路103及び蓄電器104を含む二次側の電気系統は、従来方式を使用した場合、大量生産によるコストダウンしか期待できず、発電手段の小型化及び複数化により、整流回路104及び蓄電器104の制御は更に複雑なものとなってしまう問題がある。
【0005】
本発明は、上記のような問題に鑑みてなされたもので、その技術的課題は、自然エネルギを利用した各種発電手段で得られる不安定な電力を連系する際に、複雑な制御回路を必要しない分散型発電システムを提供することにある。
【0006】
【課題を解決するための手段】
上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る分散型発電システムは、複数種類の発電手段と、各発電手段からの電力により水を水素と酸素に分解する電気分解装置と、前記水素を電気負荷の電力消費に応じて電力に変換する燃料電池とからなる。すなわち複数種類の発電手段で得られた電気エネルギを、電気分解装置でいったん水素に変換し、燃料電池で再度電気エネルギに変換することによって、複雑な制御回路を不要としたものである。
【0007】
請求項2の発明に係る分散型発電システムは、請求項1に記載の構成において、発電手段が、一乃至複数の風力発電装置と、一乃至複数の太陽光発電装置を含むものである。
【0008】
請求項3の発明に係る分散型発電システムは、請求項1又は2に記載の構成において、電気分解装置からの水素を一時的に貯蔵する貯蔵手段を備える。
【0009】
【発明の実施の形態】
図1は、本発明に係る分散型発電システムの好ましい第一の実施の形態を示すブロック図、図2は図1の一部の構成を詳細に示す説明図である。
【0010】
まず図1において、参照符号1は風力発電装置で、屋外に複数設置され、それぞれ、風力に応じて回転する風車により発電機本体が回転され、交流(三相交流)の電力を発生するものである。各風力発電装置1からの出力は、それぞれ整流回路2によって全波整流され、直流に変換される。また、参照符号3は太陽光発電装置としての太陽電池パネルで、太陽光のエネルギを電気エネルギに変換する多数のソーラセルからなる太陽電池モジュールを、架台板に配列して接続したもので、屋外に複数設置されている。
【0011】
参照符号4は、水の電気分解装置である。この電気分解装置は、図2に一層明確に示されるように、上部空間が仕切壁41aによって気室4a,4bに仕切られ下部が互いに連通した複数の電解槽41と、この電解槽41に充填された水W中に、気室4aの下側に位置して配置された陰極板42と、気室4bの下側に位置して配置された陽極板43とを備える。陰極板42は、風力発電装置1に接続された整流回路2における陰極側の出力端子、又は太陽電池パネル3における陰極側の出力端子に接続される。なお、図1においては、陽極板43の図示を省略してある。
【0012】
電気分解装置4は、風力発電装置1から整流回路2を介して供給される直流電流、又は太陽電池パネル3から供給される直流電流によって、電解槽41内の水W(HO)を水素Hと酸素Oに分解するものである。すなわち陰極板42の表面では、電解反応によって水素Hが発生し、気泡となって水W中を浮上し、水面上の気室4aに一時的に貯えられる。一方、陽極板43の表面では、電解反応によって酸素Oが発生し、気泡となって水W中を浮上し、水面上の気室4bに一時的に貯えられる。
【0013】
なお、陰極板42及び陽極板43に通常の金属電極を用いた場合は、水Wは、水酸化ナトリウム(NaOH)、あるいは塩化ナトリウム(NaCl)等の電解質の水溶液とするが、燃料電池用の電極の膜を使えば、電解質を添加しない水(水道水など)でも電気分解を行うことができる。
【0014】
電気分解装置4で発生した水素Hは、燃料電池5へ送られるようになっている。燃料電池5は、水の電気分解と逆の反応によって、水素Hと酸素Oを化合させて水HOを生成すると同時に電気エネルギを取り出すものであって、内部構造の図示は省略するが、基本的には、良く知られているように、電解質を含む層を、燃料極と空気極で挟んだ構造の多数のセルを有する。
【0015】
すなわち図2に示されるように、電気分解装置4における陰極側の各気室4aからの水素Hは、水素供給配管5aを介して、燃料電池5における各セルの燃料極に形成された多数の溝内に供給され、電気分解装置4における陽極側の各気室4bからの酸素Oが、酸素供給配管5bを介して、燃料電池5における各セルの空気極に形成された多数の溝内に供給されるようになっている。また、各セルの燃料極と空気極は、各種の電気機器である外部の負荷6に、導線61を介して電気的に接続される。
【0016】
そして、各種の電気機器である負荷6をONにすると、燃料電池5における各セルの燃料極では、電気分解装置4から水素供給配管5aを介して供給される水素Hが、電子を遊離して水素イオンとなり、各セルの空気極では、燃料極側から電解質中を移動して来た水素イオンが、燃料極から外部の負荷6及び導線61を介して流れて来る電子及び酸素供給配管5bを介して供給される酸素Oと結合して水になる。したがって、このようにして負荷6の電力消費に応じた発電(負荷6への電力供給)が行われる。また、燃料電池5での発電作用に伴って生じる副産物は水(HO)であるため、無害である。
【0017】
なお、燃料電池5から出力される電力は直流であるが、これを図示されていないコンバータを介して商用電源と同等の周波数の交流に変換して、負荷6へ供給するようにしても良い。
【0018】
また、燃料電池5は、図2に示されるように複数個(5〜5)が配置され、水素供給配管5a及び酸素供給配管5bを介して互いに並列に接続されている。そして、電気分解装置4からの水素H及び酸素Oは、まず最も上流側の燃料電池5に供給され、供給量の増大によって、燃料電池5で処理しきれなくなった場合は、下流側の燃料電池5,5,…へ順次オーバーフローして供給されるようになっている。
【0019】
なお、電気分解装置4で発生した酸素Oは、大気中へ放出し、燃料電池5における各燃料極への酸素の供給は、外部からの空気の取り込みによって行うようにしても良い。
【0020】
上述のように構成された第一の形態による分散型発電システムにおいて、各風力発電装置1から出力される電力は、風力に比例し、各太陽電池パネル3から出力される電力は、ソーラセルの受光量に比例するものであって、その受光量は太陽の高度や天候に依存され、夜間は殆ど発電しない。このため、風力発電装置1及び各太陽電池パネル3からの出力は、いずれも不安定であるが、本システムによれば、各風力発電装置1及び各太陽電池パネル3で得られた電気エネルギは、電気分解装置4で電解槽41内の水W(HO)を水素Hと酸素Oに分解するために用いられ、この水素Hと酸素Oが、燃料電池5において再び電気エネルギに変換されるため、その過程で、出力の不安定性を緩和し、平滑化を図ることができる。
【0021】
これは、電気分解装置4によって発生する水素H(及び酸素O)の量は、各風力発電装置1及び各太陽電池パネル3からの出力の和に比例し、しかも気室4a(及び4b)にいったん貯留される水素H(及び酸素O)は圧縮性を有するからである。また、各燃料電池5(5〜5)からの出力電圧及び電流は、ほぼ同じである。このため、各燃料電池5からの電力は、並列接続及び直列接続等の単純な接続で蓄電することができ、複雑な制御回路は不要である。
【0022】
次に、図3は、本発明に係る分散型発電システムの好ましい第二の実施の形態を示すブロック図、図4は図3の一部の構成を詳細に示す説明図である。
【0023】
この形態において、先に説明した図1及び図2の第一の形態と異なるところは、電気分解装置4によって発生した水素Hを一時的に蓄積する水素貯蔵タンク7を備える点にある。すなわち、図4に示されるように、電気分解装置4の電解槽41における陰極側で発生した水素Hを捕捉する各気室4aと、燃料電池5との間には、制御バルブ装置8を介して、水素貯蔵タンク7が接続されている。その他の部分の構成は、基本的には第一の形態と同様である。
【0024】
水素貯蔵タンク7としては、例えばコンプレッサを内蔵したボンベあるいはブラダ(ゴム膜)とクッションガスによる蓄圧機能を有するアキュムレータ構造のものが用いられるが、水素貯蔵合金等に代えることもできる。また、制御バルブ装置8は、電気分解装置4における各気室4aからの水素Hの供給先を、燃料電池5又は水素貯蔵タンク7へ選択的に切り換える方向切換弁と、燃料電池5への水素H(及び酸素O)の供給量を制御する流量制御弁からなる。また、水素貯蔵タンク7のほかに、気室4bからの酸素Oを一時的に蓄積する酸素貯蔵タンク(不図示)を同様に設けることもできる。
【0025】
上述のように構成された第二の形態の分散型発電システムは、風力発電装置1及び太陽電池パネル3による発電量が比較的大きい場合に特に有用である。すなわち、風力発電装置1及び太陽電池パネル3からの電力供給によって、電気分解装置4から燃料電池5への水素Hの供給量が所要値よりも多くなった場合は、余剰の水素Hが、制御バルブ装置8を介して水素貯蔵タンク7に一時的に蓄積される。また逆に、風力低下時や夜間のように、風力発電装置1及び太陽電池パネル3からの出力低下によって、電気分解装置4から燃料電池5への水素Hの供給量が所要値よりも減少した場合は、水素貯蔵タンク7に蓄積された水素Hが、制御バルブ装置8を介して放出される。このため、燃料電池5への水素Hの供給量、言い換えれば燃料電池5の出力を、一層平滑化することができる。
【0026】
また、本形態のシステムによれば、夜間に風力発電装置1で発電された余剰電力を、水素Hとして水素貯蔵タンク7に貯蔵し、昼間などの電力需要増大時に水素Hを放出して、燃料電池5における発電量を補償することもできる。
【0027】
【発明の効果】
請求項1の発明に係る分散型発電システムによれば、複数種類の発電手段から個々に発電された電力が、電気分解装置で水素にいったん変換され、燃料電池で再び電力に変換される過程で連系されると共に、各発電手段の出力を補い合うので、複雑な制御回路を必要とすることなく、出力の不安定を緩和して平滑化することができる。
【0028】
請求項2の発明に係る分散型発電システムによれば、発電手段が、風力発電装置と太陽光発電装置からなるものであり、すなわち本発明は、無尽でクリーンな風力及び太陽光エネルギを利用したハイブリッド電源システムにおいて、きわめて有用である。
【0029】
請求項3の発明に係る分散型発電システムによれば、電気分解装置で発生した水素を一時的に貯蔵する貯蔵手段を備えることによって、一層確実に出力の平滑化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る分散型発電システムの好ましい第一の実施の形態を示すブロック図である。
【図2】図1の一部の構成を詳細に示す説明図である。
【図3】本発明に係る分散型発電システムの好ましい第二の実施の形態を示すブロック図である。
【図4】図3の一部の構成を詳細に示す説明図である。
【図5】従来の技術による分散型発電システムの構成を示すブロック図である。
【符号の説明】
1 風力発電装置
2 整流回路
3 太陽電池パネル(太陽光発電装置)
4 電気分解装置
4a,4b 気室
41 電解槽
42 陰極板
43 陽極板
5 燃料電池
6 電気負荷
7 水素貯蔵タンク
8 制御バルブ装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a distributed power generation system for interconnecting different types of power generation devices and supplying power to a load.
[0002]
[Prior art]
Wind power and solar power have the advantage that their energy sources are clean and inexhaustible.On the other hand, those power generators extract power from natural energy such as wind and sunlight. Output power depends on weather conditions (wind power). In the case of photovoltaic power generation, it depends on the altitude of the sun, sunshine duration and weather conditions, and there is a problem that stable power cannot be obtained in any case. Therefore, in order to compensate for such drawbacks as wind power generation and solar power generation, hybrid technology (distributed power generation system using natural energy; hereinafter, simply referred to as distributed power generation system) is being developed.
[0003]
FIG. 5 is a block diagram showing a schematic configuration of a distributed power generation system according to a conventional technique. That is, the distributed power generation system shown in FIG. 5 includes a plurality of different types of power generation means, such as a plurality of wind power generation devices 101 and a plurality of solar cell panels 102, and a three-phase AC power generated by each wind power generation device 101. Is converted to DC by the rectifier circuit 103 and charged in the battery 104, and the DC power generated in each solar cell panel 102 is charged in the battery 105, respectively, and the plurality of electric systems are connected via the control device 106. They are interconnected and supplied to loads 107, which are various electric devices, according to the power consumption.
[0004]
[Problems to be solved by the invention]
However, according to the related art, since the output from each wind power generation device 101 and each solar cell panel 102 is unstable, in order to obtain a stable output by interconnecting the wind power generation devices 101 and It is necessary to constantly monitor the output from each solar cell panel 102 to cut off the power exceeding the withstand voltage, and to control to keep the charging voltage to the battery 104 constant. Further, in such a distributed power generation system, cost reduction and miniaturization are expected to further advance, but the secondary-side electric system including the rectifier circuit 103 and the capacitor 104 uses a conventional method, There is a problem that only the cost reduction due to mass production can be expected, and the control of the rectifier circuit 104 and the electric storage device 104 becomes more complicated due to downsizing and multiple power generation means.
[0005]
The present invention has been made in view of the above-described problems, and a technical problem thereof is that when interconnecting unstable power obtained by various power generation means using natural energy, a complicated control circuit is required. It is to provide a decentralized power generation system that is not required.
[0006]
[Means for Solving the Problems]
As a means for effectively solving the above technical problem, a distributed power generation system according to the invention of claim 1 decomposes water into hydrogen and oxygen by using a plurality of types of power generation means and electric power from each power generation means. It comprises an electrolyzer and a fuel cell that converts the hydrogen into electric power according to the power consumption of an electric load. That is, electrical energy obtained by a plurality of types of power generation means is once converted to hydrogen by an electrolyzer and then converted again to electrical energy by a fuel cell, thereby eliminating the need for a complicated control circuit.
[0007]
According to a second aspect of the present invention, in the distributed power generation system according to the first aspect, the power generation unit includes one or more wind power generation devices and one or more solar power generation devices.
[0008]
A distributed power generation system according to a third aspect of the present invention is the configuration according to the first or second aspect, further comprising a storage unit for temporarily storing hydrogen from the electrolyzer.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing a first preferred embodiment of a distributed power generation system according to the present invention, and FIG. 2 is an explanatory diagram showing a part of the configuration of FIG. 1 in detail.
[0010]
First, in FIG. 1, reference numeral 1 denotes a wind power generator, which is installed plurally outdoors, and each of which generates a power of alternating current (three-phase alternating current) by rotating a generator main body by a wind turbine rotating according to wind power. is there. The output from each wind power generator 1 is full-wave rectified by the rectifier circuit 2 and is converted to DC. Reference numeral 3 denotes a solar cell panel as a photovoltaic power generator, in which solar cell modules composed of a number of solar cells for converting the energy of sunlight into electric energy are arranged and connected to a base plate, and are used outdoors. There are multiple installations.
[0011]
Reference numeral 4 is a water electrolyzer. As shown in FIG. 2 more clearly, the electrolyzer comprises a plurality of electrolytic cells 41 whose upper space is partitioned by partition walls 41a into air chambers 4a and 4b and whose lower part communicates with each other. The water W includes a cathode plate 42 disposed below the air chamber 4a and an anode plate 43 disposed below the air chamber 4b. The cathode plate 42 is connected to a cathode-side output terminal of the rectifier circuit 2 connected to the wind power generator 1 or a cathode-side output terminal of the solar cell panel 3. In FIG. 1, the illustration of the anode plate 43 is omitted.
[0012]
The electrolyzer 4 converts the water W (H 2 O) in the electrolytic cell 41 into hydrogen by a DC current supplied from the wind power generator 1 through the rectifier circuit 2 or a DC current supplied from the solar cell panel 3. It decomposes into H 2 and oxygen O 2 . That is, on the surface of the cathode plate 42, hydrogen H 2 is generated by the electrolytic reaction, becomes bubbles, floats in the water W, and is temporarily stored in the air chamber 4 a above the water surface. On the other hand, on the surface of the anode plate 43, oxygen O 2 is generated by an electrolytic reaction, floats in the water W as bubbles, and is temporarily stored in the air chamber 4 b above the water surface.
[0013]
When a normal metal electrode is used for the cathode plate 42 and the anode plate 43, the water W is an aqueous solution of an electrolyte such as sodium hydroxide (NaOH) or sodium chloride (NaCl). If an electrode membrane is used, electrolysis can be performed even with water (tap water or the like) to which no electrolyte is added.
[0014]
The hydrogen H 2 generated in the electrolyzer 4 is sent to the fuel cell 5. The fuel cell 5 combines hydrogen H 2 and oxygen O 2 to generate water H 2 O by a reaction opposite to the electrolysis of water, and at the same time, extracts electric energy, and the internal structure is not shown. However, basically, as is well known, it has a large number of cells having a structure in which a layer containing an electrolyte is sandwiched between a fuel electrode and an air electrode.
[0015]
That is, as shown in FIG. 2, the hydrogen H 2 from each of the gas chambers 4a on the cathode side in the electrolyzer 4 is supplied to the fuel electrode of each cell in the fuel cell 5 via the hydrogen supply pipe 5a. And oxygen O 2 from each of the gas chambers 4b on the anode side in the electrolyzer 4 is formed in the air electrode of each cell in the fuel cell 5 through the oxygen supply pipe 5b. Is supplied inside. Further, the fuel electrode and the air electrode of each cell are electrically connected to an external load 6 which is various kinds of electric equipment via a conducting wire 61.
[0016]
When the load 6 which is various electric devices is turned on, hydrogen H 2 supplied from the electrolyzer 4 via the hydrogen supply pipe 5 a releases electrons at the fuel electrode of each cell in the fuel cell 5. At the air electrode of each cell, hydrogen ions moving through the electrolyte from the fuel electrode side are supplied to the electron and oxygen supply pipes 5 b flowing from the fuel electrode via the external load 6 and the conductor 61. bonded to form water and oxygen O 2 to be supplied via the. Therefore, power generation (power supply to the load 6) according to the power consumption of the load 6 is performed in this manner. Further, since a by-product generated by the power generation operation in the fuel cell 5 is water (H 2 O), it is harmless.
[0017]
Although the power output from the fuel cell 5 is DC, the power may be converted to AC having a frequency equivalent to that of a commercial power supply via a converter (not shown) and supplied to the load 6.
[0018]
The fuel cell 5 is a plurality (5 1 to 5 n) are arranged as shown in FIG. 2, are connected in parallel with each other through the hydrogen supply pipe 5a and the oxygen supply pipe 5b. Then, hydrogen H 2 and oxygen O 2 from the electrolyzer 4 is first most supplied to the upstream side of the fuel cell 5 1, by increasing the supply amount, if no longer can handle the fuel cell 5 1, downstream The fuel cells 5 2 , 5 3 ,... Are sequentially overflowed and supplied.
[0019]
The oxygen O 2 generated in the electrolyzer 4 may be released into the atmosphere, and the supply of oxygen to each fuel electrode in the fuel cell 5 may be performed by taking in air from outside.
[0020]
In the distributed power generation system according to the first embodiment configured as described above, the power output from each wind power generator 1 is proportional to the wind power, and the power output from each solar cell panel 3 is The amount of received light depends on the altitude of the sun and the weather, and generates little power at night. For this reason, the outputs from the wind power generator 1 and each solar cell panel 3 are both unstable, but according to the present system, the electric energy obtained by each wind power generator 1 and each solar cell panel 3 is Is used to decompose water W (H 2 O) in the electrolytic cell 41 into hydrogen H 2 and oxygen O 2 by the electrolyzer 4. The hydrogen H 2 and oxygen O 2 Since the energy is converted into energy, instability of the output can be reduced and smoothing can be achieved in the process.
[0021]
This is because the amount of hydrogen H 2 (and oxygen O 2 ) generated by the electrolyzer 4 is proportional to the sum of the outputs from the respective wind power generators 1 and the respective solar cell panels 3, and the air chambers 4a (and 4b) This is because the hydrogen H 2 (and oxygen O 2 ) once stored in) has compressibility. Further, the output voltage and current from each fuel cell 5 (5 1 ~5 n) is about the same. For this reason, the electric power from each fuel cell 5 can be stored by simple connection such as parallel connection and series connection, and a complicated control circuit is not required.
[0022]
Next, FIG. 3 is a block diagram showing a second preferred embodiment of the distributed power generation system according to the present invention, and FIG. 4 is an explanatory diagram showing a part of the configuration of FIG. 3 in detail.
[0023]
This embodiment differs from the first embodiment shown in FIGS. 1 and 2 in that a hydrogen storage tank 7 for temporarily storing hydrogen H2 generated by the electrolyzer 4 is provided. That is, as shown in FIG. 4, a control valve device 8 is provided between each fuel cell 5 and each gas chamber 4 a that captures hydrogen H 2 generated on the cathode side in the electrolytic cell 41 of the electrolyzer 4. A hydrogen storage tank 7 is connected via the storage tank. The configuration of the other parts is basically the same as in the first embodiment.
[0024]
As the hydrogen storage tank 7, for example, a cylinder having a built-in compressor or an accumulator structure having a bladder (rubber film) and a pressure accumulating function using a cushion gas is used, but may be replaced with a hydrogen storage alloy or the like. Further, the control valve device 8 includes a direction switching valve for selectively switching the supply destination of the hydrogen H 2 from each gas chamber 4 a in the electrolyzer 4 to the fuel cell 5 or the hydrogen storage tank 7, and a control valve for the fuel cell 5. It comprises a flow control valve for controlling the supply of hydrogen H 2 (and oxygen O 2 ). In addition to the hydrogen storage tank 7, an oxygen storage tank (not shown) for temporarily storing the oxygen O 2 from the gas chamber 4b may be the provision in the same manner.
[0025]
The distributed power generation system of the second embodiment configured as described above is particularly useful when the amount of power generated by the wind power generator 1 and the solar cell panel 3 is relatively large. That is, when the supply amount of hydrogen H 2 from the electrolyzer 4 to the fuel cell 5 becomes larger than a required value due to the power supply from the wind power generator 1 and the solar cell panel 3, the surplus hydrogen H 2 is reduced. Are temporarily stored in the hydrogen storage tank 7 via the control valve device 8. Conversely, the supply amount of hydrogen H 2 from the electrolyzer 4 to the fuel cell 5 is reduced from a required value due to a decrease in the output from the wind power generator 1 and the solar cell panel 3, such as when the wind power decreases or at night. In this case, the hydrogen H 2 stored in the hydrogen storage tank 7 is released via the control valve device 8. Therefore, the supply amount of the hydrogen of H 2 to the fuel cell 5, the output of the fuel cell 5 in other words, it is possible to further smooth.
[0026]
Further, according to the system of this embodiment, the surplus power generated by the wind turbine generator 1 during the night, and stored in the hydrogen storage tank 7 as hydrogen H 2, to release the hydrogen H 2 at increasing power demand, such as daytime In addition, the amount of power generation in the fuel cell 5 can be compensated.
[0027]
【The invention's effect】
According to the distributed power generation system according to the first aspect of the present invention, the power generated individually from a plurality of types of power generation means is once converted into hydrogen by the electrolyzer and then converted again into power by the fuel cell. Since the outputs of the respective power generation means are complemented with each other, the instability of the output can be reduced and smoothed without requiring a complicated control circuit.
[0028]
According to the distributed power generation system according to the second aspect of the present invention, the power generation means includes a wind power generation device and a photovoltaic power generation device, that is, the present invention utilizes infinite and clean wind power and solar energy. Very useful in hybrid power systems.
[0029]
According to the distributed power generation system according to the third aspect of the present invention, the provision of the storage means for temporarily storing the hydrogen generated in the electrolyzer allows the output to be more reliably smoothed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first preferred embodiment of a distributed power generation system according to the present invention.
FIG. 2 is an explanatory diagram showing a part of the configuration of FIG. 1 in detail;
FIG. 3 is a block diagram showing a second preferred embodiment of the distributed power generation system according to the present invention.
FIG. 4 is an explanatory diagram showing a part of the configuration of FIG. 3 in detail;
FIG. 5 is a block diagram showing a configuration of a distributed power generation system according to a conventional technique.
[Explanation of symbols]
1 Wind power generator 2 Rectifier circuit 3 Solar panel (Solar power generator)
4 Electrolyzers 4a, 4b Gas chamber 41 Electrolyzer 42 Cathode plate 43 Anode plate 5 Fuel cell 6 Electric load 7 Hydrogen storage tank 8 Control valve device

Claims (3)

複数種類の発電手段と、
各発電手段からの電力により水を水素と酸素に分解する電気分解装置と、
前記水素を電気負荷の電力消費に応じて電力に変換する燃料電池と、
からなることを特徴とする分散型発電システム。
Multiple types of power generation means,
An electrolyzer for decomposing water into hydrogen and oxygen by electric power from each power generation means,
A fuel cell that converts the hydrogen into electric power in accordance with the power consumption of an electric load,
A distributed power generation system characterized by comprising:
発電手段が、一乃至複数の風力発電装置と、一乃至複数の太陽光発電装置を含むことを特徴とする請求項1に記載の分散型発電システム。The distributed power generation system according to claim 1, wherein the power generation means includes one or more wind power generators and one or more solar power generators. 電気分解装置からの水素を一時的に貯蔵する貯蔵手段を備えることを特徴とする請求項1又は2に記載の分散型発電システム。3. The distributed power generation system according to claim 1, further comprising storage means for temporarily storing hydrogen from the electrolyzer. 4.
JP2002232306A 2002-08-09 2002-08-09 Distributed power generation system Expired - Fee Related JP4328069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232306A JP4328069B2 (en) 2002-08-09 2002-08-09 Distributed power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232306A JP4328069B2 (en) 2002-08-09 2002-08-09 Distributed power generation system

Publications (2)

Publication Number Publication Date
JP2004071487A true JP2004071487A (en) 2004-03-04
JP4328069B2 JP4328069B2 (en) 2009-09-09

Family

ID=32017759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232306A Expired - Fee Related JP4328069B2 (en) 2002-08-09 2002-08-09 Distributed power generation system

Country Status (1)

Country Link
JP (1) JP4328069B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154753A2 (en) * 2008-06-18 2009-12-23 Massachusetts Institute Of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
JP2011103736A (en) * 2009-11-11 2011-05-26 Mitsubishi Heavy Ind Ltd Wind power generation system
JP2015167132A (en) * 2015-03-31 2015-09-24 株式会社エクォス・リサーチ Sunlight using system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187153A1 (en) 2018-03-30 2019-10-03 本田技研工業株式会社 Energy management device, hydrogen utilization system, program, and energy management method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154753A2 (en) * 2008-06-18 2009-12-23 Massachusetts Institute Of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
WO2009154753A3 (en) * 2008-06-18 2010-07-15 Massachusetts Institute Of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
JP2011103736A (en) * 2009-11-11 2011-05-26 Mitsubishi Heavy Ind Ltd Wind power generation system
JP2015167132A (en) * 2015-03-31 2015-09-24 株式会社エクォス・リサーチ Sunlight using system

Also Published As

Publication number Publication date
JP4328069B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
Lajnef et al. Modeling, Control, and Simulation of a Solar Hydrogen/Fuel Cell Hybrid Energy System for Grid-Connected Applications.
US9692235B2 (en) Managing continuity of the supply of power to electric equipment
AU2012228513B2 (en) Hydrogen offloading in an electrochemical generator unit including a hydrogen fuel cell
AU2011244435B2 (en) Device for storing and restoring electrical energy
CN110654520A (en) Ship direct-current networking system adopting fuel cell and ship applying same
KR101716959B1 (en) Integration power distribution apparatus for a hybrid power supply system by energy circulation
WO2022217836A1 (en) Lunar base energy supply and application system based on technology of hydrogen production by means of water photolysis
CN110571857A (en) Energy management coordination system based on photovoltaic and fuel cell combined power generation system
JP2003257443A (en) Natural energy power generation device and self- completion type power generation system having fuel cell
JP2017179557A (en) Hydrogen production system
KR101592926B1 (en) System for providing a hybrid power by energy circulation
CN114395775A (en) Closed clean energy hydrogen production energy storage system
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
JP2000054174A (en) Water electrolyzing device and water electrolysis storage battery
CN106402647B (en) Hydrogenation station utilizing renewable energy
JP4328069B2 (en) Distributed power generation system
KR20190066857A (en) Apparatus for generating photovoltaic-hydrogen based small power and method for generating thereof
JP2001338672A (en) Home-use electric power supply system
KR101679003B1 (en) Integration power distribution method for a hybrid power supply system by energy circulation
JPH0491638A (en) Energy system
Solovey et al. Researching and adjusting the modes of joint operation of a photoelectric converter and a high pressure electrolyzer
CN116191485A (en) Comprehensive energy system control method based on state machine
CN214012988U (en) Proton conduction SOEC and oxygen ion conduction SOFC combined device
CN115637455A (en) Proton exchange membrane PEM (proton exchange membrane) water electrolysis hydrogen production system based on solar power generation and energy supply
JPH0492374A (en) Energy system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees