JP2004069684A - Device for projecting reference line or reference point - Google Patents

Device for projecting reference line or reference point Download PDF

Info

Publication number
JP2004069684A
JP2004069684A JP2003167767A JP2003167767A JP2004069684A JP 2004069684 A JP2004069684 A JP 2004069684A JP 2003167767 A JP2003167767 A JP 2003167767A JP 2003167767 A JP2003167767 A JP 2003167767A JP 2004069684 A JP2004069684 A JP 2004069684A
Authority
JP
Japan
Prior art keywords
light
reflector
line
projecting
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167767A
Other languages
Japanese (ja)
Inventor
Hidetoshi Sako
佐古 秀敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Next KK
Original Assignee
Next KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next KK filed Critical Next KK
Priority to JP2003167767A priority Critical patent/JP2004069684A/en
Publication of JP2004069684A publication Critical patent/JP2004069684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam splitting means for projecting the upper and lower reference points and elongating ruled lines with a semiconductor laser type projector for projecting ruled lines and a reference point at a construction site and the like. <P>SOLUTION: Two surfaces of a triangular prism or one side of a rectangle transparent plate is ground, and one surface and the ground side of the transparent plate are made reflecting surfaces. By inserting the ridgeline at which the two surfaces cross, into a laser beam of semiconductor laser, a single beam is split into two directions; each is projected to an object surface; and if necessary, a condenser lens is arranged in the split light flux, to make the projected light point bright. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は建築作業とか室内の内装作業等で壁面や天井等に罫線或は目印を投影する光ビーム投射装置に関する。
【0002】
【従来の技術】
従来から建築現場等では半導体レ−ザを用いた投光式の墨出し装置が用いられている(例えば特許文献1参照)。
これは鉛直線と水平線を投影する光学装置を振子式に吊下して鉛直罫線と水平罫線を壁面とか柱面に投影する装置である。
従来のこの種の装置は鉛直線或は水平線またはその両方を投影する機能のみを有していたが、作業現場では床上の一点を基準にして、基準点の真上の天井の一点を明らかにしたい場合、或はその逆に天井の一点の真下の点を明示したい場合があるが、従来は錘を糸で垂下すると言った方法が用いられていた。
【特許文献1】
特開2001−311622号公報
【0003】
【発明が解決しようとする課題】
本発明は鉛直方向の一つの直線の床面および天井面との交点に光点を投影する機能を単独或は水平,鉛直の罫線の投影機能に併せて有する投影装置を提供しようとするものである。
【0004】
【課題を解決するための手段】
請求項1の発明は振子式に支持され自動的に垂直姿勢を取る装置本体に、水平方向に光ビ−ムを発射する半導体レ−ザと、このレ−ザ前方で上記光ビ−ム内に挿入された反射体よりなる投光ユニットを取り付けたものであり、上記反射体が二つの平面反射面を交差させたもので、上記両反射面の稜線が水平になるように上記ビ−ム内に挿入配置されていることを特徴とする基準線或は基準点を投射する装置を提供する。
この発明は鉛直罫線と水平罫線を投影する光学系を取付けた装置本体において水平罫線を投影する光学系内に、上記二つの反射面を直交させた反射体を設ける場合も含むものである。
【0005】
請求項2の発明は請求項1の発明において、反射体が一枚の透明板の一辺を板面に対して直角になるように研磨し、この透明板の一面と上記研磨された端面とに反射膜を設け、これらの反射膜を設けた板面と端面とを反射面としたものであって、この反射体を上記二つの反射面の交わる稜線を半導体レ−ザから発射されるレ−ザビ−ムの光軸と直交させつつ、斜めに同ビ−ム中に半ば挿入して、同ビ−ムの上半を上方と下方に分割して反射させ、下半を上記反射体の下を通って前方に直進させるようにしたものである。
【0006】
請求項3の発明は請求項1或は2の発明において、光投射光学系が光源の半導体レ−ザの光を扇形に広がる面状光束として発射するようにしたもので、この扇形面状の光束内に光束を上下および前方の三方向に分割する反射体が挿入され、上下方向に分割された光束内に側方レンズが挿入されてこれらの光束が投射面に光点状に投射されるようにしたものである。
【0007】
【作用】
半導体レ−ザは断面が楕円状のビ−ムを放射するので、適当な集光光学系を用いることで、遠方に楕円状の光スポットを投射できる。このレ−ザビ−ムの中に二つの反射面を交差させた反射体を挿入すると、半導体ビ−ムはこの反射体の稜線で二分される。特に二面が直交しているときはこの二分された光束は互いには一直線をなし、もとの入射ビ−ムとは或る角度で交わる二光束となる。従ってこの反射二光束がもとの入射光束と直交するように反射体を調整すると、装置本体が振子式に支持されて鉛直位置を保っているので、反射された二光束は鉛直方向の上下二点に光スポットを投射することになる。
【0008】
或は装置本体が鉛直,水平の両罫線を投射する光学系を備えている場合において、水平罫線を投影する扇形光束の中央に、直交する二面の反射面を持つ反射体を、その稜線を水平にして挿入した場合、投影される水平罫線は中央が途切れ、途切れた部分の光束が上下に分かれて天井面と床面に短い線として投影され、鉛直罫線の天井面及び床面に投影れている延長部分と交わって、この上下の各交点が一つの鉛直線の上下両端を示すことになる。
【0009】
【発明の実施の形態】
図1の例は上下の対応点に光点を投影する場合の光学系を示し、図1Aは斜視図、同Bは縦断側面図である。図1で1は鏡筒で上底1aにスリット7が開口しており、このスリットの両側縁は直角プリズム3の直交二面が適合するように斜めに削除されており、このスリットと直交する方向にビ−ム射出溝1cが形成されている。鏡筒1内には非球面レンズ5が上底1a内面に当たるように挿入され、押しばね6で上底内面に押圧されている。ばね6を押しているのは半導体レ−ザ4の放熱板2で、放熱板2は両側の突出部2aを鏡筒1の下端両側の切込み1eに嵌合させることで鏡筒1に対する位置決めがなされている。この構造によって半導体レ−ザ4と非球面レンズ5との距離が決まり、このレンズ5を透過したレ−ザビ−ム8はスリット7の長手方向と平行な方向に長い楕円形断面の平行光ビームとなっている。
3は反射体で直角プリズムであり直交二面にメッキが施されて反射面となっていて、この直交二面をスリット7に嵌め込むように鏡筒1の上底1a上面に取付ける。このようにすると、レンズ5を透過して進行するレ−ザビ−ム8はプリズム3の稜線で二分され、夫々が入射ビ−ム8と交差する一直線に沿い夫々反対方向に進む反射ビ−ム9となる。この図では鏡筒1の中心線を垂直に画いてあるが、鏡筒1を水平にすると、反射ビ−ム9は鉛直方向上下に進み、天井と床の鉛直方向対応点に光スポットを形成する。即ち振子式に吊り下げられて常に垂直位置をとる支持体にこの装置を水平に取り付ければ上下の対応点を指示す装置が得られる。
【0010】
図2,3の例は鉛直罫線及び水平罫線を投射する投光式墨出し装置で、水平罫線の一部を上下に分割して投光し天井と床面に投射されている鉛直罫線の延長と交差させて上下の基準点を指示する場合の例である。図2は水平罫線投射光学系を示し,図3は装置の全体を示す。
図2は水平罫線投射光学系で光学系の前方を上向きに画いてある。構造は図1の例と略々同じである。1は鏡筒で、合成樹脂で成型された筒体で、円形の前端板1aが形成されており、その前表面は鏡筒1の中心軸に対して正確に垂直にしてある。この前端板には中央に投光窓1bが穿設され、この投光窓をまたいで、鏡筒1の中心軸と直交するように断面V字形の溝1cが形成してある。このV字形溝は幅が円柱レンズXの直径より稍狭い長方形の溝であっても良い。何れにしても、この溝1cに円柱レンズXを嵌める。溝1cは円柱レンズXがすっぽりとは入らないで、溝に半ば嵌まって支承されている状態になり、円柱レンズXの中心軸は自然に鏡筒1の中心軸と直交する。Yは板ばねで円柱レンズXと直交する方向に長い矩形板で両端には内向きコ字形の係止爪Yaが形成してある。この板ばねを円柱レンズXに当て、撓めながら両端の係止爪Yaを鏡筒の前端板1aの係止部1dにおいて前端板1aに係止すると、円柱レンズXは板ばねYによって溝1cに押圧固定される。鏡筒1の前端板1aの内面は光軸対称レンズ5が嵌まるレンズ座面になっている。光軸対称レンズ5はこの例では非球面レンズを用いているが、普通の球面レンズでも良い。このレンズ5は鏡筒1の後端から挿入され、レンズ前面が前端板内面に当接され、外周が鏡筒内周に嵌まって位置が決まる。7は押え座金で、レンズ5の後面に当接され、コイルばね6の作用でレンズ2を前端板1aの内面に押圧している。
2は放熱板を兼ねたレ−ザ基台で、中央に半導体レ−ザ4が嵌着され、鏡筒1の内周に適合する外径を有して、鏡筒1の後端部に前後方向に摺動可能に嵌合される。コイルばね6はこの基台2によって押圧圧縮されて、押さえ座金7を押しているのである。レ−ザ基台2は両側に放熱翼2aが張り出しており、この放熱翼は鏡筒1の後端両側の切込み1eに嵌合して基台2の回転を阻止している。基台2は投光器としての焦点合わせ終了後、接着剤で鏡筒1に固定される。
【0011】
以上の構成によってレ−ザビ−ムは扇形に拡がる板状の光束となり、壁面に直線像を投射する。鉛直罫線を投射する光学系も上記と全く同じ構造で円柱レンズの軸方向を水平方向にして光学系を本体に取付けるのである。
鏡筒1の前方(図では上方)に腕材10(図2B)が突出して取付けられる。この腕材はコ字をしており、コ字形の中間辺の内側に反射体の直角プリズム3が斜辺によって接着してある。直角プリズムの直交二面はメッキしてあり、入射光束を二分して互いに反対方向に反射させる反射体となっている。腕材10の上下二辺には窓孔10aが設けられており、反射体3で両方向に反射された光束が通過できるようにしてある。
反射体3はその稜線が水平罫線投射光学系から発せられる扇形板状光束の中央部の光束の厚さの中心位置に位置するようにしてあるので、反射体3によって切取られた光束部分が上下に分かれて反射されて、天井と床面に短い光の線を投射し、光束の残りの部分が前方の壁面に水平罫線を投射することになる。
【0012】
図3は図2の例を用いた投射式墨出し装置の全体を示す。Mが支持体で上部に鉛直罫線を投射する鉛直指示投光器V、前面に水平罫線を投射する水平指示投光器Hが取付けられている。Mを支持体と云うのは、これらの投光器を支持しているからである。支持体Mは2軸回転自由な機構により装置本体Bに保持されている。yは上記2軸回転自由機構のy軸で、x軸xに直交して固定され、軸y,xは一体となってT字形になっている。x軸は装置本体Bに回動自在に保持されている。支持体Mはこのy軸に回動自在に保持させてある。Zは上下に向けて基準点を投射する基準点投光機構である。この投光機構は図2に記載したのと少し異なり図3Bに示すように、反射体3の下側の面のメッキ部分3sの幅を狭くしてある。この構造により、前方には中央が途切れた水平罫線が投射され、天井には鉛直罫線と直交して短い横線が投射されて天井の基準点を指示し、下方には反射面3sの幅が狭いため、横線が短くなって点状の光点となって投射され、鉛直罫線の延長が投射されていなくても、床面の基準点が指示される。
x軸xには扇形の銅板sが固定してあり、x軸を支承している装置本体Bの起立壁に取付けられた磁石mと対向させてある。支持体Mがx軸回りに搖動するときは銅板sがx軸と共に回動し、磁石mとの間に渦電流による制動力が働いて支持体Mのx軸回りの搖動を減衰させる。y軸yはx軸に直交固定されており、その両端に腕板aが固着されて、その下端部に磁石m’が取付けてある。支持体Mはy軸に回動自在に保持されているので前後に搖動するが、この支持体Mの両側下部に銅板s’が固着されて磁石m’と対向させてある。このため支持体Mがy軸回りに搖動すると銅板s’と磁石m’との間の相対運動により生じる渦電流によって支持体Mのy軸回りの搖動が制動される。銅板s’は支持体を垂直にするための錘をも兼ねている。
【0013】
図4は光束分割手段の他の例を示す。この例は図2の例の変形で、反射体3の直交二面の交わる稜線を僅かに平面に研磨してプリズムの断面を台形にし、この研磨部3bはメッキせず透明の侭とした。平面に研磨された稜線部3bは細いスリットとして作用し、この反射体への入射光束のうち、この稜線部3bに入射した分はそのまゝ直進し、稜線の両側の直交二面の部分に入射した分は上下に分割されて互いに反対方向に反射される。かくして入射光束は三分割されることになる。
上述反射体3を図2における水平罫線投射光学系の前面に円柱レンズXに近接させて配置し、光学系から出射する光束の全体が反射体3に入射するようにすると、前方に水平罫線が投射され、天井面と床面とには、鉛直罫線の延長と直交する罫線が投射されることになる。
【0014】
図5は投射する罫線を延長して広角範囲に罫線を投射できるようにするための工夫であって、図2の例で鉛直罫線投射光学系に用いると天井,床面共に罫線が長くなり、単に上下の対応点の指示だけでなく、天井と床とに上下対応関係で縦の罫線を投射できるようになる。
鏡筒1に半導体レ−ザ4およびレンズ5が取付けられる構造は図1,2の例と同じである。鏡筒1の上底1aの中央には透孔1fが穿たれ、透孔1fの両岸は頂角60°のV溝になっていて、60°プリズムの二面をメッキした反射体30がメッキした面が交わる稜線を下にして、このV溝に支承される。上底1aの上に蓋体15が取付けられる。蓋体15は両肩が夫々直角に削られて頂角90°のV溝15aを形成している。この溝は蓋体15の内面に開口しており、夫々は円柱レンズ16を支承している。蓋体15は鏡筒1の上底1aに重ねられ、結合片17により上底に固定される。
【0015】
上述光学的構成により、反射体30に入射するレ−ザビ−ムは60°で交わる反射面で二分割され、夫々が互いに120°隔てた二光束となり、各々が円柱レンズ16に入射して頂角が146°の扇形の板状光束となって、対向壁面に罫線を投射する。両方の罫線は鏡筒1の前方(図では上方)でつながり、角範囲で約260°の罫線を投射することができる。
【0016】
図6は光束分割用の反射体の別実施例を示す。反射体3は幅約3mmの矩形で厚さ0.5mmの透明板で幅方向の一辺の端面を板面と直角をなすように研磨し、一方の板面からこの端面にかけて反射膜3’を着けたものである。この反射体3はレ−ザビ−ム8の光軸に対して板面と上記研磨面との交線が直交し、板面が45°となるようにして、ビ−ム8の厚さの略々半分の深さまで挿入される。このためレ−ザビ−ム8の下半分はその侭直進して前方の壁(不図示)に水平罫線像或は光点像を形成し、ビ−ム8の上半は上下に分割されて天井面と床面(不図示)とに短い線像を形成する。
この例の反射体3は前述したプリズム型の反射体に比し製作が容易であり、取り付けも容易正確に出来る利点がある。
【0017】
図7は上下方向に分割されたレ−ザビ−ム8内にレンズ18を挿入して、天井面或は床面に投射される光の線像を集光して光点状にすることで輝度を高め、見易くした例である。40は光学系ブロックで円柱レンズX、反射体3およびレンズ18を保持するブロックである。鏡筒1は図1に示されたものと同じで半導体レ−ザ4,レンズ5を保持する。但し反射体とか円柱レンズ等は保持させないので上底1aの上面は平坦で、円柱レンズXの位置を決めるV溝1vが設けられている。ブロック40は中心線と同軸に貫通孔41が穿たれており、この貫通孔の下半は鏡筒1の外周に嵌合せしめ得るよう大径にしてあり鏡筒1の頭部に嵌着される。ブロック40の上面には中心より0.3mmずらせて底頂角が90°のV溝42が形成してある。また下面にはブロックの中心を通りV溝42と直交するようにV溝43が切ってある。更にブロック40の側面には、V溝43と平行に貫通孔44が穿孔してある。貫通孔44の中心線はV溝42の底の稜線と直角に交差させてある。設計によっては図のように、貫通孔44の下部がV溝43の底と重なって貫通孔の下部が開放状態になるが支障はない。貫通孔44には両端側から座ぐりがしてあり、座ぐりの底に当たるようにレンズ18が挿入され座ぐり底に接着固定される。
【0018】
反射体のガラス板3はV溝42の片方の斜面に反射膜を着けた面を当て研磨した端面が反対側の斜面に接するように溝42の片方の斜面に取り付けられる。この取り付けは直接接着によっても良いが、接着剤層の厚さのばらつきが誤差原因になるので、押え部材45を用いこれをV溝42の反対側の斜面に接着するのが良い。反射体3と側方レンズ18とが取り付けられたブロック40は、鏡筒1の上底1a上面のV溝1vに円柱レンズXを載せた上に被せるようにして鏡筒1の頭部に嵌着され、両側面の止めねじ46により鏡筒1に固定される。円柱レンズXは鏡筒1のV溝1vとブロック40下面のV溝43とに挟まれて位置が決まると共に固定される。
【0019】
上述した光学系でレ−ザ4から放射されるレ−ザビ−ム8はレンズ5によって円柱レンズX内に集光せしめられ、円柱レンズにより図に鎖線で示されるように扇形板状に広がる光束Fとなる。この扇形の中心は円柱レンズX内にあるので、側方レンズ18の焦点がこの扇形の中心付近に来るようにしておくことで上下方向に分割反射されたレ−ザ光束は扇形に広がることなく集光されて、天井面,床面に明るい光のスポットが投影されるのである。
【0020】
【発明の効果】
本発明は建設或は建物の内装の現場で壁面等に水平,鉛直の基準となる縦横の罫線を投射する投光式の墨出し装置の一種で、天井面と床面の上下対応点を指示する光点を投射できるようにしたもので、一つの半導体レ−ザのレ−ザビ−ムを互いに反対方向に二分割するようにしたから、光源は一つでよく、ビ−ムを二分割するのにプリズムの二つの面をメッキして反射面とし、その二面の交わる稜線をビ−ムの中に入れて両方向に反射させるので、光学的構造が簡単で反射面の位置調整もきわめて容易であり、現場向きの装置として最適なものとなる。
【図面の簡単な説明】
【図1】本発明の一実施形態における光学系を示し、(A)は斜視図であり、(B)は縦側断面図である。
【図2】本発明の他の実施形態の光学系を示し、(A)は分解斜視図であり、(B)は腕材及び反射体の斜視図である。
【図3】上例の光学系を用いた装置の全体を示し、(A)は斜視図であり、(B)は反射体の斜視図である。
【図4】光束分割手段の他の例を示す図である。
【図5】投射罫線を延長するための光束分割手段を示す図である。
【図6】光束分割手段の反射体の他の例を示す図である。
【図7】上下方向に投影される光点を明るくするようにした例を示す図で、(A)は縦断面、(B)は(A)図を右から見た一部切欠側面図で、(C)は平面図である。
【符号の説明】
1   鏡筒
2   放熱板
3   反射体(直角プリズム)
4   半導体レ−ザ
5   レンズ
6   ばね
18  集光用レンズ
40  光学系ブロック
X   円柱レンズ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light beam projection device that projects ruled lines or marks on a wall surface, a ceiling, or the like in a building operation, a room interior operation, or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a floodlight type blackout device using a semiconductor laser has been used in a construction site or the like (for example, see Patent Document 1).
This is an apparatus for projecting a vertical ruled line and a horizontal ruled line onto a wall surface or a column surface by suspending an optical device projecting a vertical line and a horizontal line in a pendulum manner.
In the past, this type of device had only the function of projecting a vertical line or a horizontal line, or both, but at the work site, one point on the floor was used as a reference, and one point on the ceiling just above the reference point was clarified. In some cases, or on the contrary, a point just below one point on the ceiling is required to be specified. Conventionally, a method of hanging a weight with a thread has been used.
[Patent Document 1]
JP 2001-31622 A
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention provides a projection device having a function of projecting a light spot on an intersection with a single straight floor surface and a ceiling surface in a vertical direction, alone or in combination with a horizontal and vertical ruled line projection function. is there.
[0004]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a semiconductor laser which emits an optical beam in a horizontal direction to an apparatus main body which is supported in a pendulum type and automatically takes a vertical attitude, and which is provided in the optical beam in front of the laser. A light projecting unit consisting of a reflector inserted into the reflector, wherein the reflector crosses two plane reflecting surfaces, and the beam is formed so that the ridge lines of the two reflecting surfaces are horizontal. And a projection device for projecting a reference line or a reference point, wherein
The present invention also includes the case where a reflector having the two reflecting surfaces orthogonal to each other is provided in an optical system for projecting a horizontal ruled line in an apparatus body equipped with an optical system for projecting a vertical ruled line and a horizontal ruled line.
[0005]
According to a second aspect of the present invention, in the first aspect of the present invention, the reflector is polished so that one side of one transparent plate is perpendicular to the plate surface, and the one side of the transparent plate and the polished end surface are polished. A reflecting film is provided, and a plate surface and an end surface on which the reflecting film is provided are used as reflecting surfaces, and the reflector is formed such that a ridge line where the two reflecting surfaces intersect is emitted from a semiconductor laser. The beam is obliquely inserted halfway into the beam while being orthogonal to the optical axis of the beam, and the upper half of the beam is divided into upper and lower parts to reflect the light, and the lower half is below the reflector. And go straight ahead.
[0006]
According to a third aspect of the present invention, in the first or second aspect, the light projection optical system emits the light of the semiconductor laser of the light source as a planar light beam spreading in a fan shape. A reflector that divides the light beam into three directions of up and down and forward is inserted into the light beam, and a side lens is inserted into the light beam that is split in the up and down direction, and these light beams are projected on the projection surface in the form of light spots. It is like that.
[0007]
[Action]
Since a semiconductor laser emits a beam having an elliptical cross section, an elliptical light spot can be projected to a distant place by using an appropriate condensing optical system. When a reflector having two reflecting surfaces intersecting is inserted into the laser beam, the semiconductor beam is bisected by the ridge of the reflector. In particular, when the two surfaces are orthogonal to each other, the bisected light beams form a straight line with each other, and become two light beams intersecting the original incident beam at a certain angle. Therefore, when the reflector is adjusted so that the two reflected light beams are orthogonal to the original incident light beam, the apparatus main body is supported in a pendulum type and maintains the vertical position. A light spot will be projected on the point.
[0008]
Alternatively, in the case where the apparatus main body has an optical system for projecting both vertical and horizontal ruled lines, a reflector having two orthogonal reflecting surfaces is provided at the center of a fan-shaped light beam projecting the horizontal ruled lines, When inserted horizontally, the projected horizontal ruled line is broken at the center, and the luminous flux of the broken part is split up and down and projected as a short line on the ceiling and floor, and projected on the ceiling and floor of the vertical ruled line Intersecting with the extended portion, the upper and lower intersections indicate the upper and lower ends of one vertical line.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The example of FIG. 1 shows an optical system in the case of projecting light spots on upper and lower corresponding points. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal side view. In FIG. 1, reference numeral 1 denotes a lens barrel which has a slit 7 opened in the upper bottom 1a, and both side edges of the slit are obliquely deleted so that two orthogonal surfaces of the right-angle prism 3 are fitted, and are orthogonal to the slit. A beam exit groove 1c is formed in the direction. An aspheric lens 5 is inserted into the lens barrel 1 so as to hit the inner surface of the upper base 1a, and is pressed against the inner surface of the upper base by a pressing spring 6. The spring 6 is pressed by the heat radiating plate 2 of the semiconductor laser 4. The heat radiating plate 2 is positioned with respect to the lens barrel 1 by fitting the projections 2a on both sides into the cuts 1e on both lower ends of the lens barrel 1. ing. The distance between the semiconductor laser 4 and the aspherical lens 5 is determined by this structure, and the laser beam 8 that has passed through the lens 5 has a parallel light beam having an elliptical cross section long in a direction parallel to the longitudinal direction of the slit 7. It has become.
Reference numeral 3 denotes a right-angle prism, which is a reflection surface formed by plating two orthogonal surfaces, and is mounted on the upper surface of the upper bottom 1a of the lens barrel 1 so that the two orthogonal surfaces are fitted into the slits 7. In this way, the laser beam 8 that travels through the lens 5 is bisected by the ridge line of the prism 3, and each is a reflective beam that travels in the opposite direction along a straight line that intersects the incident beam 8. It becomes 9. In this figure, the center line of the lens barrel 1 is drawn vertically, but when the lens barrel 1 is made horizontal, the reflection beam 9 moves up and down in the vertical direction, forming a light spot at the corresponding point of the ceiling and floor in the vertical direction. I do. That is, if this device is mounted horizontally on a support which is suspended in a pendulum type and always takes a vertical position, a device for indicating the corresponding points above and below is obtained.
[0010]
The example of FIGS. 2 and 3 is a projection type marking device that projects a vertical ruled line and a horizontal ruled line. The vertical ruled line projected on the ceiling and the floor is extended by vertically dividing a part of the horizontal ruled line and projecting light. This is an example in which upper and lower reference points are specified by intersecting with. FIG. 2 shows a horizontal ruled line projection optical system, and FIG. 3 shows the entire apparatus.
FIG. 2 shows a horizontal ruled line projection optical system in which the front of the optical system is drawn upward. The structure is substantially the same as the example of FIG. Reference numeral 1 denotes a lens barrel, which is a cylindrical body molded of a synthetic resin and has a circular front end plate 1a formed thereon, the front surface of which is exactly perpendicular to the central axis of the lens barrel 1. A light projecting window 1b is formed in the center of the front end plate, and a groove 1c having a V-shaped cross section is formed across the light projecting window so as to be orthogonal to the central axis of the lens barrel 1. The V-shaped groove may be a rectangular groove whose width is slightly smaller than the diameter of the cylindrical lens X. In any case, the cylindrical lens X is fitted into the groove 1c. The groove 1c does not fit completely in the cylindrical lens X, but is in a state of being fitted and supported halfway in the groove. The central axis of the cylindrical lens X naturally is orthogonal to the central axis of the lens barrel 1. Y is a plate spring which is a rectangular plate which is long in a direction perpendicular to the cylindrical lens X, and has inward U-shaped engaging claws Ya formed at both ends. When this plate spring is applied to the cylindrical lens X and the locking claws Ya at both ends are locked to the front end plate 1a at the locking portion 1d of the front end plate 1a of the lens barrel while bending, the cylindrical lens X is grooved 1c by the plate spring Y. Is pressed and fixed. The inner surface of the front end plate 1a of the lens barrel 1 is a lens seat on which the optical axis symmetric lens 5 is fitted. In this example, an aspheric lens is used as the optical axis symmetric lens 5, but an ordinary spherical lens may be used. The lens 5 is inserted from the rear end of the lens barrel 1, the front surface of the lens is in contact with the inner surface of the front end plate, and the outer periphery is fitted to the inner periphery of the lens barrel to determine the position. Reference numeral 7 denotes a holding washer which is in contact with the rear surface of the lens 5 and presses the lens 2 against the inner surface of the front end plate 1a by the action of a coil spring 6.
Reference numeral 2 denotes a laser base which also serves as a heat radiating plate. A semiconductor laser 4 is fitted in the center, has an outer diameter adapted to the inner circumference of the lens barrel 1, and is provided at the rear end of the lens barrel 1. Fitted slidably in the front-rear direction. The coil spring 6 is pressed and compressed by the base 2 to press the holding washer 7. The radiator wings 2a protrude on both sides of the laser base 2, and the radiator wings fit into the cuts 1e on both sides of the rear end of the lens barrel 1 to prevent the base 2 from rotating. The base 2 is fixed to the lens barrel 1 with an adhesive after completion of focusing as a light projector.
[0011]
With the above configuration, the laser beam becomes a plate-like light beam that spreads in a fan shape, and projects a linear image on the wall surface. The optical system for projecting the vertical ruled line has exactly the same structure as described above, and the optical system is attached to the main body with the axial direction of the cylindrical lens being horizontal.
An arm member 10 (FIG. 2B) protrudes and is attached to the front (the upper side in the figure) of the lens barrel 1. This arm member has a U-shape, and a right-angle prism 3 of a reflector is adhered to the inside of the middle side of the U-shape by a hypotenuse. The two orthogonal surfaces of the right-angle prism are plated to form a reflector that divides the incident light beam into two and reflects the light beams in opposite directions. Window holes 10 a are provided on the upper and lower sides of the arm member 10 so that the light beams reflected in both directions by the reflector 3 can pass through.
Since the reflector 3 has its ridge line positioned at the center of the thickness of the central portion of the fan-shaped plate-shaped light beam emitted from the horizontal ruled line projection optical system, the light beam portion cut off by the reflector 3 is vertically moved. The light is projected into the ceiling and floor, and a short line of light is projected, and the rest of the light beam projects a horizontal ruled line on the front wall.
[0012]
FIG. 3 shows the entirety of a projection-type blackout device using the example of FIG. M is a support, and a vertical indicator floodlight V for projecting a vertical ruled line on the top and a horizontal indicator floodlight H for projecting a horizontal ruled line on its front face are attached. M is referred to as a support because it supports these projectors. The support M is held on the apparatus main body B by a biaxially rotatable mechanism. y is the y-axis of the two-axis rotation free mechanism, which is fixed perpendicular to the x-axis x, and the axes y and x are integrally formed in a T-shape. The x-axis is rotatably held by the apparatus main body B. The support M is rotatably held on the y-axis. Z is a reference point projection mechanism that projects a reference point upward and downward. This light projection mechanism is slightly different from that described in FIG. 2, and as shown in FIG. 3B, the width of the plated portion 3s on the lower surface of the reflector 3 is reduced. With this structure, a horizontal ruled line with a broken center is projected forward, a short horizontal line perpendicular to the vertical ruled line is projected on the ceiling to indicate the reference point of the ceiling, and the width of the reflecting surface 3s is narrow below. Therefore, the horizontal line is shortened and projected as a point-like light spot, and the reference point on the floor surface is specified even if the extension of the vertical ruled line is not projected.
A fan-shaped copper plate s is fixed to the x-axis x, and is opposed to a magnet m attached to an upright wall of the apparatus main body B that supports the x-axis. When the support M swings around the x-axis, the copper plate s rotates together with the x-axis, and a braking force by an eddy current acts between the copper plate s and the magnet m to attenuate the swing of the support M around the x-axis. The y-axis y is fixed orthogonal to the x-axis, arm plates a are fixed to both ends, and a magnet m 'is attached to the lower end. Since the support M is rotatably held on the y-axis, it swings back and forth. However, copper plates s ′ are fixed to lower portions on both sides of the support M and face the magnet m ′. Therefore, when the support M swings around the y-axis, the swing of the support M around the y-axis is damped by the eddy current generated by the relative movement between the copper plate s ′ and the magnet m ′. The copper plate s ′ also serves as a weight for verticalizing the support.
[0013]
FIG. 4 shows another example of the light beam dividing means. This example is a modification of the example of FIG. 2, in which the ridgeline where two orthogonal surfaces of the reflector 3 intersect is slightly polished to make the prism a trapezoidal cross section, and the polished portion 3b remains transparent without plating. The ridge 3b polished to a flat surface acts as a thin slit, and of the light beam incident on the reflector, the portion incident on the ridge 3b goes straight as it is, and the two orthogonal surfaces on both sides of the ridge are formed. The incident light is split up and down and reflected in opposite directions. Thus, the incident light beam is divided into three.
When the reflector 3 is arranged in front of the horizontal ruled line projection optical system in FIG. 2 in the vicinity of the cylindrical lens X so that the entire light beam emitted from the optical system is incident on the reflector 3, a horizontal ruled line is formed forward. The projection is performed, and a ruled line orthogonal to the extension of the vertical ruled line is projected on the ceiling surface and the floor surface.
[0014]
FIG. 5 shows a device for extending a ruled line to be projected so that the ruled line can be projected in a wide angle range. When the ruled line is used for the vertical ruled line projection optical system in the example of FIG. It is possible to project vertical ruled lines on the ceiling and the floor in a vertical correspondence relationship, in addition to simply indicating the upper and lower corresponding points.
The structure in which the semiconductor laser 4 and the lens 5 are attached to the lens barrel 1 is the same as in the examples of FIGS. A through hole 1f is formed in the center of the upper bottom 1a of the lens barrel 1, and both sides of the through hole 1f are V-grooves having an apex angle of 60 °, and a reflector 30 plated with two surfaces of a 60 ° prism is provided. The ridge line where the plated surfaces intersect is supported by the V-groove. The lid 15 is mounted on the upper bottom 1a. The lid 15 has both shoulders cut at right angles to form a V-shaped groove 15a having a vertical angle of 90 °. The grooves are open on the inner surface of the lid 15, and each support a cylindrical lens 16. The lid 15 is placed on the upper bottom 1 a of the lens barrel 1, and is fixed to the upper bottom by a coupling piece 17.
[0015]
With the above-described optical configuration, the laser beam incident on the reflector 30 is divided into two by a reflecting surface that intersects at 60.degree., And each of the two beams is separated by 120.degree. It becomes a fan-shaped plate-like light beam having a corner of 146 ° and projects a ruled line on the opposing wall surface. Both ruled lines are connected in front of the lens barrel 1 (upward in the figure), and a ruled line of about 260 ° can be projected in an angular range.
[0016]
FIG. 6 shows another embodiment of a reflector for splitting a light beam. The reflector 3 is a transparent plate having a width of about 3 mm and a thickness of 0.5 mm, and is polished so that an end surface of one side in the width direction is perpendicular to the plate surface, and a reflective film 3 ′ is formed from one plate surface to this end surface. I wore it. The thickness of the beam 8 is adjusted such that the line of intersection between the plate surface and the polished surface is orthogonal to the optical axis of the laser beam 8 and the plate surface is at 45 °. Inserted to approximately half the depth. Therefore, the lower half of the laser beam 8 goes straight and forms a horizontal ruled line image or a light spot image on a front wall (not shown), and the upper half of the beam 8 is divided vertically. A short line image is formed on the ceiling surface and the floor surface (not shown).
The reflector 3 of this example has an advantage that it can be manufactured easily and can be easily and accurately mounted as compared with the prism type reflector described above.
[0017]
FIG. 7 shows that a lens 18 is inserted into a vertically divided laser beam 8 to condense a line image of light projected on a ceiling or floor to form a light spot. This is an example in which the brightness is increased to make it easier to see. An optical system block 40 holds the cylindrical lens X, the reflector 3 and the lens 18. The lens barrel 1 is the same as that shown in FIG. 1 and holds a semiconductor laser 4 and a lens 5. However, since the reflector, the cylindrical lens, and the like are not held, the upper surface of the upper bottom 1a is flat, and a V groove 1v that determines the position of the cylindrical lens X is provided. The block 40 has a through-hole 41 formed coaxially with the center line. The lower half of this through-hole has a large diameter so as to be fitted to the outer periphery of the lens barrel 1 and is fitted to the head of the lens barrel 1. You. On the upper surface of the block 40, there is formed a V groove 42 having a bottom apex angle of 90 ° shifted from the center by 0.3 mm. A V-groove 43 is cut on the lower surface so as to pass through the center of the block and to be orthogonal to the V-groove 42. Further, a through hole 44 is formed in the side surface of the block 40 in parallel with the V groove 43. The center line of the through hole 44 crosses the ridge line at the bottom of the V groove 42 at right angles. Depending on the design, the lower portion of the through hole 44 overlaps the bottom of the V-shaped groove 43 to open the lower portion of the through hole as shown in the drawing, but this does not cause any problem. A counterbore is formed in the through hole 44 from both ends, and the lens 18 is inserted so as to hit the bottom of the counterbore, and is adhered and fixed to the bottom of the counterbore.
[0018]
The reflector glass plate 3 is attached to one slope of the groove 42 such that the polished end face of the V-groove 42 is provided with a reflective film on one slope, and the polished end surface is in contact with the opposite slope. This attachment may be performed by direct bonding. However, since variation in the thickness of the adhesive layer causes an error, it is preferable to use a pressing member 45 and bond it to the slope on the opposite side of the V groove 42. The block 40 to which the reflector 3 and the side lens 18 are attached is fitted on the head of the lens barrel 1 so that the cylindrical lens X is placed on the V-groove 1v on the upper surface 1a of the lens barrel 1. And is fixed to the lens barrel 1 by set screws 46 on both sides. The position of the cylindrical lens X is determined and fixed between the V groove 1v of the lens barrel 1 and the V groove 43 on the lower surface of the block 40.
[0019]
The laser beam 8 radiated from the laser 4 by the above-mentioned optical system is condensed by the lens 5 into the cylindrical lens X, and the light beam spreads in a fan-shaped plate shape as shown by a chain line in the figure by the cylindrical lens. It becomes F. Since the center of this fan shape is located within the cylindrical lens X, the laser beam that has been divided and reflected in the vertical direction does not spread in a fan shape by keeping the focal point of the side lens 18 near the center of this fan shape. The light is condensed and a bright light spot is projected on the ceiling surface and the floor surface.
[0020]
【The invention's effect】
The present invention is a type of floodlighting type marking device that projects horizontal and vertical ruled lines on a wall or the like at the site of construction or interior decoration of a building or the like, and designates the upper and lower corresponding points of a ceiling surface and a floor surface. The laser beam of one semiconductor laser is divided into two in the opposite direction, so that only one light source is required and the beam is divided into two. In order to achieve this, the two surfaces of the prism are plated as reflecting surfaces, and the ridge line where the two surfaces intersect is put in the beam and reflected in both directions, so that the optical structure is simple and the position of the reflecting surface can be adjusted extremely. It is easy and it is the best device for the site.
[Brief description of the drawings]
1A and 1B show an optical system according to an embodiment of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a longitudinal sectional view.
2A and 2B show an optical system according to another embodiment of the present invention, wherein FIG. 2A is an exploded perspective view, and FIG. 2B is a perspective view of an arm member and a reflector.
3A and 3B show an entire apparatus using the optical system of the above example, wherein FIG. 3A is a perspective view and FIG. 3B is a perspective view of a reflector.
FIG. 4 is a diagram showing another example of the light beam dividing means.
FIG. 5 is a diagram showing a light beam dividing means for extending a projection ruled line.
FIG. 6 is a view showing another example of the reflector of the light beam dividing means.
7A and 7B are diagrams showing an example in which a light spot projected in the vertical direction is made brighter, wherein FIG. 7A is a longitudinal section, and FIG. 7B is a partially cutaway side view of FIG. , (C) is a plan view.
[Explanation of symbols]
1 lens barrel 2 heat sink 3 reflector (right angle prism)
Reference Signs List 4 semiconductor laser 5 lens 6 spring 18 focusing lens 40 optical system block X cylindrical lens

Claims (3)

振子式に支承されて自動的に垂直姿勢を採る光学系保持体に搭載される光投射光学系を、二つの反射面を有する反射体が、その反射体の上記二つの反射面が交わる稜線が光源の半導体レ−ザから発射される光ビ−ムの中に位置するように挿入され、この稜線で交わる二つの反射面で上記レ−ザビ−ムの一部または全部を二方向に分割することでレ−ザビ−ムを二方向或は三方向に分割し、夫々のビ−ムを対象面に投射するように構成したことを特徴とする基準線或は基準点を投射する装置。The light projection optical system mounted on the optical system holding body that is automatically supported by the pendulum type and automatically takes a vertical posture, the reflector having two reflecting surfaces has a ridge line where the above two reflecting surfaces of the reflector intersect. The laser beam is inserted so as to be positioned in the light beam emitted from the semiconductor laser of the light source, and part or all of the laser beam is divided in two directions by two reflecting surfaces intersecting at the ridge line. An apparatus for projecting a reference line or a reference point, wherein a laser beam is divided into two directions or three directions, and each beam is projected on a target surface. 反射体が一枚の透明板の一辺を板面に対して直角になるように研磨し、この透明板の一面と上記研磨された端面とに反射膜を設け、これらの反射膜を設けた板面と端面とを反射面としたものであって、この反射体を上記二つの反射面の交わる稜線を半導体レ−ザから発射されるレ−ザビ−ムの光軸と直交させつつ、斜めに同ビ−ム中に半ば挿入して、同ビ−ムの上半を上方と下方に反射させ、下半を上記反射体の下を通って前方に直進させるようにした請求項1記載の基準線或は基準点を投射する装置。A reflector is polished so that one side of one transparent plate is perpendicular to the plate surface, and a reflective film is provided on one surface of the transparent plate and the polished end surface, and a plate provided with these reflective films is provided. The surface and the end surface are reflection surfaces, and the reflector is inclined at an angle while the ridge line where the two reflection surfaces intersect is perpendicular to the optical axis of the laser beam emitted from the semiconductor laser. 2. The reference according to claim 1, wherein the beam is inserted halfway into the beam, and the upper half of the beam is reflected upward and downward, and the lower half is directed straight forward under the reflector. A device that projects a line or reference point. 光投射光学系が光源の半導体レ−ザの光を扇形に広がる面状光束として発射するものであって、この扇形面状の光束内に光束を上下および前方の三方向に分割するための反射体が挿入され、上下方向に分割された光束内に側方レンズが挿入されてこれらの光束を投射面に光点状に投射するようになっていることを特徴とする請求項1或は請求項2記載の基準線或は基準点を投射する装置。A light projection optical system emits light from a semiconductor laser as a light source as a planar light beam that spreads in a fan shape, and a reflection for dividing the light beam into three directions of up, down, and forward within the fan-shaped surface light beam. A body is inserted, and a side lens is inserted into a vertically split light beam so as to project these light beams into a light spot shape on a projection surface. Item 2. An apparatus for projecting a reference line or a reference point according to Item 2.
JP2003167767A 2002-06-13 2003-06-12 Device for projecting reference line or reference point Pending JP2004069684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167767A JP2004069684A (en) 2002-06-13 2003-06-12 Device for projecting reference line or reference point

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002173233 2002-06-13
JP2003167767A JP2004069684A (en) 2002-06-13 2003-06-12 Device for projecting reference line or reference point

Publications (1)

Publication Number Publication Date
JP2004069684A true JP2004069684A (en) 2004-03-04

Family

ID=32032322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167767A Pending JP2004069684A (en) 2002-06-13 2003-06-12 Device for projecting reference line or reference point

Country Status (1)

Country Link
JP (1) JP2004069684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026894A (en) * 2010-07-23 2012-02-09 Ibaraki Univ Marking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026894A (en) * 2010-07-23 2012-02-09 Ibaraki Univ Marking device

Similar Documents

Publication Publication Date Title
US4623956A (en) Recessed adjustable lighting fixture
KR0125493B1 (en) Reflective film
JP4289122B2 (en) Reflective screen and display device
CN100561038C (en) Light fixture
US6539638B1 (en) Line projecting device
JP4712212B2 (en) Laser sighting device
US5617202A (en) Diode laser co-linear and intersecting light beam generator
CN1551975A (en) Laser line generating device
EP1795863B1 (en) An optical device
US4510560A (en) Device for controlling light images
TWI746693B (en) Irradiation device, line generator, and adjusting method for the irradiation device
WO2006004691A2 (en) Laser line projected on a edge of a surface
JP2005099807A (en) Beam splitter
US6679609B2 (en) Laser beam irradiation device
JP2002357421A (en) Laser line beam irradiation method and device in laser marker
JPH11174534A (en) Floodlight device for camera
JP2508827B2 (en) Automotive headlights
JP2004069684A (en) Device for projecting reference line or reference point
US7181855B2 (en) Methods and devices for enhancing intensity of on-surface lines cast by laser line projectors or the like
JP2004061258A (en) Dustproofing cover of laser marking device
JPH0529843B2 (en)
JP2006266891A (en) Laser irradiation device
JP2002042523A (en) Light irradiation device
US7040031B2 (en) Level device
JPH0949734A (en) Laser apparatus for inking