JP2004067615A - Method for producing acrylic acid - Google Patents

Method for producing acrylic acid Download PDF

Info

Publication number
JP2004067615A
JP2004067615A JP2002231448A JP2002231448A JP2004067615A JP 2004067615 A JP2004067615 A JP 2004067615A JP 2002231448 A JP2002231448 A JP 2002231448A JP 2002231448 A JP2002231448 A JP 2002231448A JP 2004067615 A JP2004067615 A JP 2004067615A
Authority
JP
Japan
Prior art keywords
acrylic acid
tower
reaction zone
gas
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002231448A
Other languages
Japanese (ja)
Other versions
JP4465144B2 (en
Inventor
Harunori Hirao
平尾 晴紀
Yukihiro Matsumoto
松本 行弘
Kenji Sanada
眞田 健次
Takeshi Nishimura
西村 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002231448A priority Critical patent/JP4465144B2/en
Priority to US10/633,170 priority patent/US7109372B2/en
Priority to KR1020030054129A priority patent/KR20040014280A/en
Priority to TW092121431A priority patent/TWI259176B/en
Priority to CNB031274218A priority patent/CN100341841C/en
Priority to SA03240238A priority patent/SA03240238B1/en
Priority to DE60321626T priority patent/DE60321626D1/en
Priority to EP03254931A priority patent/EP1388533B1/en
Publication of JP2004067615A publication Critical patent/JP2004067615A/en
Application granted granted Critical
Publication of JP4465144B2 publication Critical patent/JP4465144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing acrylic acid in high yield while preventing polymerization by keeping a purification condition of the acrylic acid within a prescribed range. <P>SOLUTION: The acrylic acid is produced in high yield while preventing the formation of a polymer of the acrylic acid by using a single reactor, regulating a propylene concentration in a mixed gas introduced to a step for obtaining acrolein from propylene so as to be 7-15 vol.%, and a water concentration in the mixed gas so as to be 0-10 vol.%, collecting the obtained acrylic acid-containing gas by an acrylic acid-collecting column, and regulating the water content of a bottom liquid from the collecting column so as to be 1-45 wt.% to reduce the complexity of the following treating step. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高濃度のプロピレンを原料とし、第一反応ゾーンと第二反応ゾーンとを単一の反応管を少なくとも1つの孔あき管板で分割して形成した反応器を用いて、アクリル酸含有溶液の水濃度を1〜45質量%に向上させ、かつ次工程以降での重合を防止した、高収率にアクリル酸を製造する方法に関する。
【0002】
【従来の技術】
アクリル酸は、アクリル繊維共重合体用、あるいはエマルションとして粘接着剤に用いられる他、塗料、繊維加工、皮革、建築用材等として用いられ、その需要は拡大している。このため、安価な原料を使用して大量生産を可能とするプロピレン等の接触気相酸化反応によって製造されることが一般的である。接触気相酸化反応では酸化反応に使用する分子状酸素の配合によって爆発範囲に属する恐れがあるため、約4〜7体積%の範囲で原料ガスを供給することが一般的であるが、製造効率を向上させるには高濃度の原料ガスを使用することが好ましく、各種の改良がなされている。
【0003】
例えば、特開2000−103761号公報には、7体積%超のプロピレン、分子状酸素、水蒸気、および残部に不活性ガスを含む反応組成物を、触媒を充填した2つの反応ゾーンを有する多数の反応管を配設する反応器に供給し、プロピレンからアクリル酸を製造する方法を記載している。接触気相酸化反応で得られた混合生成物ガスを吸収器に導入しアクリル酸水溶液を得ると、吸収器排ガスには未反応プロピレン、未反応アクロレインおよびアクリル酸が残存する。該排ガスを循環使用すると、吸収器を通って流れる不活性ガスの体積が増加するため吸収器の頂部での負荷が生じ、捕集効率が低下してアクリル酸の収率が低下する。一方、該排ガスを循環使用しない場合には、水蒸気を希釈ガスとして使用するため該水分によって酸化反応における選択率、添加率、触媒活性が変化し、吸収器を通って流れるガス中の水分含有量が変化する。上記公報では、単一反応器系によって従来よりも高濃度のプロピレンを使用し、希釈のために必要とされる吸収器排ガスを少なくし、吸収器にかかる負荷を軽減している。
【0004】
なお、アクリル酸含有ガスの捕集後には、捕集溶剤の脱水、含まれる低沸物や高沸物の分離工程等の精製工程が行なわれる。
【0005】
【発明が解決しようとする課題】
しかしながら、アクリル酸は易重合性化合物であり、生産性を高めるために高濃度の原料ガスを使用した場合には、アクリル酸の捕集工程、その後の精製工程においてアクリル酸重合物が発生しやすくなる。このため、各種精製塔では蒸留圧力、温度、供給液量などを調整して重合の発生を防止しつつアクリル酸を製造するが、各々の条件の変化がその他の条件に影響を与えるため、その制御は容易でない。例えば、捕集塔塔底液組成が変化してアクリル酸濃度が低下した場合に、アクリル酸濃度が高い蒸留条件を維持すれば、蒸留塔内でアクリル酸重合物が発生し、閉塞による操業停止に至らぬまでも、重合物の混在によって品質が低下したり収率が低下する場合がある。
【0006】
また、アクリル酸の精製工程は、脱水塔、低沸物分離塔、高沸物分離塔などと称される蒸留塔を使用し、機能の異なる複数の蒸留塔をそれぞれ連結させて一連の精製処理を行うことが多い。従って、ある蒸留塔の塔底液の組成の変化によって、次工程以降の精製条件も変化させる必要が生じ、精製工程の制御を一層困難なものとしている。
【0007】
一方、アクリル酸製造工程から排出される溶液、排ガスなどには、原料化合物、製品化合物その他の有用化合物が含まれることがあり、製造工程に循環使用すれば製造収率を向上させることができる。しかしながら、これら排ガスなどの組成も蒸留条件などの変化に従って変化し、かつ重合物の発生は連鎖的に進行するため、特に排ガスなどのリサイクルを含むアクリル酸の製造方法では、蒸留条件を一定にすることは極めて困難な状況である。
【0008】
【課題を解決するための手段】
本発明者は、プロピレンを原料としたアクリル酸製造工程において、接触気相酸化反応からアクリル酸捕集工程における条件を特定範囲に制限すると、高濃度のプロピレンガスを使用して生産性高くアクリル酸を製造でき、かつ精製工程における運転を簡便にできることを見出し、本発明を完成させた。
【0009】
特に、アクリル酸捕集塔塔底液の水濃度を1〜45質量%に制限すると、次工程以降における重合物の発生を効果的に防止できる。また、このような制御は、捕集液量を調整することで達成できる。また、1〜45質量%の範囲で更に一定範囲に制御すると、次工程以降の蒸留条件の制御幅を狭くすることができ、捕集塔および廃水からのアクリル酸のロス変動を最小限に抑えつつ、廃水処理設備を含めた次工程以降の稼働安定性が確保できるのである。
【0010】
特に、捕集塔内の捕集溶液量を変化させて捕集濃度を調整すると、捕集塔塔頂部からの水分量を変化させずにアクリル酸を高濃度に捕集でき、とくに捕集塔排ガスをリサイクルして使用する場合に、製造条件を安定できる点で優れることを見出した。
【0011】
【発明の実施の形態】
本発明の第一は、プロピレンおよび分子状酸素を含有する混合ガスをモリブテンおよびビスマスを必須成分とする複合酸化物触媒を充填してなる第一反応ゾーンに導入し、プロピレンを酸化してアクロレイン含有ガスを得て、モリブテンおよびバナジウムを必須成分とする複合酸化物触媒を充填してなる第二反応ゾーンに該アクロレイン含有ガスを導入してアクリル酸含有ガスを得て、該アクリル酸含有ガスをアクリル酸捕集塔に導入し捕集溶剤と接触させてアクリル酸含有溶液を得る工程を含むアクリル酸の製造方法において、
(a)該第一反応ゾーンと該第二反応ゾーンとが単一の反応管を少なくとも1つの孔あき管板で分割して形成され、
(b)該第一反応ゾーンに導入する該混合ガスのプロピレン濃度が7〜15体積%、混合ガス中の水濃度が0〜10体積%であり、
(c)該アクリル酸捕集塔で捕集されるアクリル酸含有溶液の水濃度が1〜45質量%であることを特徴とするアクリル酸の製造方法である。
【0012】
製造収率を高めるにはプロピレンガス濃度を高めることが有効であるが、同時に酸素濃度を高める必要があり、発生する反応熱の吸収が十分でなく反応の制御が困難であり、爆発範囲との関係で安定した接触気相酸化反応が達成できない場合もある。このような場合、例えば想定する運転条件による爆発範囲を測定し、爆発範囲内であれば該範囲を狭くするプロパンなどの希釈ガスを導入することで該範囲を回避できる。同時にアクリル酸を捕集したアクリル酸含有溶液の水濃度を1〜45質量%に制限すると、捕集塔および次工程以降の重合物の発生を防止し、かつ次工程以降の精製の操作を軽減できることを見出した。なお、本発明においては、「精製」には、蒸留、放散、晶析、抽出、吸収、分縮等が含まれる。ここに、「蒸留」とは、溶液をその沸点まで加熱し含まれる揮発性成分を分離する方法、「放散」とは、放散ガスを供給して液相中の目的物を気相に移す方法、「晶析」とは目的物を結晶として分離する方法、「抽出」とは目的物を溶媒に溶解させることにより分離する方法、「吸収」とは、気相または液相中の目的物を液体または固体に接触させ分離する方法、「分縮」とは、ガスあるいは蒸気の一部を凝縮させ目的物を分離する方法をそれぞれ意味するものとする。また、本発明において低沸点物質とは、標準状態においてアクリル酸よりも沸点が低い物質をいい、高沸点物質とは、標準状態においてアクリル酸よりも沸点が高い物質をいう。以下、本発明を詳細に説明する。
【0013】
本発明では、プロピレンをモリブテンおよびビスマスを必須成分とする複合酸化物触媒を充填してなる第一反応ゾーンに導入し、プロピレンを酸化してアクロレイン含有ガスを得て、モリブテンおよびバナジウムを必須成分とする複合酸化物触媒を充填してなる第二反応ゾーンに該アクロレイン含有ガスを導入してアクリル酸含有ガスを得る。
【0014】
反応器としては、接触気相酸化反応が行えれば特に制限されないが、反応効率に優れる点で多管式反応器を好ましく使用することができる。反応管の材料、寸法及び数、管の分布ならびに可能である公知の何れの反応管を使用してもよい。なお、本発明においては、該第一反応ゾーンと該第二反応ゾーンとが単一の反応管を少なくとも1つの孔あき管板で分割して形成される反応器(以下、「シングルリアクター」とも称する。)を使用する点に特徴がある。なお、第一反応とは、プロピレンを酸化して主にアクロレインとする工程であり、第二反応とはアクロレインを酸化してアクリル酸とする工程である。充填する酸化触媒としては、プロピレンを酸化してアクロレインを得るためのモリブデンおよびビスマスを必須成分とする複合酸化触媒(i)を第一反応ゾーンに、アクロレインを酸化してアクリル酸を得るためのモリブデンおよびバナジウムを必須成分とする複合酸化物触媒(ii)を第二反応ゾーンにそれぞれ充填する。
【0015】
第一反応ゾーンと第二反応ゾーンとが孔あき管板で仕切られている一基の反応器を用いた本発明の態様の一例を図1を用いて説明する。図1において、1はプロピレン、2は水蒸気、3は空気、10は反応器、11は反応管、12は複合酸化物触媒(i)、13は複合酸化物触媒(ii)、15は孔あき管板、20はアクリル酸含有ガス、23は熱交換器、30は捕集塔、31は充填層、32は分散器、33は捕集溶剤、34は冷却器、35はアクリル酸含有溶液、36は排ガス、40は脱水塔、41は留出ガス、42は溶媒相、43は水相、50は次工程、60は廃棄ガス、71は熱交換器、72は流量調整機器を示す。
【0016】
まず、原料ガスであるプロピレン1を、水蒸気2、分子状酸素を含む空気3と共に反応器10に供給する。該反応器10には、反応管11に酸化触媒として複合酸化物触媒(i)12と複合酸化物触媒(ii)13とが充填され、該触媒(i)によってプロピレンを酸化してアクロレインを得て、次いで、該触媒(ii)によってアクロレインを酸化してアクリル酸含有ガス20を得る。次いで、アクリル酸含有ガス20を、アクリル酸捕集塔30に導入し捕集溶剤33で捕集する。塔底液をアクリル酸含有溶液35として、一部は冷却器34で冷却しつつアクリル酸捕集塔30に循環させ、一部は脱水塔40に導入して脱水処理を行なう。脱水塔40の塔頂部に配設された凝縮器によって留出ガス41を凝縮させた後、該凝縮液を溶媒相42と水相43とに分離する。溶媒相42は脱水塔40に循環させ、水相43は捕集溶剤33として使用してもよい。脱水塔の塔底液は次工程50に供給し、更に、低沸点物質や高沸点物質の分離などの精製を行なう。また、捕集塔30からの排出ガス36は、その全てを廃棄ガス60として処理してもよいが、一部はリサイクルガスとしてブロワー4によって反応器10に循環使用し、残部のみを廃棄ガス60として処理することもできる。
【0017】
本発明において、第一反応ゾーンで使用する複合酸化物触媒(i)は、モリブデンおよびビスマスを含むものであればよいが、好ましくは一般式Mo−Bi−Fe−A−B−C−D−O(Mo、Bi、Feはそれぞれモリブデン,ビスマスおよび鉄を表し、Aはニッケルおよびコバルトから選ばれる少なくも一種の元素を表し、Bはアルカリ金属およびタリウムから選ばれる少なくとも1種の元素を表し、Cはリン、ニオブ、マンガン、セリウム、テルル、タングステン、アンチモンおよび鉛からなる群より選ばれた少なくとも1種の元素を表し、Dはケイ素、アルミニウム、ジルコニウムおよびチタニウムからなる群より選ばれた少なくとも1種の元素、Oは酸素を表し、a、b、c、d、e、f、gおよびxは、それぞれMo、Bi、Fe、A、B、C、DおよびOの原子比を表し、a=12としたとき、b=0.1〜10、c=0.1〜10、d=2〜20、e=0.001〜5、f=0〜5、g=0〜30であり、xは各元素の酸化状態により定まる値である)で示されるものが例示できる。
【0018】
また、複合酸化物触媒(ii)としては、モリブデンおよびバナジウムを含むものであればよいが、好ましくは一般式Mo−V−W−Cu−A−B−C−O(Moはモリブデン、Vはバナジウム、Wはタングステン、Cuは銅、Aはアンチモン、ビスマス、スズ、ニオブ、コバルト、鉄、ニッケルおよびクロムから選ばれる少なくも一種の元素を表し、Bはアルカリ金属およびアルカリ土類金属から選ばれる少なくとも1種の元素を表し、Cはケイ素、アルミニウム、ジルコニウムおよびチタニウムから選ばれた少なくとも1種の元素を表し、Oは酸素を表し、a、b、c、d、e、f、gおよびxは、それぞれMo、V、W、Cu、A、B、CおよびOの原子比を表し、a=12としたとき、b=2〜14、c=0〜12、d=0.1〜5、e=0〜5、f=0〜5、g=0〜20であり、xは各元素の酸化状態により定まる値である)で示されるものが例示できる。
【0019】
本発明で使用する触媒の調製方法、および混合成形方法は特に限定されるものではなく、一般に用いられている方法および原料を採用することができる。また、触媒の形状についても特に限定されず、球状、円柱状、円筒状などとすることができ、成形方法も担持成形、押し出し成形、打錠成形などを用いることができ、更に耐火用担体にこれらの触媒物質を担持させた形態のものも有用である。
【0020】
本発明においては、第一反応ゾーンに導入する混合ガスのプロピレン濃度は7〜15体積%であり、より好ましくは8〜12体積%、特に好ましくは8〜10体積%である。7体積%を下回ると製造効率が低下し捕集アクリル酸濃度が低下する場合がある。その一方、15体積%を超えると、反応器の燃焼範囲に入る恐れがあり危険性が増大する。
【0021】
第一反応ゾーンに供給する混合ガスの水濃度は0〜10体積%であり、より好ましくは0〜7体積%、特に好ましくは0〜6体積%である。使用する水分量は全て捕集塔に移行するため、水濃度が10体積%を超えると捕集塔塔底液の水濃度が上昇し不利である。その一方、捕集塔塔底液の水濃度を低く保とうとすると、捕集塔における捕集効率が低下する上に捕集塔および捕集塔塔頂配管等での重合性も高くなることが判明したのである。なお、捕集効率(%)とは、捕集塔内に導入されたアクリル酸量をAAinとし、捕集塔塔頂部から排出されるアクリル酸量をAAoutとした場合に、100×((AAin−AAout)/AAin)で示される。本発明によれば、水濃度を10体積%以下に制御することで捕集塔におけるアクリル酸の捕集効率を95%以上、好ましくは96%以上とすることができる。
【0022】
該混合ガスには分子状酸素を混合する必要があり、プロピレン:分子状酸素(体積比)は1:1.0〜2.0の範囲とする。分子状酸素の供給源としては空気が有利に用いられるが、必要により酸素富化空気、純酸素を用いることもできる。
【0023】
混合ガスの他の成分としては、窒素、二酸化炭素、その他の不活性ガスがあり、捕集塔30から排出される排ガス36をリサイクルして使用してもよい。その場合、混合ガスに必要な水蒸気量や分子状酸素量、その他の不活性ガス量をリサイクルガス量により調整することができる。
【0024】
第一反応ゾーンでは、触媒(i)1mに対して上記組成の混合ガスを、反応圧力が常圧から0.5MPaの範囲において、空間速度500〜3000h−1(STP)の範囲で供給する。反応温度は250〜450℃、より好ましくは300〜380℃に制御して行なう。
【0025】
第一反応ゾーンから排出されるアクロレイン含有ガスは、そのまま第二反応ゾーンに導入する。第二反応ゾーンに供給する該アクロレイン含有ガスは、触媒(ii)1mに対して混合ガスを、反応圧力が常圧から0.5MPaの範囲、空間速度300〜5,000hr−1(STP)の範囲で供給し、反応温度は200〜400℃、好ましくは220〜380℃に制御して行なう。なお、第一反応ゾーンに供給する混合ガスの水濃度はガスクロマトグラフィー、カールフィッシャー法、湿度計等によって測定することができ、該混合ガスの水濃度を直接測定してもよいし、第一反応ゾーンに導入する各ガスの水濃度を測定し、それらから計算により求めてもよい。
【0026】
接触気相酸化反応によって得られるアクリル酸含有ガス20は、温度200〜350℃であり、好ましくは、捕集塔30に供給する前に100〜300℃、特には130〜270℃に冷却する。このような熱交換器23としては、公知の熱交換器を使用できる。この冷却は反応ガス混合物の温度がその露点より下に低下しないことを確保することが必要である。なお、該反応ガスが既に適当な温度範囲である場合には、冷却はもちろん不必要である。
【0027】
本発明では、該アクリル酸含有ガス20を捕集塔30に供給し、捕集溶剤33で捕集する。該捕集塔30に導かれるアクリル酸含有ガス20は、一般にアクリル酸10〜30質量%、酢酸0.2〜5質量%、水5〜15質量%の範囲で含む。反応ガスのガス成分組成、捕集溶剤の組成、捕集温度等を含む捕集条件としては、該アクリル酸捕集塔の塔底液のアクリル酸含有溶液35の水濃度を1〜45質量%とするいずれの条件でもよい。塔底液の水濃度としては、より好ましくは1〜25質量%、特に好ましくは1〜20質量%である。1質量%を下回る水濃度とすることは困難でありアクリル酸のロス量も増加し不利である。一方、45質量%を超えると次工程以降での蒸留塔などの機器を大型にする必要があり、脱水液量、廃水量も増大して不利である。更に、アクリル酸は水との混合質量比が1:1程度が最も重合性が高いため、捕集塔および次工程以降において重合物が発生しやすくなる。その上、図に示す如く共沸蒸留による脱水を行う場合には、脱水塔40内で水の部分濃縮量の増大による重合を引き起こし、重合物が発生しやすくなる。すなわち、アクリル酸含有溶液35に含まれる水分を脱水処理するには、共沸溶媒を添加した共沸脱水処理が一般的に行なわれるが、水濃度が45質量%を超えると疎水性の共沸脱水溶剤と水との間で油水相分離が顕著となり、重合禁止剤の分散が偏ることにより、アクリル酸が重合しやすくなるのである。
【0028】
アクリル酸捕集塔30としては、従来公知の棚段塔、充填塔、濡れ壁塔、スプレー塔などの公知の塔を用いることができるが、処理するアクリル酸含有ガスに含まれるアクリル酸濃度が高く、塔内における重合を効果的に防止するためには棚段塔または充填塔が好ましい。
【0029】
例えば充填塔の場合には、捕集溶液の塔内の流れの上流側にアクリル酸の捕集効率の相対的に高い充填物を、下流側にアクリル酸の重合生成能の相対的に低い充填物および/または棚段を設置することが好ましい。なお、相対的に高い(低い)とは、複数の充填物を用いた場合に、その他のものよりもその性能が高い(低い)ことを意味する。また、重合生成能の相対的に低い充填物とは、アクリル酸捕集塔に複数の充填物を充填する場合、残りの充填剤と比較して重合生成能の低い充填物を意味する。通常、捕集溶剤とアクリル酸含有ガスを向流接触させるためアクリル酸捕集塔の上部が上流側であり、下流側はアクリル酸捕集塔の塔底側が該当する。アクリル酸捕集塔内装物である充填物・棚段において、一般的な塔における捕集効率として、ガーゼ型規則充填物が最も高く、シート型規則充填物、不規則充填物、グリッド型規則充填物、棚段の順になるが、棚段でも高性能なものは、シート型規則充填物、不規則充填物に同等なものもある。一方、アクリル酸などの重合し易さに関しては、ガーゼ型規則充填物が最も高く、シート型規則充填物、不規則充填物、グリッド型規則充填物、棚段の順になる。そのため、例えば、捕集効率を高くしてガーゼ型規則充填物を用いると、ガーゼ型規則充填物は処理物を重合させ易いので重合の問題が発生し、長期運転が不可能となり、反対に重合を防止しようと、例えば、グリッド型規則充填物を用いると、捕集効率が低いため所定の効率を得るために、過大な塔高さが必要となる。そこで、溶剤を含む液体の塔内の流れの上流側にガーゼ型規則充填物、その下流側にシート型規則充填物、不規則充填物、グリッド型規則充填物及び棚段よりなる群から選ばれた少なくとも一種、特に好ましくはシート型規則充填物および/または不規則充填物を使うことにより、重合防止能、捕集効率の両方を満足し、長期安定運転をすることが可能である。なお、ガーゼ型規則充填物には、スルーザーパッキング(住友重機械工業社)、テクノパック(三井物産社)、エムシーパック(三菱化学エンジニアリング社)等、シート型規則充填物には、メラパック(住友重機械工業社)、テクノパック(三井物産社)、エムシーパック(三菱化学エンジニアリング社)等、グリッド型規則充填物には、フレキシグリッド(コーク社)など、不規則充填物には、ラシヒリング、ポーリング、カスケードミニリング(ドッドウェル社)、IMTP(ノートン社)など、棚段には、シーブトレイ、バルブトレイ、バブルキャップトレイ、バッフルトレイ、デュアルフロートレイ、スーパーフラックトレイ、リップルトレイ、ジェットトレイ等がある。また、不規則充填物のなかでは、扁平な充填物であるカスケードミニリング、IMTPがほぼ規則に近い充填が可能なため、さらに重合防止能に優れ、捕集効率が高いために好ましい。
【0030】
アクリル酸捕集塔塔頂は常圧以上で操作するのが一般的である。塔頂圧力(ゲージ圧)としては、0〜0.4MPa、好ましくは0〜0.1MPa、特には0〜0.03MPaであるのがよい。0MPa(ゲージ圧)より低いと減圧装置が必要となり設備費、用役費がかかる一方、0.4MPa(ゲージ圧)より高いと塔頂から低沸点物質を排出させるために捕集塔の温度をかなり上げる必要が生じ捕集塔での重合性が高くなるからである。また、塔頂温度としては、一般には30〜80℃、特には40〜70℃であることが好ましい。
【0031】
本発明では、アクリル酸含有溶液の水濃度を1〜45質量%の範囲に調整するが、このような調整方法に制限はないが、捕集溶剤の導入量を変化させることで調整することができる。本発明では、第一反応ゾーンに導入するプロピレンの質量流量の0.1〜1.5倍、より好ましくは0.2〜1.3倍、特に好ましくは0.3〜1.1倍の質量流量の捕集溶剤を向流接触させてアクリル酸を捕集することが好ましい。0.1倍を下回るとアクリル酸の捕集が困難となる上、捕集塔の濡れ液量が低下し、捕集塔の極端な効率低下を引き起こす。なお該捕集塔の濡れ液量は
【0032】
【数1】

Figure 2004067615
【0033】
で定義され、該濡れ液量は0.2m/m.hr以上がよく、より好ましくは0.8m/m.hr以上、特に好ましくは1.0m/m.hr以上である。その一方、1.5倍を超えると、捕集するアクリル酸含有溶液中の水濃度が上昇する。また、アクリル酸含有溶液中の水濃度を一定にするために捕集塔温度を上昇させると重合物が発生しやすくなり不利である。
【0034】
供給する捕集溶剤には、水、有機酸含有水、高沸点不活性疎水性有機液体など公知の溶剤を挙げることができるが、これらを単独でもしくは混合して用いることができる。本発明では、捕集溶剤の主成分が水であることが好ましい。例えば、アクリル酸捕集塔における捕集溶剤の組成として、アクリル酸0〜10質量%、酢酸0〜20質量%、水70〜100質量%のものがある。
【0035】
なお、かかる捕集溶剤には、アクリル酸などの重合性物質の重合を防止するために、N−オキシル化合物、フェノール化合物、酢酸マンガン等のマンガン塩、ジブチルチオカルバミン酸銅などのジアルキルジチオカルバミン酸銅塩、ニトロソ化合物、アミン化合物およびフェノチアジンからなる群から選ばれる1種以上の化合物を含有することが好ましい。
【0036】
N−オキシル化合物については特に制限はなく、一般にビニル化合物に重合防止剤として知られているN−オキシル化合物であればいずれも用いることができる。これらのなかでも、下記式(1)で表される2,2,6,6−テトラメチルピペリジノオキシル類:
【0037】
【化1】
Figure 2004067615
【0038】
(ただし、式(1)中、RはCH、CHOH、CHCHOH、CHCHCHOH、CHOCHOH、CHOCHCHOH、CHCOOH、またはC=Oを示し、Rは水素原子またはCHOHを示す)が好適に用いられる。N−オキシル化合物であれば特に限定されずに用いることができるが、良好な重合防止効果を与え得る2,2,6,6−テトラメチルピペリジノオキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノオキシル、4,4’,4”−トリス−(2,2,6,6−テトラメチルピペリジノオキシル)フォスファイトのうち1種または2種以上を用いることが好ましい。特に、N−オキシル化合物として2,2,6,6−テトラメチルピペリジノオキシル、または4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノオキシルを用いた場合には、成分中に金属を含まなくても安定剤系となるため、安定剤による設備の金属腐食の恐れがなくなり、廃液の処理も容易になる。
【0039】
N−ヒドロキシ−2,2,6,6−テトラメチルピペリジン化合物の代表例としては、1,4−ジヒドロキシ−2,2,6,6−テトラメチルピペリジン、1−ヒドロキシ−2,2,6,6−テトラメチルピペリジンなどを挙げることができる。これらN−ヒドロキシ−2,2,6,6−テトラメチルピペリジン化合物は単独でも、あるいは2種以上混合しても用いることができる。
【0040】
2,2,6,6−テトラメチルピペリジン化合物の具体例としては、2,2,6,6−テトラメチルピペリジン、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン等が挙げられ、これらの1種以上を用いることができる。なお、N−ヒドロキシ−2,2,6,6−テトラメチルピペリジン化合物や2,2,6,6−テトラメチルピペリジン化合物は、市販されるN−オキシル化合物製品中に不純物として含有される場合があるが、このような場合には市販のN−オキシル化合物の使用によって、併せてN−ヒドロキシ−2,2,6,6−テトラメチルピペリジン化合物や2,2,6,6−テトラメチルピペリジン化合物を併用したことになる。
【0041】
フェノール化合物としては、ハイドロキノン、メトキノン(p−メトキシフェノール)を挙げることができる。メトキノンは、特にN−オキシル化合物およびフェノチアジン化合物と組合せて使用した際の重合防止効果がハイドロキノンより優れているため好ましい。また、これらのフェノール化合物は2種を併用してもよい。
【0042】
フェノチアジン化合物としては、フェノチアジン、ビス−(α−メチルベンジル)フェノチアジン、3,7−ジオクチルフェノチアジン、ビス−(α−ジメチルベンジル)フェノチアジン等を挙げることができる。
【0043】
銅塩化合物としては特に制限されず、無機塩、有機塩のいずれであってもよく、様々なものを用いることができる。例えばジアルキルジチオカルバミン酸銅、酢酸銅、ナフテン酸銅、アクリル酸銅、硫酸銅、硝酸銅、塩化銅などが挙げられる。これらの銅塩化合物は一価、二価のいずれのものも用いることができる。上記銅塩化合物の中では、効果などの点からジアルキルジチオカルバミン酸銅が好ましい。
【0044】
ジアルキルジチオカルバミン酸銅としては、例えば、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジプロピルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、ジペンチルジチオカルバミン酸銅、ジヘキシルジチオカルバミン酸銅、ジフェニルジチオカルバミン酸銅、メチルエチルジチオカルバミン酸銅、メチルプロピルジチオカルバミン酸銅、メチルブチルジチオカルバミン酸銅、メチルペンチルジチオカルバミン酸銅、メチルヘキシルジチオカルバミン酸銅、メチルフェニルジチオカルバミン酸銅、エチルプロピルジチオカルバミン酸銅、エチルブチルジチオカルバミン酸銅、エチルペンチルジチオカルバミン酸銅、エチルヘキシルジチオカルバミン酸銅、エチルフェニルジチオカルバミン酸銅、プロピルブチルジチオカルバミン酸銅、プロピルペンチルジチオカルバミン酸銅、プロピルヘキシルジチオカルバミン酸銅、プロピルフェニルジチオカルバミン酸銅、ブチルペンチルジチオカルバミン酸銅、ブチルヘキシルジチオカルバミン酸銅、ブチルフェニルジチオカルバミン酸銅、ペンチルヘキシルジチオカルバミン酸銅、ペンチルフェニルジチオカルバミン酸銅、ヘキシルフェニルジチオカルバミン酸銅などが挙げられる。これらのジアルキルジチオカルバミン酸銅は、一価の銅塩であってもよく、二価の銅塩であってもよい。これらの中で、効果及び入手しやすいなどの点からジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅及びジブチルジチオカルバミン酸銅が好ましく、特にジブチルジチオカルバミン酸銅が好適である。
【0045】
マンガン塩化合物としては、ジアルキルジチオカルバミン酸マンガン(アルキル基はメチル、エチル、プロピル、ブチルのいずれかで、同一であっても異なっていても良い)、ジフェニルジチオカルバミン酸マンガン、蟻酸マンガン、酢酸マンガン、オクタン酸マンガン、ナフテン酸マンガン、過マンガン酸マンガン、エチレンジアミン四酢酸のマンガン塩化合物等が挙げられ、これらの1種以上を用いることができる。
【0046】
本発明では、N−オキシル化合物、フェノール化合物、マンガン塩、ジアルキルジチオカルバミン酸銅塩、ニトロソ化合物、アミン化合物およびフェノチアジンからなる群から選ばれる1種以上の化合物を含有することが好ましいが、これら7種類の化合物の2種以上を併用しても、同等もしくはそれ以上の重合防止効果が得られる。
【0047】
使用される重合防止剤の量は操作条件に応じて適宜調整され、特に限定はされない。しかし、用いられる重合防止剤の総量を捕集される反応ガス中のアクリル酸の質量に対して3〜3500ppm(質量基準)とするのが好ましい。個々の重合防止剤の好ましい使用量は、N−オキシル化合物は反応ガス中のアクリル酸の質量に対し1〜500ppm、マンガン塩化合物、あるいは銅塩化合物は反応ガス中のアクリル酸の質量に対し1〜200ppm、ニトロソ化合物の場合は1〜500ppm、フェノール化合物の場合は、1〜500ppm、フェノチアジン化合物の場合は1〜500ppmである。
【0048】
更に、重合防止の供給場所や投与方法は特に限定されないが、アクリル酸捕集塔の塔頂から供給することが好ましい。また、重合防止剤はあらかじめ溶剤と混合した後に供給すると、重合防止剤がアクリル酸捕集塔内で均一に分散されるので効果的である。溶剤には捕集溶剤やアクリル酸を用いることが好ましく、精製塔で分離した捕集溶剤を再利用するのが経済的である。
【0049】
本発明では、アクリル酸捕集工程以降の精製方法に関する制限はない。本発明は、アクリル酸捕集塔塔底液の水濃度を特定範囲に制限して捕集効率を向上させ、かつ以降の諸工程の安定化を図るものであり、特定の精製方法に限定されるものではないからである。
【0050】
一般には、脱水処理の後に低沸点物質分離工程、高沸点物質分離工程、その他の精製工程が行なわれるが、本発明では、従来公知の精製法のいずれを組みあせてもよい。従って、共沸脱水後に低沸点物質を除去し、次に高沸点物質を除去し、その後にアクリル酸と沸点の近似する酢酸を分離してもよく、このような蒸留方法に限らず、放散、晶析、抽出、吸収、分縮を適宜組み合わせてアクリル酸を精製してもよい。
【0051】
本発明の第二は、プロピレンおよび分子状酸素を含有する混合ガスをモリブテンおよびビスマスを必須成分とする複合酸化物触媒を充填してなる第一反応ゾーンに導入し、プロピレンを酸化してアクロレイン含有ガスを得て、モリブテンおよびバナジウムを必須成分とする複合酸化物触媒を充填してなる第二反応ゾーンに該アクロレイン含有ガスを導入してアクリル酸含有ガスを得て、該アクリル酸含有ガスをアクリル酸捕集塔に導入し捕集溶剤と接触させてアクリル酸含有溶液を得る工程を含むアクリル酸の製造方法において、
(a)該第一反応ゾーンと該第二反応ゾーンとを単一の反応管を少なくとも1つの孔あき管板で分割して形成し、
(b)第一反応ゾーンに導入する該混合ガスのプロピレン濃度を7〜15体積%、混合ガス中の水濃度が0〜10体積%とし、
(c)アクリル酸捕集塔で得られるアクリル酸含有溶液の水濃度を、捕集溶剤の導入量によって1〜45質量%とすることを特徴とするアクリル酸の製造方法である。
【0052】
第一の発明との相違は、上記(c)の要件、すなわちアクリル酸含有溶液の水濃度を1〜45質量%とするのに、捕集溶剤の導入量の制御によって行なう点にある。なお、他の要件は上記第一の発明と同じである。
【0053】
捕集塔30からの排ガス36には接触気相酸化反応で発生した熱量、水蒸気、未反応プロピレン、アクロレイン、不活性ガス等が含まれるため、図1に示すように、熱交換器71で加熱した後に流量調整機器72で至適範囲に流量を調整した後、空気3と混合して第一反応器10に供給し、再使用することができる。しかしながら、該排ガス組成は捕集塔塔頂温度によって変動しやすく、特に水分量の変化が大きい。本願では混合ガスに含まれる水蒸気量を0〜10質量%の範囲に制限する必要があり、塔頂温度を変化させて塔頂からの排ガスに含まれる水分量を変動させることは、混合ガスに含まれる水蒸気量を制限するには不利であるばかりでなく、塔頂温度を高くした場合には、捕集塔内でアクリル酸重合物が発生しやすい。これに対して、捕集溶剤量を変化させた場合には、アクリル酸含有ガスの水分量の変化を捕集溶剤量を変化させて調整でき、かつ塔頂部から排出されるガス36の水分量の変動も抑制できる。具体的には、第一の発明と同様に、第一反応ゾーンに導入するプロピレンの質量流量の0.1〜1.5倍、より好ましくは0.2〜1.3倍、特に好ましくは0.3〜1.1倍の質量流量の捕集溶剤を向流接触させてアクリル酸を捕集することが好ましい。
【0054】
なお、「捕集溶剤の導入量によって」とは、水濃度を1〜45質量%の範囲に制御する意味と、1〜45質量%の範囲内にある場合であっても更に一定範囲に変動を抑制する、との2つがある。前者の意義は第一の発明で説明したとおりである。一方、後者の意義は、アクリル酸捕集塔という製造工程の上流で塔底液の組成の変動を少なくしたため、下流における変動も効率的に抑制できることにある。アクリル酸の製造では、上記したアクリル酸捕集工程や脱水工程に加えて、低沸点物質分離工程、高沸点物質分離工程、その他の精製工程など多数の工程が連続して行なわれるため、例えばアクリル酸捕集塔塔底液の水分量が変動すれば、次工程の脱水処理において使用する脱水溶剤量や脱水塔塔内温度、圧力、使用する重合防止剤の使用量、回収した溶媒相42や水相43のリサイクル量などが随時変化する。その結果、脱水塔塔底液のアクリル酸濃度や使用する重合防止剤添加量が変化し、その後の高沸点物質分離条件なども変化させる結果となる。このような条件の変動は、精製工程におけるアクリル酸重合物の発生を招き、製品品質を低下させる原因となる。そこで、本発明では、このような一連の工程の上流で、アクリル酸含有溶液の水濃度を所定範囲に制限し、下流に連なる工程の処理を簡便なものとし、同時に変動を抑制して精製度高くアクリル酸を製造することにした。
【0055】
なお、アクリル酸含有溶液の水濃度を1〜45質量%の範囲内で更に一定範囲、例えば20±1質量%の範囲に制御するには、捕集塔塔底液の水濃度を測定し、その値に基づき捕集溶剤の導入量を変化させればよい。捕集塔塔底液の水濃度測定方法としては、ガスクロマトグラフィー、カールフィッシャー法などの他に塔底液の電気伝導度の変化から求める方法、中和滴定から求める方法等がある。
【0056】
第一または第二の発明によって得られたアクリル酸をポリアクリル酸(塩)製造工程に供給してポリアクリル酸(塩)を製造し、得られるポリアクリル酸(塩)を使用して更に吸水性樹脂等を製造することができる。すなわち本発明の第三は、上記方法で得たアクリル酸を用いることを特徴とする、ポリアクリル酸の製造方法である。
【0057】
ポリアクリル酸(塩)製造工程としては、該アクリル酸を中和工程、重合工程、乾燥工程、冷却工程に順次導入して所望の処理を施すことによってポリアクリル酸(塩)を製造することができる。なお、アクリル酸を中和しない場合には、ポリアクリル酸が得られ、該中和工程は任意である。また、各種物性の改善を目的として所望の処理を施してもよく、例えば重合中、或いは重合後に架橋工程を介在させてもよい。
【0058】
中和工程は任意の付加工程であるが、例えば所定量の塩基性物質の粉末や水溶液とアクリル酸や、得られたポリアクリル酸(塩)とを混合する方法が例示され、公知の方法を採用すればよく特に限定されない。尚、中和工程は重合前(モノマーで中和)、または重合中、或いは重合後(ゲルで中和)のいずれで行なってもよく、また重合前後の両方で行なってもよい。尚、図示例では中和後、重合を行なう工程を示すが、重合後、中和を行なう場合、装置の構成も工程に併せて適宜変更すればよい。また重合装置と中和装置は同一装置であってもよく、異なる装置であってもよい。
【0059】
アクリル酸の中和に用いられる塩基性物質としては、例えば炭酸(水素)塩、アルカリ金属の水酸化物、アンモニア、有機アミンなどの公知の塩基性物質を適宜用いればよい。またアクリル酸の中和率についても特に限定されず、任意の中和率、例えば30〜100モル%、好ましくは50〜80モル%の任意の値となる様に調整すればよい。尚、中和時の反応熱を除去する必要がある場合は、任意の冷却手段、例えば任意の冷水塔などの冷却装置に導入すればよいが、この際にライン4aを介して供給される液状冷熱媒を冷媒として用いると、冷却コストを低減することができるので望ましい。
【0060】
必要により、中和後、該アクリル酸塩溶液を重合工程に導入するが、該工程での重合方法は特に限定されず、ラジカル重合開始剤による場合、放射線重合、電子線重合、光増感剤による紫外線重合など公知の重合方法を用いればよい。尚、重合工程ではアクリル酸を必要に応じて中和し、好ましくは10質量%以上、より好ましくは20質量%以上であって、好ましくは80質量%以下、より好ましくは70質量%以下の温度のアクリル酸(塩)水溶液として重合することが望ましい。
【0061】
本発明においては重合開始剤、重合条件など各種条件については任意に選択できる。必要に応じて架橋剤や他の単量体、更には水溶性連鎖移動剤や親水性高分子など公知の添加剤を添加してもよい。また重合工程には任意の容器や装置を用いればよく、通常用いられている重合装置であれば特に限定されない。
【0062】
重合後のポリアクリル酸(塩)は、通常、含水ゲル状重合体であり、水分を除去するために更に乾燥工程に付される。乾燥方法としては特に限定されず、熱風乾燥機、流動層乾燥機、ドラムドライヤー、ナウター式乾燥機など公知の乾燥装置を用いて、適宜所望の乾燥温度、好ましくは70〜230℃で乾燥させればよい。また乾燥工程に供給する熱媒としてはアクリル酸製造工程で排出された蒸気、特に接触気相酸化器から得られる反応熱を利用することができる。
【0063】
乾燥に際しては、ポリアクリル酸(塩)のヒドロゲル、すなわち含水状重合体を各種乾燥機を用いて加熱乾燥させる。例えば乾燥はドラムドライヤーやバドルドライヤーなどの伝導伝熱型乾燥機を用いて水蒸気で乾燥機の該伝熱面を加熱させた伝熱面とヒドロゲルを接触させて乾燥させてもよいが、残存モノマー低減や乾燥効率の面から、ヒドロゲルが水蒸気と直接接触させる熱風伝熱乾燥させることが望ましい。即ち、水蒸気を含有する気体、好ましくは露点50℃以上、より好ましくは60℃以上であって、好ましくは90℃以下、より好ましくは80℃以下であって、且つ温度が好ましくは100℃以上、より好ましくは150℃以上であって、好ましくは200℃以下、より好ましくは180℃以下の熱風によって該ヒドロゲルを乾燥することによって、残存モノマーの低減、ポリアクリル酸(塩)の吸水倍率の向上が図れるので望ましい。尚、乾燥時間は通常、1分〜3時間、好ましくは5分〜1時間で適宜選定すればよい。
【0064】
乾燥工程を経て得られたポリアクリル酸(塩)は高温のまま排出されるため、冷却工程にて所望の温度、例えば室温〜90℃、好ましくは40℃〜80℃に冷却することが望ましい。ポリアクリル酸(塩)を冷却する方法としては限定されないが、例えば冷風を吹付けたり、或いは任意の冷凍器などの冷却装置に導入すればよい。
【0065】
所望の温度まで冷却して得られたポリアクリル酸(塩)はそのままで使用してもよく、更に所望の形状に造粒・粉砕したり、還元剤、香料、バインダーなど各種添加剤を更に添加するなど、用途に応じた利用に供することができる。
【0066】
また本発明では乾燥させたポリアクリル酸(塩)を冷却することが好ましい。例えばヒドロゲルを約1〜数mm程度に細分化して乾燥する場合、乾燥後のポリアクリル酸(塩)は約1〜数mm程度の乾燥粒子であって、乾燥方法にもよるが、通常は乾燥後の該乾燥粒子は凝集物である。したがって該乾燥ポリアクリル酸(塩)を必要に応じて粉砕、或いは更に分級してポリアクリル酸(塩)粉末、例えば重量平均粒子径10〜1000μm、好ましくは100〜800μmとし、更に必要に応じて該粉末に各種改質剤、例えば表面架橋剤の水溶液、造粒バインダー、消臭剤などを添加する場合、冷却工程を適用することで、粉砕効率が向上し、粒度分布がシャープになるのみならず、各種改質剤等も該粉末に均一に添加できるので、吸水性樹脂の諸物性、例えば加圧下における吸収倍率なども粉末間のバラツキを抑制しつつ向上できる。
【0067】
【実施例】
以下、本発明の実施例により具体的に説明する。
【0068】
(参考例1)
触媒の調製
第一反応ゾーン用触媒として、特開2000−325795号公報の実施例1の記載に従ってモリブデン−ビスマス系触媒を調製した。これを触媒(I)とする。また、第二反応ゾーン用触媒として、特開平8−206504号公報の実施例1の記載に従ってモリブデン−バナジウム系触媒を調製した。これを触媒(II)とする。
【0069】
【数2】
Figure 2004067615
【0070】
【数3】
Figure 2004067615
【0071】
【数4】
Figure 2004067615
【0072】
(実施例1)
熱媒循環用ジャケットを備えた内径25mm、長さ7,000mmの反応管でジャケット下部から3,500mmの位置に熱媒ジャケットを上下に分割する厚さ75mmの穴あき管板を設け、上部および下部の熱媒をそれぞれ循環し、各々の熱媒温度を制御することができる反応ゾーン(下部が第一反応ゾーン、上部が第二反応ゾーンに相当)にて、反応管下部から上部に向かって(1)平均径5mmのセラミックボールのみ、(2)触媒(I)と平均径が5mmのセラミックボールとを容量比70:30の割合で混合した混合物、(3)触媒(I)のみ、(4)外径5mm、内径4.5mm、長さ6mmのステンレス製ラシヒリング、(5)触媒(II)と平均径が5mmのセラミックボールとを容量比75:25の割合で混合した混合物、(6)触媒(II)のみの順に、各層長が250mm、700mm、2,300mm、500mm、600mm、1,900mmになるように充填した。
【0073】
第一反応ゾーンにプロピレン:8.0体積%、O:14.4体積%、HO:5.0体積%、(残りはN、プロパンなど)の混合ガスを第一反応ゾーンの空間速度が1,250hr−1(STP)になるように供給した。
【0074】
この時、第二反応ゾーン出口圧力0.15MPa(絶対圧)にてプロピレン転化率が97±0.5モル%、アクロレイン収率が1±0.5モル%になるように第一反応ゾーン、第二反応ゾーンそれぞれの熱媒温度を調節しながら反応を継続した。反応開始から100時間後のアクリル酸収率は87.0モル%であり、その時点で得られたアクリル酸含有ガスを温度170℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸5.6質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が25質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=0.9で、目標とする水濃度のアクリル酸水溶液が得られた。
【0075】
その時の捕集効率は98.3%であり、一週間、捕集塔近辺の圧力損失の上昇もなく運転した後に開放点検しても塔内および塔頂配管等に重合物は見られなかった。
【0076】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、11.5hrであった。この粘度上昇は重合開始時間と関連し、これが短いと重合し易い溶液であることを意味し、長いと重合しづらい溶液であることを意味する。
【0077】
(実施例2)
第一反応ゾーンに供給する混合ガスの組成をプロピレン:9.0体積%、O:16.2体積%、HO:2.9体積%、(残りはN、プロパンなど)にした以外は、実施例1と同じにして反応を行った。反応開始から100時間後のアクリル酸収率は86.5モル%であり、その時点で得られたアクリル酸含有ガスを温度168℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸6.0質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が21質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=0.8で、目標とする水濃度のアクリル酸水溶液が得られた。
【0078】
その時の捕集効率は98.5%であり、一週間、捕集塔近辺の圧力損失の上昇もなく運転した後に開放点検しても塔内および塔頂配管等に重合物は見られなかった。
【0079】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、13.2hrであった。
【0080】
(実施例3)
実施例1と同じ反応器を使用し、反応管下部から上部に向かって(1)平均径5mmのセラミックボールのみ、(2)触媒(I)と平均径5mmのセラミックボールとを容量比55:45の割合で混合した混合物、(3)触媒(I)と平均径が5mmのセラミックボールとを容量比70:30の割合で混合した混合物、(4)触媒(I)のみ、(5)外径5mm、内径4.5mm、長さ6mmのステンレス製ラシヒリング、(6)触媒(II)と平均径が5mmのセラミックボールとを容量比65:35の割合で混合した混合物、(7)触媒(II)と平均径が5mmのセラミックボールとを容量比80:20の割合で混合した混合物、(8)触媒(II)のみの順に各層長が250mm、500mm、500mm、2,200mm、500mm、500mm、500mm、2,000mmになるように充填した。
【0081】
第一反応ゾーンにプロピレン:10.0体積%、O:18.0体積%、HO:0.9体積%、(残りはN、プロパンなど)の混合ガスを第一反応ゾーンの空間速度が1,250hr−1(STP)になるように供給した。
【0082】
この時、第二反応ゾーン出口圧力0.15MPa(絶対圧)にてプロピレン転化率が97±0.5モル%、アクロレイン収率が1±0.5モル%になるように第一反応ゾーン、第二反応ゾーンそれぞれの熱媒温度を調節しながら反応を継続した。反応開始から100時間後のアクリル酸収率は85.6モル%であり、その時点で得られたアクリル酸含有ガスを温度167℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸6.5質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が17質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=0.7で、目標とする水濃度のアクリル酸水溶液が得られた。
【0083】
その時の捕集効率は98.6%であり、一週間、捕集塔近辺の圧力損失の上昇もなく運転した後に開放点検しても塔内および塔頂配管等に重合物は見られなかった。
【0084】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、15.5hrであった。
【0085】
(実施例4)
実施例3で得られたアクリル酸含有ガスを温度167℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸7.1質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が8質量%になるように捕集水量を調整したところ、捕集溶剤量/プロプレン質量流量=0.5で、目標とする水濃度のアクリル酸水溶液が得られた。
【0086】
その時の捕集効率は97.5%であり、一週間、捕集塔の圧力損失の上昇もなく運転した後に開放点検しても塔内および塔頂配管等にほとんど重合物が見られなかった。
【0087】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸透させ、粘度が上昇するまでの時間を測定したところ、18.8hrであった。
【0088】
(実施例5)
実施例1と同じ反応器、同じ触媒を各層長が250mm、800mm、2,200mm、500mm、700mm、1,800mmになるように充填した。
【0089】
第一反応ゾーンにプロピレン:8.0体積%、O:14.4体積%、HO:9.6体積%、(残りはN、プロパンなど)の混合ガスを第一反応ゾーンの空間速度が1,500hr−1(STP)になるように供給した。
【0090】
この時、第二反応ゾーン出口圧力0.15MPa(絶対圧)にてプロピレン転化率が97±0.5モル%、アクロレイン収率が1±0.5モル%になるように第一反応ゾーン、第二反応ゾーンそれぞれの熱媒温度を調節しながら反応を継続した。反応開始から100時間後のアクリル酸収率は86.3モル%であり、その時点で得られたアクリル酸含有ガスを温度172℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸3.8質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が40質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=1.1で、目標とする水濃度のアクリル酸水溶液が得られた。
【0091】
その時の捕集効率は98.9%であり、一週間、捕集塔近辺の圧力損失の上昇もなく運転した後に開放点検しても塔内および塔頂配管等に重合物は見られなかった。
【0092】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、8.2hrであった。
【0093】
(実施例6)
第一反応ゾーンに供給する混合ガス中のHO濃度を7.9体積%にした以外は、実施例4と同じにして反応を行った。反応開始から100時間後のアクリル酸収率は86.0モル%であり、その時点で得られたアクリル酸含有ガスを温度171℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.3質量%、酢酸4.4質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水を捕集溶剤量/プロピレン質量流量=1.6としてアクリル酸を捕集した。その時のアクリル酸捕集塔の塔頂温度は73.7℃、塔頂圧力は0.11MPa(絶対圧)、捕集塔塔底液の水濃度は25質量%、捕集効率は97.1%であり、一週間、捕集塔近辺の圧力損失の上昇もなく運転した後に開放点検すると、塔内および塔頂配管等に若干の重合物が見られた。
【0094】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、11.6hrであった。
【0095】
(比較例1)
第一反応ゾーンに供給する混合ガスの組成をプロピレン:6.0体積%、O:10.8体積%、HO:9.9体積%、(残りはN、プロパンなど)にした以外は、実施例1と同じにして反応を行った。反応開始から100時間後のアクリル酸収率は87.8モル%であり、その時点で得られたアクリル酸含有ガスを温度172℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸4.8質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が25質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=0.8で、目標とする水濃度のアクリル酸水溶液が得られた。
【0096】
その時の捕集効率は95.2%であり、5日後に捕集塔近辺の圧力損失が上昇したため停止し開放点検すると塔内および塔頂配管等にかなりの重合物が見られた。
【0097】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、11.8hrであった。
【0098】
(比較例2)
第一反応ゾーンに供給する混合ガス中のHO濃度を11.6体積%にした以外は、実施例1と同じにして反応を行った。反応開始から100時間後のアクリル酸収率は87.4モル%であり、その時点で得られたアクリル酸含有ガスを温度173℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸4.1質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が25質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=0.8で、目標とする水濃度のアクリル酸水溶液が得られた。
【0099】
その時の捕集効率は94.9%であり、4日後に捕集塔近辺の圧力損失が上昇したため停止し開放点検すると塔内および塔頂配管等にかなりの重合物が見られた。
【0100】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、11.8hrであった。
【0101】
(比較例3)
第一反応ゾーンに供給する混合ガス中のHO濃度を9.6体積%にした以外は、実施例1と同じにして反応を行った。反応開始から100時間後のアクリル酸収率は87.1モル%であり、その時点で得られたアクリル酸含有ガスを温度171℃で計算上の理論段数が14段であるアクリル酸捕集塔に導入し、アクリル酸1.8質量%、酢酸3.5質量%および捕集塔に導入するアクリル酸含有ガス中のアクリル酸量に対して200質量ppm相当であるハイドロキノンを含む捕集水にてアクリル酸を捕集した。アクリル酸捕集塔の塔頂温度は62.9℃、塔頂圧力は0.11MPa(絶対圧)である条件下で捕集塔塔底液の水濃度が47質量%になるように捕集水量を調整したところ、捕集溶剤量/プロピレン質量流量=1.5で、目標とする水濃度のアクリル酸水溶液が得られた。
【0102】
その時の捕集効率は99.0%であり、一週間、捕集塔近辺の圧力損失の上昇もなく運転した後に開放点検しても塔内および塔頂配管等に重合物は見られなかった。
【0103】
また、得られたアクリル酸水溶液5mlを試験管に入れ、95℃に保ったオイルバスに浸漬させ、粘度が上昇するまでの時間を測定したところ、6.5hrであった。
【0104】
【発明の効果】
本発明によれば、プロピレンを原料としたアクリル酸製造工程において、第一反応ゾーンと第二反応ゾーンとが単一の反応管を少なくとも1つの孔あき管板で分割した反応器を使用した接触気相酸化反応からアクリル酸捕集工程における条件を特定範囲に制限することで高濃度のプロピレンガスを使用して生産性高くアクリル酸を製造でき、かつ精製工程における運転を簡便にできる。
【0105】
特に、アクリル酸捕集塔塔底液の水濃度を1〜45質量%に制限すると、次工程の処理を簡便なものとすることができる。
【0106】
また、捕集塔内の捕集溶液量を変化させると、捕集塔塔頂部からの水分量を変化させずにアクリル酸を高濃度に捕集でき、とくに捕集塔排ガスをリサイクルして使用する場合に、製造条件を安定できる点で優れる。
【図面の簡単な説明】
【図1】第一反応ゾーンと第二反応ゾーンとが孔あき管板で仕切られた一基の反応器(シングルリアクター)を用いたアクリル酸製造工程の一部を示すフローシートである。
【符号の説明】
1・・・プロピレン、2・・・水蒸気、3・・・空気、4・・・ブロワー、10・・・反応器、11・・・反応管、12・・・複合酸化物触媒(i)、13・・・複合酸化物触媒(ii)、15・・・孔あき管板、20・・・アクリル酸含有ガス、23・・・熱交換器、30・・・捕集塔、31・・・充填層、32・・・分散器、33・・・捕集溶剤、34・・・冷却器、35・・・アクリル酸含有溶液、36・・・排ガス、40・・・脱水塔、41・・・留出ガス、42・・・溶媒相、43・・・水相、50・・・次工程、60・・・廃棄ガス、71・・・熱交換器、72・・・流量調整機器。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for producing acrylic acid by using a reactor in which a high concentration of propylene is used as a raw material and a first reaction zone and a second reaction zone are formed by dividing a single reaction tube with at least one perforated tube plate. The present invention relates to a method for producing acrylic acid with high yield, in which the water concentration of a contained solution is improved to 1 to 45% by mass, and polymerization in the subsequent steps is prevented.
[0002]
[Prior art]
Acrylic acid is used for adhesives as an acrylic fiber copolymer or as an emulsion, and is also used for paints, fiber processing, leather, building materials, and the like, and its demand is expanding. For this reason, it is common to manufacture by a catalytic gas-phase oxidation reaction of propylene or the like which enables mass production using inexpensive raw materials. In the catalytic gas-phase oxidation reaction, the raw material gas is generally supplied in a range of about 4 to 7% by volume because it may belong to the explosion range depending on the composition of molecular oxygen used for the oxidation reaction. It is preferable to use a high-concentration raw material gas in order to improve the quality, and various improvements have been made.
[0003]
For example, Japanese Patent Application Laid-Open No. 2000-103761 discloses that a reaction composition containing more than 7% by volume of propylene, molecular oxygen, water vapor, and an inert gas in the balance is provided with a large number of catalyst-filled two reaction zones. A method is described in which acrylic acid is produced from propylene by feeding the reactor with a reaction tube. When the mixed product gas obtained by the catalytic gas phase oxidation reaction is introduced into the absorber to obtain an aqueous acrylic acid solution, unreacted propylene, unreacted acrolein, and acrylic acid remain in the absorber exhaust gas. When the exhaust gas is recycled, the volume of the inert gas flowing through the absorber increases, so that a load is generated at the top of the absorber, the collection efficiency is reduced, and the yield of acrylic acid is reduced. On the other hand, when the exhaust gas is not used in circulation, water vapor is used as a diluent gas, so that the selectivity, the addition rate and the catalytic activity in the oxidation reaction are changed by the water, and the water content in the gas flowing through the absorber is changed. Changes. In the above publication, a single reactor system uses a higher concentration of propylene than in the past, reduces the exhaust gas of the absorber required for dilution, and reduces the load on the absorber.
[0004]
After collection of the acrylic acid-containing gas, purification steps such as dehydration of the collection solvent and separation of low-boiling and high-boiling substances are performed.
[0005]
[Problems to be solved by the invention]
However, acrylic acid is an easily polymerizable compound, and when a high-concentration raw material gas is used to enhance productivity, an acrylic acid polymer is easily generated in the acrylic acid collection step and the subsequent purification step. Become. For this reason, in various purification towers, acrylic acid is produced while adjusting the distillation pressure, temperature, supply liquid amount, etc., while preventing the occurrence of polymerization, but changes in each condition affect other conditions. Control is not easy. For example, when the acrylic acid concentration is lowered due to a change in the composition of the bottom liquid of the collection tower, if acrylic acid concentration is maintained at a high distillation condition, an acrylic acid polymer is generated in the distillation column, and the operation is stopped due to blockage. If not, the quality may decrease or the yield may decrease due to the mixture of the polymer.
[0006]
In addition, the purification step of acrylic acid uses a distillation column called a dehydration tower, a low-boiling matter separation tower, a high-boiling matter separation tower, etc., and connects a plurality of distillation towers having different functions to a series of purification treatments. Often do. Therefore, a change in the composition of the bottom liquid of a certain distillation column necessitates a change in the purification conditions in the next and subsequent steps, making the control of the purification step more difficult.
[0007]
On the other hand, a solution, an exhaust gas, and the like discharged from the acrylic acid production process may contain a raw material compound, a product compound, and other useful compounds, and the production yield can be improved by circulating the compound in the production process. However, since the composition of these exhaust gases and the like also changes according to changes in distillation conditions, and the generation of a polymer proceeds in a chain, particularly in a method for producing acrylic acid including recycling of exhaust gases and the like, the distillation conditions are kept constant. It is a very difficult situation.
[0008]
[Means for Solving the Problems]
In the acrylic acid production process using propylene as a raw material, the present inventor, by limiting the conditions in the catalytic gas-phase oxidation reaction to the acrylic acid collection process to a specific range, uses a high-concentration propylene gas to increase the productivity of acrylic acid. And found that the operation in the purification step can be simplified, and completed the present invention.
[0009]
In particular, when the water concentration of the bottom liquid of the acrylic acid collecting tower is limited to 1 to 45% by mass, generation of a polymer in the next step and thereafter can be effectively prevented. Such control can be achieved by adjusting the amount of collected liquid. Further, when the content is controlled to a further constant range in the range of 1 to 45% by mass, the control range of the distillation conditions after the next step can be narrowed, and the fluctuation of loss of acrylic acid from the collection tower and the wastewater is minimized. At the same time, operational stability from the next process including the wastewater treatment equipment can be ensured.
[0010]
In particular, when the concentration of the trapping solution is adjusted by changing the amount of the trapping solution in the trapping tower, acrylic acid can be trapped at a high concentration without changing the amount of water from the top of the trapping tower. It has been found that when exhaust gas is recycled and used, it is excellent in that production conditions can be stabilized.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
A first aspect of the present invention is to introduce a mixed gas containing propylene and molecular oxygen into a first reaction zone filled with a composite oxide catalyst containing molybdenum and bismuth as essential components, and oxidize propylene to contain acrolein. Gas, and introducing the acrolein-containing gas into a second reaction zone filled with a composite oxide catalyst containing molybdenum and vanadium as essential components to obtain an acrylic acid-containing gas; In a method for producing acrylic acid comprising a step of obtaining an acrylic acid-containing solution by being introduced into an acid collecting tower and contacting with a collecting solvent,
(A) the first reaction zone and the second reaction zone are formed by dividing a single reaction tube with at least one perforated tube sheet;
(B) the propylene concentration of the mixed gas introduced into the first reaction zone is 7 to 15% by volume, the water concentration in the mixed gas is 0 to 10% by volume,
(C) A method for producing acrylic acid, wherein the water concentration of the acrylic acid-containing solution collected by the acrylic acid collecting tower is 1 to 45% by mass.
[0012]
It is effective to increase the propylene gas concentration in order to increase the production yield, but it is necessary to increase the oxygen concentration at the same time, and it is difficult to control the reaction because the generated reaction heat is not sufficiently absorbed, and the In some cases, a stable catalytic gas phase oxidation reaction cannot be achieved. In such a case, for example, the explosion range under the assumed operating conditions is measured, and if it is within the explosion range, the range can be avoided by introducing a diluent gas such as propane to narrow the range. Simultaneously, when the water concentration of the acrylic acid-containing solution that collects the acrylic acid is limited to 1 to 45% by mass, the generation of the polymer in the collecting tower and the subsequent step is prevented, and the purification operation in the subsequent step is reduced. I found what I can do. In the present invention, “purification” includes distillation, diffusion, crystallization, extraction, absorption, fragmentation, and the like. Here, "distillation" is a method in which a solution is heated to its boiling point to separate volatile components contained therein, and "dissipation" is a method in which a dissipated gas is supplied to transfer a target substance in a liquid phase to a gas phase. , "Crystallization" is a method of separating the target substance as crystals, "Extraction" is a method of separating the target substance by dissolving it in a solvent, and "Absorption" is a method of separating the target substance in a gas phase or a liquid phase. The term “method of separating by contacting with a liquid or a solid” and “separation” mean a method of separating a target substance by condensing a part of gas or vapor, respectively. Further, in the present invention, a low-boiling substance refers to a substance having a lower boiling point than acrylic acid in a standard state, and a high-boiling substance refers to a substance having a higher boiling point than acrylic acid in a standard state. Hereinafter, the present invention will be described in detail.
[0013]
In the present invention, propylene is introduced into a first reaction zone filled with a complex oxide catalyst containing molybdenum and bismuth as essential components, propylene is oxidized to obtain an acrolein-containing gas, and molybdenum and vanadium are used as essential components. The acrolein-containing gas is introduced into a second reaction zone filled with the composite oxide catalyst to obtain an acrylic acid-containing gas.
[0014]
The reactor is not particularly limited as long as the catalytic gas phase oxidation reaction can be performed, but a multitubular reactor can be preferably used in view of excellent reaction efficiency. The materials, dimensions and number of the reaction tubes, the distribution of the tubes and any known reaction tubes possible are possible. In the present invention, a reactor in which the first reaction zone and the second reaction zone are formed by dividing a single reaction tube with at least one perforated tube sheet (hereinafter, also referred to as a “single reactor”) This is characterized in that it is used. The first reaction is a step of oxidizing propylene to mainly produce acrolein, and the second reaction is a step of oxidizing acrolein to produce acrylic acid. As the oxidation catalyst to be filled, a composite oxidation catalyst (i) containing molybdenum and bismuth as essential components for oxidizing propylene to obtain acrolein is used in the first reaction zone, and molybdenum for oxidizing acrolein to obtain acrylic acid is used. And a composite oxide catalyst (ii) containing vanadium as an essential component is charged into the second reaction zone.
[0015]
An example of an embodiment of the present invention using one reactor in which the first reaction zone and the second reaction zone are separated by a perforated tube sheet will be described with reference to FIG. In FIG. 1, 1 is propylene, 2 is steam, 3 is air, 10 is a reactor, 11 is a reaction tube, 12 is a composite oxide catalyst (i), 13 is a composite oxide catalyst (ii), and 15 is a hole. Tube plate, 20 is an acrylic acid-containing gas, 23 is a heat exchanger, 30 is a collecting tower, 31 is a packed bed, 32 is a disperser, 33 is a collecting solvent, 34 is a cooler, 35 is an acrylic acid-containing solution, 36 is an exhaust gas, 40 is a dehydration tower, 41 is a distillate gas, 42 is a solvent phase, 43 is an aqueous phase, 50 is the next process, 60 is a waste gas, 71 is a heat exchanger, and 72 is a flow rate adjusting device.
[0016]
First, propylene 1 as a raw material gas is supplied to a reactor 10 together with steam 2 and air 3 containing molecular oxygen. In the reactor 10, a reaction tube 11 is filled with a composite oxide catalyst (i) 12 and a composite oxide catalyst (ii) 13 as oxidation catalysts, and the catalyst (i) oxidizes propylene to obtain acrolein. Then, acrolein is oxidized by the catalyst (ii) to obtain an acrylic acid-containing gas 20. Next, the acrylic acid-containing gas 20 is introduced into the acrylic acid collecting tower 30 and collected by the collecting solvent 33. A part of the bottom liquid is converted into an acrylic acid-containing solution 35 while being cooled by a cooler 34 and circulated to an acrylic acid collecting tower 30, and a part is introduced into a dehydrating tower 40 to perform a dehydration treatment. After the distillate gas 41 is condensed by a condenser provided at the top of the dehydration tower 40, the condensate is separated into a solvent phase 42 and an aqueous phase 43. The solvent phase 42 may be circulated through the dehydration tower 40, and the aqueous phase 43 may be used as the collecting solvent 33. The bottom liquid of the dehydration tower is supplied to the next step 50, and further purified such as separation of low-boiling substances and high-boiling substances. The exhaust gas 36 from the collection tower 30 may be entirely treated as a waste gas 60, but a part of the exhaust gas 36 is recycled to the reactor 10 by the blower 4 as a recycle gas, and only the remainder is recycled to the waste gas 60. Can also be processed.
[0017]
In the present invention, the composite oxide catalyst (i) used in the first reaction zone may be any one containing molybdenum and bismuth, but is preferably of the general formula Mo a -Bi b -Fe c -A d -B e -C f -D g -O x (Mo, Bi, and Fe each represent molybdenum, bismuth, and iron; A represents at least one element selected from nickel and cobalt; B represents at least one element selected from alkali metals and thallium; Represents at least one element selected from the group consisting of phosphorus, niobium, manganese, cerium, tellurium, tungsten, antimony and lead, and D represents at least one element selected from the group consisting of silicon, aluminum, zirconium and titanium. O represents oxygen; a, b, c, d, e, f, g, and x each represent an atomic ratio of Mo, Bi, Fe, A, B, C, D, and O; Assuming that 12, b = 0.1-10, c = 0.1-10, d = 2-20, e = 0.005-5, f = 0-5, g = 0-30, and x The materials can be exemplified that represented by a) a value determined by the oxidation state of each element.
[0018]
As the composite oxide catalyst (ii), any catalyst containing molybdenum and vanadium may be used. a -V b -W c -Cu d -A e -B f -C g -O x (Mo is molybdenum, V is vanadium, W is tungsten, Cu is copper, A represents at least one element selected from antimony, bismuth, tin, niobium, cobalt, iron, nickel and chromium, B represents an alkali metal and Represents at least one element selected from alkaline earth metals, C represents at least one element selected from silicon, aluminum, zirconium and titanium, O represents oxygen, a, b, c, d, e, f, g, and x represent the atomic ratios of Mo, V, W, Cu, A, B, C, and O, respectively, and when a = 12, b = 2 to 14, c = 0 to 12, d = 0.1-5, e = 0-5, f = 0-5, g = 0-20, and x is a value determined by the oxidation state of each element).
[0019]
The method for preparing the catalyst and the method for mixing and molding used in the present invention are not particularly limited, and generally used methods and raw materials can be employed. In addition, the shape of the catalyst is not particularly limited, and may be spherical, cylindrical, cylindrical, and the like. The molding method may include carrier molding, extrusion molding, tablet molding, and the like. A form in which these catalyst substances are supported is also useful.
[0020]
In the present invention, the propylene concentration of the mixed gas introduced into the first reaction zone is 7 to 15% by volume, more preferably 8 to 12% by volume, particularly preferably 8 to 10% by volume. If the amount is less than 7% by volume, the production efficiency may decrease, and the concentration of collected acrylic acid may decrease. On the other hand, if it exceeds 15% by volume, there is a risk of entering the combustion range of the reactor, increasing the danger.
[0021]
The water concentration of the mixed gas supplied to the first reaction zone is 0 to 10% by volume, more preferably 0 to 7% by volume, particularly preferably 0 to 6% by volume. Since all the water used shifts to the collection tower, if the water concentration exceeds 10% by volume, the water concentration of the bottom liquid of the collection tower increases, which is disadvantageous. On the other hand, if the water concentration of the liquid in the bottom of the collection tower is to be kept low, the collection efficiency in the collection tower is reduced and the polymerizability in the collection tower and the collection tower top piping is also increased. It turned out. The collection efficiency (%) is defined as 100 × ((AAin) where AAin is the amount of acrylic acid introduced into the collection tower and AAout is the amount of acrylic acid discharged from the top of the collection tower. -AAout) / AAin). According to the present invention, by controlling the water concentration to 10% by volume or less, the collection efficiency of acrylic acid in the collection tower can be 95% or more, preferably 96% or more.
[0022]
It is necessary to mix molecular oxygen with the mixed gas, and the propylene: molecular oxygen (volume ratio) is in the range of 1: 1.0 to 2.0. Air is advantageously used as the supply source of molecular oxygen, but oxygen-enriched air and pure oxygen can be used as necessary.
[0023]
Other components of the mixed gas include nitrogen, carbon dioxide, and other inert gases, and the exhaust gas 36 discharged from the collection tower 30 may be recycled and used. In that case, the amount of water vapor, molecular oxygen, and other inert gas required for the mixed gas can be adjusted by the amount of the recycle gas.
[0024]
In the first reaction zone, catalyst (i) 1 m 3 The mixed gas having the above composition is supplied at a space velocity of 500 to 3000 h at a reaction pressure in a range from normal pressure to 0.5 MPa. -1 (STP). The reaction temperature is controlled at 250 to 450 ° C, more preferably 300 to 380 ° C.
[0025]
The acrolein-containing gas discharged from the first reaction zone is directly introduced into the second reaction zone. The acrolein-containing gas supplied to the second reaction zone was 1 m of catalyst (ii) 3 To a mixed gas at a reaction pressure of normal pressure to 0.5 MPa, space velocity of 300 to 5,000 hr. -1 (STP) and the reaction temperature is controlled at 200 to 400 ° C., preferably 220 to 380 ° C. The water concentration of the mixed gas supplied to the first reaction zone can be measured by gas chromatography, Karl Fischer method, hygrometer, or the like, and the water concentration of the mixed gas may be directly measured, The water concentration of each gas introduced into the reaction zone may be measured and calculated from them.
[0026]
The acrylic acid-containing gas 20 obtained by the catalytic gas phase oxidation reaction has a temperature of 200 to 350 ° C, and is preferably cooled to 100 to 300 ° C, particularly 130 to 270 ° C before being supplied to the collection tower 30. As such a heat exchanger 23, a known heat exchanger can be used. This cooling needs to ensure that the temperature of the reaction gas mixture does not drop below its dew point. If the reaction gas is already in an appropriate temperature range, cooling is of course unnecessary.
[0027]
In the present invention, the acrylic acid-containing gas 20 is supplied to the collection tower 30 and collected by the collection solvent 33. The acrylic acid-containing gas 20 guided to the collection tower 30 generally contains acrylic acid in the range of 10 to 30% by mass, acetic acid in the range of 0.2 to 5% by mass, and water in the range of 5 to 15% by mass. As the collection conditions including the gas component composition of the reaction gas, the composition of the collection solvent, the collection temperature, and the like, the water concentration of the acrylic acid-containing solution 35 in the bottom liquid of the acrylic acid collection tower was 1 to 45% by mass. Any condition may be used. The water concentration of the bottom liquid is more preferably 1 to 25% by mass, and particularly preferably 1 to 20% by mass. It is difficult to make the water concentration less than 1% by mass, and the loss of acrylic acid increases, which is disadvantageous. On the other hand, if it exceeds 45% by mass, it is necessary to increase the size of equipment such as a distillation column in the subsequent steps, and the amount of dewatering liquid and waste water increase, which is disadvantageous. Furthermore, since acrylic acid has the highest polymerizability when the mixing mass ratio with water is about 1: 1, a polymer is likely to be generated in the collecting tower and in the next step and thereafter. In addition, when dehydration is performed by azeotropic distillation as shown in the figure, polymerization is caused by an increase in the partial concentration of water in the dehydration tower 40, and a polymer is easily generated. That is, in order to dehydrate the water contained in the acrylic acid-containing solution 35, an azeotropic dehydration treatment to which an azeotropic solvent is added is generally performed, but when the water concentration exceeds 45% by mass, a hydrophobic azeotropic treatment is performed. The oil-water phase separation becomes remarkable between the dehydrated solvent and water, and the dispersion of the polymerization inhibitor is biased, so that acrylic acid is easily polymerized.
[0028]
As the acrylic acid collecting tower 30, a well-known tower such as a conventionally-known tray column, a packed tower, a wet wall tower, or a spray tower can be used, and the concentration of acrylic acid contained in the acrylic acid-containing gas to be treated is low. In order to effectively prevent polymerization in the column, a tray column or a packed column is preferable.
[0029]
For example, in the case of a packed tower, a packing having a relatively high efficiency of collecting acrylic acid is packed upstream of the flow of the collection solution in the tower, and a packing having a relatively low polymerization forming ability of acrylic acid is packed downstream. Preferably, objects and / or shelves are provided. It should be noted that relatively high (low) means that, when a plurality of fillers are used, the performance is higher (lower) than the others. Further, the packing having a relatively low polymerization-forming ability means a packing having a low polymerization-forming ability as compared with the remaining fillers when a plurality of packings are packed in the acrylic acid collecting tower. In general, the upper portion of the acrylic acid collecting tower is the upstream side in order to bring the collecting solvent and the acrylic acid-containing gas into countercurrent contact, and the downstream side corresponds to the bottom side of the acrylic acid collecting tower. Among the packing and trays inside the acrylic acid collection tower, gauze-type structured packing has the highest collection efficiency in general towers, sheet-type structured packing, irregular packing, and grid-type structured packing. The order of objects and trays is as follows. Among the trays, those with high performance include those equivalent to sheet-type regular packing and irregular packing. On the other hand, the gauze type structured packing has the highest easiness of polymerization of acrylic acid and the like, and is in the order of sheet type structured packing, irregular packing, grid type structured packing, and shelf. Therefore, for example, if a gauze type structured packing is used with a high collection efficiency, the gauze type structured packing tends to polymerize the processed product, which causes a problem of polymerization. For example, if a grid-type structured packing is used to prevent this, an excessive tower height is required to obtain a predetermined efficiency because the collection efficiency is low. Therefore, it is selected from the group consisting of gauze type structured packing on the upstream side of the flow of the liquid containing the solvent in the column, and sheet type ordered packing, irregular packing, grid type structured packing and tray on the downstream side. By using at least one kind, particularly preferably a sheet-type structured packing and / or an irregular packing, it is possible to satisfy both the polymerization preventing ability and the collection efficiency and to carry out long-term stable operation. Note that gauze-type ordered packing includes Sulzer Packing (Sumitomo Heavy Industries, Ltd.), Technopack (Mitsui & Co., Ltd.), MC Pack (Mitsubishi Chemical Engineering Co., Ltd.), and sheet-type ordered packing includes Melapak (Sumitomo). Heavy machinery industry), Technopack (Mitsui & Co., Ltd.), MPCAK (Mitsubishi Chemical Engineering), etc. For grid type regular packing, Flexigrid (Cork) etc. For irregular packing, Raschig ring, polling Shelf tray, valve tray, bubble cap tray, baffle tray, dual flow tray, super flux tray, ripple tray, jet tray, etc. are provided on the shelf, such as Cascade Mini Ring (Dodwell) and IMTP (Norton). In addition, among the irregular packings, the cascade mini-ring and IMTP, which are flat packings, can be filled almost in a regular manner, so that they are further excellent in polymerization prevention ability and high in collection efficiency, which is preferable.
[0030]
Generally, the top of the acrylic acid collecting tower is operated at normal pressure or higher. The pressure at the top of the column (gauge pressure) is 0 to 0.4 MPa, preferably 0 to 0.1 MPa, and particularly preferably 0 to 0.03 MPa. When the pressure is lower than 0 MPa (gauge pressure), a decompression device is required, and equipment costs and utility costs are incurred. On the other hand, when the pressure is higher than 0.4 MPa (gauge pressure), the temperature of the collection tower is lowered in order to discharge low boiling substances from the top of the tower. This is because it is necessary to raise the temperature considerably, and the polymerizability in the collection tower increases. The temperature at the top of the column is generally 30 to 80 ° C, preferably 40 to 70 ° C.
[0031]
In the present invention, the water concentration of the acrylic acid-containing solution is adjusted to a range of 1 to 45% by mass, but such an adjusting method is not limited, but can be adjusted by changing the introduction amount of the collecting solvent. it can. In the present invention, the mass flow rate of 0.1 to 1.5 times, more preferably 0.2 to 1.3 times, particularly preferably 0.3 to 1.1 times the mass flow rate of propylene introduced into the first reaction zone. It is preferable to collect acrylic acid by bringing a collecting solvent at a flow rate into countercurrent contact. If the ratio is less than 0.1 times, it becomes difficult to collect acrylic acid, and the amount of the wetting liquid in the collecting tower is reduced, which causes an extremely low efficiency of the collecting tower. The wetting liquid amount of the collection tower is
[0032]
(Equation 1)
Figure 2004067615
[0033]
And the amount of the wetting liquid is 0.2 m 3 / M 2 . hr or more, more preferably 0.8 m 3 / M 2 . hr or more, particularly preferably 1.0 m 3 / M 2 . hr or more. On the other hand, if it exceeds 1.5 times, the water concentration in the acrylic acid-containing solution to be collected increases. In addition, if the temperature of the collecting tower is raised to keep the water concentration in the acrylic acid-containing solution constant, a polymer is easily generated, which is disadvantageous.
[0034]
Known solvents such as water, organic acid-containing water, and high-boiling inert hydrophobic organic liquid can be used as the supplied collecting solvent. These can be used alone or in combination. In the present invention, the main component of the collection solvent is preferably water. For example, as a composition of the collecting solvent in the acrylic acid collecting tower, there is a composition in which acrylic acid is 0 to 10% by mass, acetic acid is 0 to 20% by mass, and water is 70 to 100% by mass.
[0035]
In addition, in order to prevent polymerization of a polymerizable substance such as acrylic acid, such a collecting solvent includes N-oxyl compounds, phenol compounds, manganese salts such as manganese acetate, and copper dialkyldithiocarbamate such as copper dibutylthiocarbamate. It preferably contains at least one compound selected from the group consisting of salts, nitroso compounds, amine compounds and phenothiazines.
[0036]
The N-oxyl compound is not particularly limited, and any N-oxyl compound generally known as a polymerization inhibitor for a vinyl compound can be used. Among them, 2,2,6,6-tetramethylpiperidinooxyls represented by the following formula (1):
[0037]
Embedded image
Figure 2004067615
[0038]
(However, in the formula (1), R 1 Is CH 2 , CHOH, CHCH 2 OH, CHCH 2 CH 2 OH, CHOCH 2 OH, CHOCH 2 CH 2 OH, CHCOOH, or C = O; 2 Is a hydrogen atom or CH 2 OH) is preferably used. Any N-oxyl compound can be used without any particular limitation, but 2,2,6,6-tetramethylpiperidinooxyl, 4-hydroxy-2,2,6 which can provide a good polymerization preventing effect. , 6-tetramethylpiperidinooxyl, 4,4 ′, 4 ″ -tris- (2,2,6,6-tetramethylpiperidinooxyl) phosphite Particularly, when 2,2,6,6-tetramethylpiperidinooxyl or 4-hydroxy-2,2,6,6-tetramethylpiperidinooxyl is used as the N-oxyl compound, Even if a metal is not contained in the component, it becomes a stabilizer system, so that there is no danger of metal corrosion of equipment due to the stabilizer, and the disposal of waste liquid becomes easy.
[0039]
Representative examples of the N-hydroxy-2,2,6,6-tetramethylpiperidine compound include 1,4-dihydroxy-2,2,6,6-tetramethylpiperidine, 1-hydroxy-2,2,6, 6-tetramethylpiperidine and the like can be mentioned. These N-hydroxy-2,2,6,6-tetramethylpiperidine compounds can be used alone or in combination of two or more.
[0040]
Specific examples of the 2,2,6,6-tetramethylpiperidine compound include 2,2,6,6-tetramethylpiperidine, 4-hydroxy-2,2,6,6-tetramethylpiperidine, and the like. One or more of these can be used. The N-hydroxy-2,2,6,6-tetramethylpiperidine compound and the 2,2,6,6-tetramethylpiperidine compound may be contained as impurities in commercially available N-oxyl compound products. However, in such a case, a commercially available N-oxyl compound can be used to combine the N-hydroxy-2,2,6,6-tetramethylpiperidine compound and the 2,2,6,6-tetramethylpiperidine compound. Will be used together.
[0041]
Examples of the phenol compound include hydroquinone and methoquinone (p-methoxyphenol). Methoquinone is preferred because it has a superior polymerization inhibitory effect to hydroquinone, particularly when used in combination with an N-oxyl compound and a phenothiazine compound. These phenol compounds may be used in combination of two kinds.
[0042]
Examples of the phenothiazine compound include phenothiazine, bis- (α-methylbenzyl) phenothiazine, 3,7-dioctylphenothiazine, bis- (α-dimethylbenzyl) phenothiazine and the like.
[0043]
The copper salt compound is not particularly limited, and may be any of an inorganic salt and an organic salt, and various compounds can be used. Examples include copper dialkyldithiocarbamate, copper acetate, copper naphthenate, copper acrylate, copper sulfate, copper nitrate, copper chloride, and the like. Any of these monovalent and divalent copper salt compounds can be used. Among the above copper salt compounds, copper dialkyldithiocarbamate is preferred from the viewpoint of effects and the like.
[0044]
As copper dialkyldithiocarbamate, for example, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, copper dipropyldithiocarbamate, copper dibutyldithiocarbamate, copper dipentyldithiocarbamate, copper dihexyldithiocarbamate, copper diphenyldithiocarbamate, copper methylethyldithiocarbamate , Copper methylpropyldithiocarbamate, copper methylbutyldithiocarbamate, copper methylpentyldithiocarbamate, copper methylhexyldithiocarbamate, copper methylphenyldithiocarbamate, copper ethylpropyldithiocarbamate, copper ethylbutyldithiocarbamate, copper ethylpentyldithiocarbamate, ethylhexyl Copper dithiocarbamate, Copper ethylphenyldithiocarbamate, Propyl Copper rudithiocarbamate, copper propylpentyldithiocarbamate, copper propylhexyldithiocarbamate, copper propylphenyldithiocarbamate, copper butylpentyldithiocarbamate, copper butylhexyldithiocarbamate, copper butylphenyldithiocarbamate, copper pentylhexyldithiocarbamate, copper pentylphenyldithiocarbamine And copper hexylphenyldithiocarbamate. These copper dialkyldithiocarbamates may be monovalent copper salts or divalent copper salts. Among these, copper dimethyldithiocarbamate, copper diethyldithiocarbamate and copper dibutyldithiocarbamate are preferred from the viewpoints of effect and availability, and copper dibutyldithiocarbamate is particularly preferred.
[0045]
Examples of the manganese salt compound include manganese dialkyldithiocarbamate (the alkyl group is either methyl, ethyl, propyl, or butyl and may be the same or different), manganese diphenyldithiocarbamate, manganese formate, manganese acetate, octane Manganese acid, manganese naphthenate, manganese permanganate, manganese salt compounds of ethylenediaminetetraacetic acid and the like can be mentioned, and one or more of these can be used.
[0046]
In the present invention, it is preferable to contain at least one compound selected from the group consisting of an N-oxyl compound, a phenol compound, a manganese salt, a copper dialkyldithiocarbamate, a nitroso compound, an amine compound, and a phenothiazine. Even if two or more of the compounds are used in combination, the same or higher polymerization preventing effect can be obtained.
[0047]
The amount of the polymerization inhibitor used is appropriately adjusted according to the operating conditions, and is not particularly limited. However, the total amount of the polymerization inhibitor used is preferably 3 to 3500 ppm (by mass) based on the mass of acrylic acid in the reaction gas to be collected. The preferred amount of each polymerization inhibitor used is 1 to 500 ppm of the N-oxyl compound with respect to the mass of acrylic acid in the reaction gas, and 1 with respect to the mass of acrylic acid in the reaction gas of the manganese salt compound or the copper salt compound. -200 ppm, 1-500 ppm for nitroso compounds, 1-500 ppm for phenol compounds, and 1-500 ppm for phenothiazine compounds.
[0048]
Further, the supply place and the method of administration for preventing polymerization are not particularly limited, but it is preferable to supply from the top of the acrylic acid collecting tower. When the polymerization inhibitor is supplied after being mixed with a solvent in advance, it is effective because the polymerization inhibitor is uniformly dispersed in the acrylic acid collecting tower. It is preferable to use a collecting solvent or acrylic acid as the solvent, and it is economical to reuse the collecting solvent separated in the purification tower.
[0049]
In the present invention, there is no limitation on the purification method after the acrylic acid collecting step. The present invention is intended to improve the collection efficiency by limiting the water concentration of the acrylic acid collection tower bottom liquid to a specific range, and to stabilize the subsequent steps, and is limited to a specific purification method. It is not something.
[0050]
Generally, a low-boiling substance separation step, a high-boiling substance separation step, and other purification steps are performed after the dehydration treatment. In the present invention, any of conventionally known purification methods may be combined. Therefore, low-boiling substances may be removed after azeotropic dehydration, then high-boiling substances may be removed, and then acrylic acid and acetic acid having a similar boiling point may be separated. Acrylic acid may be purified by appropriately combining crystallization, extraction, absorption, and shrinkage.
[0051]
A second aspect of the present invention is to introduce a mixed gas containing propylene and molecular oxygen into a first reaction zone filled with a composite oxide catalyst containing molybdenum and bismuth as essential components, and oxidize propylene to contain acrolein. Gas, and introducing the acrolein-containing gas into a second reaction zone filled with a composite oxide catalyst containing molybdenum and vanadium as essential components to obtain an acrylic acid-containing gas; In a method for producing acrylic acid, comprising a step of obtaining an acrylic acid-containing solution by being introduced into an acid collection tower and brought into contact with a collection solvent,
(A) forming the first reaction zone and the second reaction zone by dividing a single reaction tube with at least one perforated tube sheet;
(B) the propylene concentration of the mixed gas introduced into the first reaction zone is 7 to 15% by volume, the water concentration in the mixed gas is 0 to 10% by volume,
(C) A method for producing acrylic acid, wherein the water concentration of an acrylic acid-containing solution obtained in an acrylic acid collecting tower is 1 to 45% by mass depending on the amount of a collecting solvent introduced.
[0052]
The difference from the first invention is that the requirement of the above (c), that is, the water concentration of the acrylic acid-containing solution is adjusted to 1 to 45% by mass by controlling the introduction amount of the collecting solvent. The other requirements are the same as those of the first invention.
[0053]
Since the exhaust gas 36 from the collection tower 30 contains heat generated by the catalytic gas phase oxidation reaction, steam, unreacted propylene, acrolein, inert gas, and the like, as shown in FIG. After adjusting the flow rate to the optimum range with the flow rate adjusting device 72 after that, the mixture can be mixed with the air 3 and supplied to the first reactor 10 for reuse. However, the composition of the exhaust gas tends to fluctuate depending on the temperature of the top of the collection tower, and the change in the water content is particularly large. In the present application, it is necessary to limit the amount of water vapor contained in the mixed gas to a range of 0 to 10% by mass, and to change the amount of water contained in the exhaust gas from the top by changing the temperature of the column, Not only is it disadvantageous to limit the amount of water vapor contained, but when the temperature at the top of the column is increased, an acrylic acid polymer is easily generated in the collection tower. On the other hand, when the amount of the collecting solvent is changed, the change in the amount of water in the acrylic acid-containing gas can be adjusted by changing the amount of the collecting solvent, and the amount of water in the gas 36 discharged from the top of the column is adjusted. Can be suppressed. Specifically, similarly to the first invention, the mass flow rate of propylene introduced into the first reaction zone is 0.1 to 1.5 times, more preferably 0.2 to 1.3 times, particularly preferably 0 to 1.5 times. It is preferable to collect acrylic acid by bringing a collecting solvent having a mass flow rate of 0.3 to 1.1 times into countercurrent contact.
[0054]
The expression “depending on the amount of the solvent introduced” means that the water concentration is controlled within the range of 1 to 45% by mass, and even when the water concentration is within the range of 1 to 45% by mass, the water concentration varies within a certain range. To suppress The meaning of the former is as explained in the first invention. On the other hand, the meaning of the latter is that fluctuations in the composition of the bottom liquid are reduced upstream of the acrylic acid collecting column in the production process, so that fluctuations downstream can be efficiently suppressed. In the production of acrylic acid, in addition to the above-mentioned acrylic acid collection step and dehydration step, a number of steps such as a low-boiling substance separation step, a high-boiling substance separation step, and other purification steps are continuously performed. If the amount of water in the bottom liquid of the acid collecting tower fluctuates, the amount of the dehydrating solvent used in the dehydration treatment in the next step, the temperature and pressure in the dehydrating tower, the amount of the polymerization inhibitor used, the recovered solvent phase 42 and The recycling amount of the aqueous phase 43 changes as needed. As a result, the concentration of acrylic acid in the bottom liquid of the dehydration tower and the amount of the polymerization inhibitor to be used are changed, and the subsequent conditions for separating high-boiling substances are also changed. Such fluctuations in the conditions lead to the generation of an acrylic acid polymer in the purification step, which causes a reduction in product quality. Therefore, in the present invention, upstream of such a series of steps, the water concentration of the acrylic acid-containing solution is limited to a predetermined range, the processing of the steps connected downstream is simplified, and at the same time, the fluctuation is suppressed to improve the purity. Highly decided to produce acrylic acid.
[0055]
In order to further control the water concentration of the acrylic acid-containing solution within a range of 1 to 45% by mass, for example, a range of 20 ± 1% by mass, the water concentration of the bottom liquid of the collecting tower is measured. What is necessary is just to change the introduction amount of a collection solvent based on the value. As a method for measuring the water concentration of the bottom liquid of the collecting tower, there are a method obtained from a change in the electric conductivity of the bottom liquid, a method obtained from neutralization titration, and the like, in addition to a gas chromatography, a Karl Fischer method and the like.
[0056]
The acrylic acid obtained according to the first or second invention is supplied to a polyacrylic acid (salt) production process to produce polyacrylic acid (salt), and the resulting polyacrylic acid (salt) is used to further absorb water. Resin and the like can be manufactured. That is, the third aspect of the present invention is a method for producing polyacrylic acid, characterized by using the acrylic acid obtained by the above method.
[0057]
In the polyacrylic acid (salt) production process, the acrylic acid is introduced into a neutralization step, a polymerization step, a drying step, and a cooling step sequentially and subjected to a desired treatment to produce polyacrylic acid (salt). it can. When acrylic acid is not neutralized, polyacrylic acid is obtained, and the neutralization step is optional. Further, a desired treatment may be performed for the purpose of improving various physical properties. For example, a crosslinking step may be interposed during or after the polymerization.
[0058]
The neutralization step is an optional addition step. For example, a method of mixing a predetermined amount of a powder or aqueous solution of a basic substance with acrylic acid or the obtained polyacrylic acid (salt) is exemplified. There is no particular limitation as long as it is adopted. The neutralization step may be performed before polymerization (neutralization with a monomer), during polymerization, or after polymerization (neutralization with a gel), or may be performed both before and after polymerization. In the illustrated example, a process of performing polymerization after neutralization is shown. However, in the case of performing neutralization after polymerization, the configuration of the apparatus may be appropriately changed according to the process. The polymerization device and the neutralization device may be the same device or different devices.
[0059]
As the basic substance used for neutralizing the acrylic acid, a known basic substance such as a carbonate (hydrogen) salt, an alkali metal hydroxide, ammonia, and an organic amine may be appropriately used. The neutralization ratio of acrylic acid is not particularly limited, and may be adjusted to an arbitrary neutralization ratio, for example, an arbitrary value of 30 to 100 mol%, preferably 50 to 80 mol%. When it is necessary to remove the heat of reaction at the time of neutralization, it may be introduced into any cooling means, for example, any cooling device such as a cooling water tower. In this case, the liquid supplied via line 4a It is desirable to use a cooling medium as the cooling medium because the cooling cost can be reduced.
[0060]
If necessary, after neutralization, the acrylate solution is introduced into a polymerization step, but the polymerization method in this step is not particularly limited. In the case of using a radical polymerization initiator, radiation polymerization, electron beam polymerization, photosensitizer A known polymerization method such as ultraviolet polymerization may be used. In the polymerization step, acrylic acid is neutralized as necessary, and is preferably 10% by mass or more, more preferably 20% by mass or more, preferably 80% by mass or less, more preferably 70% by mass or less. It is desirable to polymerize as an aqueous solution of acrylic acid (salt).
[0061]
In the present invention, various conditions such as a polymerization initiator and polymerization conditions can be arbitrarily selected. If necessary, known additives such as a cross-linking agent and other monomers, and further, a water-soluble chain transfer agent and a hydrophilic polymer may be added. In the polymerization step, any vessel or device may be used, and there is no particular limitation as long as it is a commonly used polymerization device.
[0062]
The polyacrylic acid (salt) after polymerization is usually a hydrogel polymer, and is further subjected to a drying step to remove water. The drying method is not particularly limited, and is appropriately dried at a desired drying temperature, preferably 70 to 230 ° C., using a known drying device such as a hot-air dryer, a fluidized-bed dryer, a drum dryer, or a Nauter dryer. Just fine. Further, as the heat medium supplied to the drying step, steam discharged in the acrylic acid production step, particularly reaction heat obtained from a contact gas phase oxidizer can be used.
[0063]
At the time of drying, the polyacrylic acid (salt) hydrogel, that is, the hydrated polymer is dried by heating using various dryers. For example, drying may be carried out by contacting the hydrogel with the heat transfer surface obtained by heating the heat transfer surface of the dryer with water vapor using a conductive heat transfer dryer such as a drum dryer or a paddle dryer, but the remaining monomer may be dried. From the viewpoint of reduction and drying efficiency, it is desirable to perform hot air heat transfer drying in which the hydrogel is brought into direct contact with water vapor. That is, a gas containing water vapor, preferably a dew point of 50 ° C or higher, more preferably 60 ° C or higher, preferably 90 ° C or lower, more preferably 80 ° C or lower, and a temperature of preferably 100 ° C or higher, More preferably, the hydrogel is dried with hot air at a temperature of 150 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or lower, so that the remaining monomer can be reduced and the water absorption capacity of polyacrylic acid (salt) can be improved. It is desirable because it can be achieved. The drying time may be appropriately selected usually from 1 minute to 3 hours, preferably from 5 minutes to 1 hour.
[0064]
Since the polyacrylic acid (salt) obtained through the drying step is discharged at a high temperature, it is desirable to cool the polyacrylic acid (salt) to a desired temperature in the cooling step, for example, from room temperature to 90 ° C, preferably from 40 ° C to 80 ° C. The method for cooling the polyacrylic acid (salt) is not limited. For example, it may be blown with cold air or introduced into a cooling device such as an arbitrary refrigerator.
[0065]
The polyacrylic acid (salt) obtained by cooling to a desired temperature may be used as it is, and may be further granulated and pulverized into a desired shape, and further added with various additives such as a reducing agent, a fragrance, and a binder. It can be used according to the application.
[0066]
In the present invention, it is preferable to cool the dried polyacrylic acid (salt). For example, when a hydrogel is subdivided into about 1 to several mm and dried, the polyacrylic acid (salt) after drying is a dry particle of about 1 to several mm, and it depends on the drying method. The dry particles later are aggregates. Accordingly, the dried polyacrylic acid (salt) is pulverized or further classified as necessary to obtain a polyacrylic acid (salt) powder, for example, having a weight average particle diameter of 10 to 1000 μm, preferably 100 to 800 μm, and further, if necessary. When adding various modifiers to the powder, for example, an aqueous solution of a surface cross-linking agent, a granulating binder, a deodorant, etc., by applying a cooling step, the pulverization efficiency is improved, and only a sharp particle size distribution is obtained. In addition, since various modifiers and the like can be uniformly added to the powder, the various physical properties of the water-absorbent resin, for example, the absorption capacity under pressure can be improved while suppressing the variation between the powders.
[0067]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0068]
(Reference Example 1)
Preparation of catalyst
As a catalyst for the first reaction zone, a molybdenum-bismuth-based catalyst was prepared according to the description in Example 1 of JP-A-2000-325795. This is designated as catalyst (I). Further, as a catalyst for the second reaction zone, a molybdenum-vanadium-based catalyst was prepared according to the description in Example 1 of JP-A-8-206504. This is designated as catalyst (II).
[0069]
(Equation 2)
Figure 2004067615
[0070]
[Equation 3]
Figure 2004067615
[0071]
(Equation 4)
Figure 2004067615
[0072]
(Example 1)
A reaction tube having an inner diameter of 25 mm and a length of 7,000 mm equipped with a heat medium circulation jacket is provided with a perforated tube plate having a thickness of 75 mm for vertically dividing the heat medium jacket at a position of 3,500 mm from the bottom of the jacket. In the reaction zone where the lower heat medium is circulated and the temperature of each heat medium can be controlled (the lower part corresponds to the first reaction zone and the upper part corresponds to the second reaction zone), from the lower part of the reaction tube to the upper part (1) only a ceramic ball having an average diameter of 5 mm, (2) a mixture of the catalyst (I) and a ceramic ball having an average diameter of 5 mm in a volume ratio of 70:30, (3) only the catalyst (I), 4) A stainless steel Raschig ring having an outer diameter of 5 mm, an inner diameter of 4.5 mm, and a length of 6 mm, (5) a mixture of the catalyst (II) and ceramic balls having an average diameter of 5 mm in a volume ratio of 75:25. (6) in the order of only the catalyst (II), each length was packed 250mm, 700mm, 2,300mm, 500mm, 600mm, so that 1,900Mm.
[0073]
In the first reaction zone, propylene: 8.0% by volume, O 2 : 14.4% by volume, H 2 O: 5.0% by volume (the remainder is N 2 , Propane, etc.) at a space velocity of 1,250 hr in the first reaction zone. -1 (STP).
[0074]
At this time, at the outlet pressure of the second reaction zone at 0.15 MPa (absolute pressure), the first reaction zone was prepared such that the propylene conversion rate was 97 ± 0.5 mol% and the acrolein yield was 1 ± 0.5 mol%. The reaction was continued while adjusting the temperature of the heating medium in each of the second reaction zones. The acrylic acid yield after 100 hours from the start of the reaction was 87.0 mol%, and the acrylic acid-containing gas obtained at that time was converted into an acrylic acid collecting column having a temperature of 170 ° C and a calculated theoretical number of 14 plates. To the collected water containing 1.8% by mass of acrylic acid, 5.6% by mass of acetic acid and hydroquinone equivalent to 200% by mass with respect to the amount of acrylic acid in the gas containing acrylic acid introduced into the collection tower. To collect the acrylic acid. Under the condition that the temperature of the top of the acrylic acid collecting tower is 62.9 ° C. and the pressure of the top of the acrylic acid collecting tower is 0.11 MPa (absolute pressure), the water concentration of the liquid in the bottom of the collecting tower is 25 mass%. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of collecting solvent / the mass flow rate of propylene = 0.9.
[0075]
At that time, the trapping efficiency was 98.3%, and after one week operation without any increase in pressure loss near the trapping tower, even after the open inspection, no polymer was found in the tower or at the top piping. .
[0076]
In addition, 5 ml of the obtained acrylic acid aqueous solution was put into a test tube, immersed in an oil bath maintained at 95 ° C., and the time required for the viscosity to increase was measured to be 11.5 hr. This increase in viscosity is related to the polymerization initiation time. If the viscosity is short, it means that the solution is easily polymerized, and if it is long, it is a solution that is hardly polymerized.
[0077]
(Example 2)
The composition of the mixed gas supplied to the first reaction zone was propylene: 9.0% by volume, O 2 : 16.2% by volume, H 2 O: 2.9% by volume (the remainder is N 2 , Propane and the like), and the reaction was carried out in the same manner as in Example 1. The acrylic acid yield 100 hours after the start of the reaction was 86.5 mol%, and the acrylic acid-containing gas obtained at that time was converted into an acrylic acid collecting column having a temperature of 168 ° C. and a calculated theoretical plate number of 14 plates. To the collected water containing 1.8% by mass of acrylic acid, 6.0% by mass of acetic acid and 200% by mass of hydroquinone with respect to the amount of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. To collect the acrylic acid. Under the condition that the top temperature of the acrylic acid collection tower is 62.9 ° C. and the top pressure is 0.11 MPa (absolute pressure), the water concentration of the bottom liquid of the collection tower is 21% by mass. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of the collecting solvent / the mass flow rate of propylene = 0.8.
[0078]
At that time, the trapping efficiency was 98.5%. Even after one week of operation without any increase in pressure loss near the trapping tower, an open inspection was conducted, and no polymer was found in the tower or at the top piping. .
[0079]
Further, 5 ml of the obtained aqueous solution of acrylic acid was put into a test tube, immersed in an oil bath maintained at 95 ° C., and the time required for the viscosity to increase was measured to be 13.2 hr.
[0080]
(Example 3)
Using the same reactor as in Example 1, from the lower part of the reaction tube to the upper part, (1) only the ceramic balls having an average diameter of 5 mm, (2) the catalyst (I) and the ceramic balls having an average diameter of 5 mm were used in a volume ratio of 55: (3) a mixture obtained by mixing the catalyst (I) and ceramic balls having an average diameter of 5 mm at a volume ratio of 70:30, (4) a catalyst (I) alone, and (5) an outer mixture. A Raschig ring made of stainless steel having a diameter of 5 mm, an inner diameter of 4.5 mm and a length of 6 mm; (6) a mixture obtained by mixing the catalyst (II) and a ceramic ball having an average diameter of 5 mm in a volume ratio of 65:35; II) and a mixture of ceramic balls having an average diameter of 5 mm in a volume ratio of 80:20. (8) Each layer length is 250 mm, 500 mm, 500 mm, 2,200 mm, 500 in the order of only the catalyst (II). m, 500mm, 500mm, was packed so as to 2,000mm.
[0081]
Propylene in the first reaction zone: 10.0% by volume, O 2 : 18.0% by volume, H 2 O: 0.9% by volume (the remainder is N 2 , Propane, etc.) at a space velocity of 1,250 hr in the first reaction zone. -1 (STP).
[0082]
At this time, at the outlet pressure of the second reaction zone at 0.15 MPa (absolute pressure), the first reaction zone was prepared such that the propylene conversion rate was 97 ± 0.5 mol% and the acrolein yield was 1 ± 0.5 mol%. The reaction was continued while adjusting the temperature of the heating medium in each of the second reaction zones. The acrylic acid yield after 100 hours from the start of the reaction was 85.6 mol%, and the acrylic acid-containing gas obtained at that time was converted into an acrylic acid collecting column having a temperature of 167 ° C. and a calculated theoretical number of 14 plates. To the collected water containing 1.8% by mass of acrylic acid, 6.5% by mass of acetic acid and 200% by mass of hydroquinone with respect to the amount of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. To collect the acrylic acid. Under the condition that the top temperature of the acrylic acid collection tower is 62.9 ° C. and the top pressure is 0.11 MPa (absolute pressure), the water concentration of the bottom liquid of the collection tower is 17% by mass. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of collecting solvent / the mass flow rate of propylene = 0.7.
[0083]
The trapping efficiency at that time was 98.6%, and no polymer was found in the inside of the tower or at the top piping, etc., even after one week of operation without any increase in pressure loss near the collecting tower and open inspection. .
[0084]
Further, 5 ml of the obtained aqueous solution of acrylic acid was put into a test tube, immersed in an oil bath kept at 95 ° C., and the time required for the viscosity to rise was measured. As a result, it was 15.5 hr.
[0085]
(Example 4)
The acrylic acid-containing gas obtained in Example 3 was introduced at a temperature of 167 ° C. into an acrylic acid collecting tower having 14 theoretical theoretical stages, and 1.8% by mass of acrylic acid, 7.1% by mass of acetic acid and Acrylic acid was collected in collecting water containing hydroquinone, which is equivalent to 200 mass ppm with respect to the amount of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. Under the condition that the top temperature of the acrylic acid collection tower is 62.9 ° C. and the top pressure is 0.11 MPa (absolute pressure), the water concentration of the bottom liquid of the collection tower is 8% by mass. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of collecting solvent / mass flow rate of propylene = 0.5.
[0086]
At that time, the collection efficiency was 97.5%, and even when the collection tower was operated for one week without increasing the pressure loss of the collection tower, even after the open inspection, almost no polymer was found in the inside of the tower and in the top piping. .
[0087]
Further, 5 ml of the obtained aqueous solution of acrylic acid was put into a test tube, and immersed in an oil bath kept at 95 ° C., and the time required for the viscosity to rise was measured to be 18.8 hr.
[0088]
(Example 5)
The same reactor and the same catalyst as in Example 1 were packed so that each layer length became 250 mm, 800 mm, 2,200 mm, 500 mm, 700 mm, and 1,800 mm.
[0089]
In the first reaction zone, propylene: 8.0% by volume, O 2 : 14.4% by volume, H 2 O: 9.6% by volume (the rest is N 2 , Propane, etc.) with a space velocity of 1,500 hr in the first reaction zone. -1 (STP).
[0090]
At this time, at the outlet pressure of the second reaction zone at 0.15 MPa (absolute pressure), the first reaction zone was prepared such that the propylene conversion rate was 97 ± 0.5 mol% and the acrolein yield was 1 ± 0.5 mol%. The reaction was continued while adjusting the temperature of the heating medium in each of the second reaction zones. The acrylic acid yield 100 hours after the start of the reaction was 86.3 mol%, and the acrylic acid-containing gas obtained at that time was converted into an acrylic acid collecting column having a temperature of 172 ° C. and a calculated theoretical number of 14 plates. To the collected water containing 1.8% by mass of acrylic acid, 3.8% by mass of acetic acid and 200% by mass of hydroquinone with respect to the amount of acrylic acid in the gas containing acrylic acid introduced into the collection tower. To collect the acrylic acid. Under the condition that the top temperature of the acrylic acid collecting tower is 62.9 ° C. and the top pressure is 0.11 MPa (absolute pressure), the water concentration of the bottom liquid of the collecting tower is 40% by mass. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of collecting solvent / the mass flow rate of propylene = 1.1.
[0091]
At that time, the trapping efficiency was 98.9%. Even after one week operation without any increase in pressure loss near the trapping tower, the polymer was not found in the inside of the tower or at the top pipe even when the tank was opened and inspected. .
[0092]
Further, 5 ml of the obtained aqueous solution of acrylic acid was put into a test tube, immersed in an oil bath maintained at 95 ° C., and the time required for the viscosity to rise was measured.
[0093]
(Example 6)
H in the mixed gas supplied to the first reaction zone 2 The reaction was carried out in the same manner as in Example 4 except that the O concentration was changed to 7.9% by volume. The acrylic acid yield after 100 hours from the start of the reaction was 86.0 mol%, and the acrylic acid-containing gas obtained at that time was subjected to an acrylic acid collecting column having a temperature of 171 ° C. and a calculated theoretical plate number of 14 plates. And collected water containing 1.3% by mass of acrylic acid, 4.4% by mass of acetic acid, and hydroquinone equivalent to 200% by mass with respect to the amount of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. Acrylic acid was collected at an amount of collecting solvent / mass flow rate of propylene of 1.6. At that time, the top temperature of the acrylic acid collection tower was 73.7 ° C., the top pressure was 0.11 MPa (absolute pressure), the water concentration of the bottom liquid of the collection tower was 25% by mass, and the collection efficiency was 97.1. When the tank was inspected for one week without any increase in pressure loss near the collecting tower, the polymer was found in the tower and at the top pipes.
[0094]
Further, 5 ml of the obtained aqueous solution of acrylic acid was put into a test tube, immersed in an oil bath kept at 95 ° C., and the time required for the viscosity to increase was measured to be 11.6 hr.
[0095]
(Comparative Example 1)
The composition of the mixed gas supplied to the first reaction zone was propylene: 6.0% by volume, O 2 10.8% by volume, H 2 O: 9.9% by volume (the remainder is N 2 , Propane and the like), and the reaction was carried out in the same manner as in Example 1. The acrylic acid yield 100 hours after the start of the reaction was 87.8 mol%, and the acrylic acid-containing gas obtained at that time was subjected to an acrylic acid collecting column having a temperature of 172 ° C. and a calculated theoretical number of 14 plates. To the collected water containing 1.8% by mass of acrylic acid, 4.8% by mass of acetic acid and 200 mass ppm of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. To collect the acrylic acid. Under the condition that the temperature of the top of the acrylic acid collecting tower is 62.9 ° C. and the pressure of the top of the acrylic acid collecting tower is 0.11 MPa (absolute pressure), the water concentration of the liquid in the bottom of the collecting tower is 25 mass%. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of the collecting solvent / the mass flow rate of propylene = 0.8.
[0096]
At that time, the trapping efficiency was 95.2%. After 5 days, the pressure loss in the vicinity of the trapping tower increased, and when the tank was stopped and opened for inspection, a considerable amount of polymer was found in the inside of the tower and at the top piping.
[0097]
Further, 5 ml of the obtained aqueous acrylic acid solution was put into a test tube, immersed in an oil bath kept at 95 ° C., and the time required for the viscosity to increase was measured to be 11.8 hr.
[0098]
(Comparative Example 2)
H in the mixed gas supplied to the first reaction zone 2 The reaction was carried out in the same manner as in Example 1 except that the O concentration was 11.6% by volume. The acrylic acid yield 100 hours after the start of the reaction was 87.4 mol%, and the acrylic acid-containing gas obtained at that time was subjected to an acrylic acid collecting column having a temperature of 173 ° C. and a theoretical theoretical number of 14 stages. To the collected water containing 1.8% by mass of acrylic acid, 4.1% by mass of acetic acid, and 200 mass ppm of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. To collect the acrylic acid. Under the condition that the temperature of the top of the acrylic acid collecting tower is 62.9 ° C. and the pressure of the top of the acrylic acid collecting tower is 0.11 MPa (absolute pressure), the water concentration of the liquid in the bottom of the collecting tower is 25 mass%. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of the collecting solvent / the mass flow rate of propylene = 0.8.
[0099]
At that time, the trapping efficiency was 94.9%. After four days, the pressure loss near the trapping tower increased, and when the tank was stopped and opened for inspection, a considerable amount of polymer was found in the inside of the tower and at the top piping.
[0100]
Further, 5 ml of the obtained aqueous acrylic acid solution was put into a test tube, immersed in an oil bath kept at 95 ° C., and the time required for the viscosity to increase was measured to be 11.8 hr.
[0101]
(Comparative Example 3)
H in the mixed gas supplied to the first reaction zone 2 The reaction was carried out in the same manner as in Example 1 except that the O concentration was changed to 9.6% by volume. The acrylic acid yield after 100 hours from the start of the reaction was 87.1 mol%, and the acrylic acid-containing gas obtained at that time was converted into an acrylic acid collecting column having a temperature of 171 ° C. and a theoretical theoretical number of 14 stages. To the collected water containing 1.8% by mass of acrylic acid, 3.5% by mass of acetic acid, and 200 mass ppm of acrylic acid in the acrylic acid-containing gas introduced into the collection tower. To collect the acrylic acid. Under the condition that the top temperature of the acrylic acid collection tower is 62.9 ° C. and the top pressure is 0.11 MPa (absolute pressure), the water concentration of the bottom liquid of the collection tower is 47% by mass. When the amount of water was adjusted, an aqueous solution of acrylic acid having a target water concentration was obtained with the amount of the collecting solvent / the mass flow rate of propylene = 1.5.
[0102]
At that time, the trapping efficiency was 99.0%, and no polymer was found in the inside of the tower or at the top pipe, etc., even after one week of operation without any increase in pressure loss near the collecting tower and open inspection. .
[0103]
In addition, 5 ml of the obtained acrylic acid aqueous solution was put into a test tube, immersed in an oil bath kept at 95 ° C., and the time required for the viscosity to rise was measured.
[0104]
【The invention's effect】
According to the present invention, in the acrylic acid production process using propylene as a raw material, the first reaction zone and the second reaction zone are contacted using a reactor in which a single reaction tube is divided by at least one perforated tube sheet. By limiting the conditions in the gas phase oxidation reaction to the acrylic acid collecting step to a specific range, acrylic acid can be produced with high productivity using a high concentration of propylene gas, and the operation in the purification step can be simplified.
[0105]
In particular, when the water concentration of the bottom liquid of the acrylic acid collecting tower is limited to 1 to 45% by mass, the treatment in the next step can be simplified.
[0106]
Also, by changing the amount of the collecting solution in the collecting tower, acrylic acid can be collected at a high concentration without changing the amount of water from the top of the collecting tower, and especially, the exhaust gas from the collecting tower is recycled and used. This is excellent in that the manufacturing conditions can be stabilized.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a part of an acrylic acid production process using a single reactor (single reactor) in which a first reaction zone and a second reaction zone are separated by a perforated tube sheet.
[Explanation of symbols]
1 ... propylene, 2 ... steam, 3 ... air, 4 ... blower, 10 ... reactor, 11 ... reaction tube, 12 ... composite oxide catalyst (i), 13: Composite oxide catalyst (ii), 15: Perforated tube sheet, 20: Acrylic acid-containing gas, 23: Heat exchanger, 30: Collection tower, 31 ... Packed bed, 32 ... disperser, 33 ... collection solvent, 34 ... cooler, 35 ... acrylic acid-containing solution, 36 ... exhaust gas, 40 ... dehydration tower, 41 ... -Distilled gas, 42 ... solvent phase, 43 ... aqueous phase, 50 ... next step, 60 ... waste gas, 71 ... heat exchanger, 72 ... flow rate adjusting device.

Claims (5)

プロピレンおよび分子状酸素を含有する混合ガスをモリブテンおよびビスマスを必須成分とする複合酸化物触媒を充填してなる第一反応ゾーンに導入し、プロピレンを酸化してアクロレイン含有ガスを得て、モリブテンおよびバナジウムを必須成分とする複合酸化物触媒を充填してなる第二反応ゾーンに該アクロレイン含有ガスを導入してアクリル酸含有ガスを得て、該アクリル酸含有ガスをアクリル酸捕集塔に導入し捕集溶剤と接触させてアクリル酸含有溶液を得る工程を含むアクリル酸の製造方法において、
(a)該第一反応ゾーンと該第二反応ゾーンとが単一の反応管を少なくとも1つの孔あき管板で分割して形成され、
(b)該第一反応ゾーンに導入する該混合ガスのプロピレン濃度が7〜15体積%、混合ガス中の水濃度が0〜10体積%であり、
(c)該アクリル酸捕集塔で捕集されるアクリル酸含有溶液の水濃度が1〜45質量%であることを特徴とするアクリル酸の製造方法。
A mixed gas containing propylene and molecular oxygen is introduced into a first reaction zone filled with a composite oxide catalyst containing molybdenum and bismuth as an essential component, and propylene is oxidized to obtain an acrolein-containing gas. The acrylic acid-containing gas is obtained by introducing the acrolein-containing gas into a second reaction zone filled with a composite oxide catalyst containing vanadium as an essential component, and the acrylic acid-containing gas is introduced into an acrylic acid collecting tower. In a method for producing acrylic acid comprising a step of obtaining an acrylic acid-containing solution by contacting with a collection solvent,
(A) the first reaction zone and the second reaction zone are formed by dividing a single reaction tube with at least one perforated tube sheet;
(B) the propylene concentration of the mixed gas introduced into the first reaction zone is 7 to 15% by volume, the water concentration in the mixed gas is 0 to 10% by volume,
(C) A method for producing acrylic acid, wherein the acrylic acid-containing solution collected in the acrylic acid collecting tower has a water concentration of 1 to 45% by mass.
該第一反応ゾーンに導入するプロピレンの質量流量の0.1〜1.5倍の質量流量の捕集溶剤をアクリル酸捕集塔に導入することを特徴とする、請求項1記載の方法。The method according to claim 1, wherein a collecting solvent having a mass flow rate of 0.1 to 1.5 times the mass flow rate of propylene introduced into the first reaction zone is introduced into the acrylic acid collecting tower. 捕集溶剤の主成分が水である、請求項1または2に記載の方法。The method according to claim 1, wherein the main component of the collection solvent is water. プロピレンおよび分子状酸素を含有する混合ガスをモリブテンおよびビスマスを必須成分とする複合酸化物触媒を充填してなる第一反応ゾーンに導入し、プロピレンを酸化してアクロレイン含有ガスを得て、モリブテンおよびバナジウムを必須成分とする複合酸化物触媒を充填してなる第二反応ゾーンに該アクロレイン含有ガスを導入してアクリル酸含有ガスを得て、該アクリル酸含有ガスをアクリル酸捕集塔に導入し捕集溶剤と接触させてアクリル酸含有溶液を得る工程を含むアクリル酸の製造方法において、
(a)該第一反応ゾーンと該第二反応ゾーンとを単一の反応管を少なくとも1つの孔あき管板で分割して形成し、
(b)第一反応ゾーンに導入する該混合ガスのプロピレン濃度を7〜15体積%、混合ガス中の水濃度が0〜10体積%とし、
(c)アクリル酸捕集塔で得られるアクリル酸含有溶液の水濃度を、捕集溶剤の導入量によって1〜45質量%とすることを特徴とするアクリル酸の製造方法。
A mixed gas containing propylene and molecular oxygen is introduced into a first reaction zone filled with a composite oxide catalyst containing molybdenum and bismuth as an essential component, and propylene is oxidized to obtain an acrolein-containing gas. The acrylic acid-containing gas is obtained by introducing the acrolein-containing gas into a second reaction zone filled with a composite oxide catalyst containing vanadium as an essential component, and the acrylic acid-containing gas is introduced into an acrylic acid collecting tower. In a method for producing acrylic acid comprising a step of obtaining an acrylic acid-containing solution by contacting with a collection solvent,
(A) forming the first reaction zone and the second reaction zone by dividing a single reaction tube with at least one perforated tube sheet;
(B) the propylene concentration of the mixed gas introduced into the first reaction zone is 7 to 15% by volume, the water concentration in the mixed gas is 0 to 10% by volume,
(C) A method for producing acrylic acid, wherein the water concentration of the acrylic acid-containing solution obtained in the acrylic acid collecting tower is 1 to 45% by mass depending on the amount of the collecting solvent introduced.
請求項1〜4の何れかに記載された方法で得たアクリル酸を用いることを特徴とする、ポリアクリル酸の製造方法。A method for producing polyacrylic acid, comprising using acrylic acid obtained by the method according to claim 1.
JP2002231448A 2002-08-08 2002-08-08 Acrylic acid production method Expired - Fee Related JP4465144B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002231448A JP4465144B2 (en) 2002-08-08 2002-08-08 Acrylic acid production method
US10/633,170 US7109372B2 (en) 2002-08-08 2003-08-01 Method for production of acrylic acid
TW092121431A TWI259176B (en) 2002-08-08 2003-08-05 Method for production of acrylic acid
KR1020030054129A KR20040014280A (en) 2002-08-08 2003-08-05 Method for production of acrylic acid
CNB031274218A CN100341841C (en) 2002-08-08 2003-08-06 Process for producing acroleic acid
SA03240238A SA03240238B1 (en) 2002-08-08 2003-08-06 A method for producing ACRYLIC ACID
DE60321626T DE60321626D1 (en) 2002-08-08 2003-08-07 Process for the production of acrylic acid
EP03254931A EP1388533B1 (en) 2002-08-08 2003-08-07 Method for production of acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231448A JP4465144B2 (en) 2002-08-08 2002-08-08 Acrylic acid production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010001838A Division JP2010070579A (en) 2010-01-07 2010-01-07 Method for producing acrylic acid

Publications (2)

Publication Number Publication Date
JP2004067615A true JP2004067615A (en) 2004-03-04
JP4465144B2 JP4465144B2 (en) 2010-05-19

Family

ID=30437771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231448A Expired - Fee Related JP4465144B2 (en) 2002-08-08 2002-08-08 Acrylic acid production method

Country Status (8)

Country Link
US (1) US7109372B2 (en)
EP (1) EP1388533B1 (en)
JP (1) JP4465144B2 (en)
KR (1) KR20040014280A (en)
CN (1) CN100341841C (en)
DE (1) DE60321626D1 (en)
SA (1) SA03240238B1 (en)
TW (1) TWI259176B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378207B2 (en) * 2007-05-29 2013-12-25 株式会社日本触媒 Method for producing (meth) acrylic acid

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056429B2 (en) 2003-06-05 2008-03-05 株式会社日本触媒 Method for producing (meth) acrylic acid
US8431743B2 (en) 2004-07-01 2013-04-30 Basf Aktiengesellschaft Preparation of acrylic acid by heterogeneously catalyzed partial gas phase oxidation of propylene
US7705181B2 (en) 2005-03-01 2010-04-27 Basf Akiengesellschaft Process for removing methacrylic acid from liquid phase comprising acrylic acid as a main constituent and target product, and methacrylic acid as a secondary component
DE102007014606A1 (en) 2007-03-23 2008-09-25 Basf Se Process for the storage of a monomer phase which is liquid under the conditions of storage
DE102007014603A1 (en) 2007-03-23 2008-09-25 Basf Se Method of transporting a withdrawn from a storage container liquid monomer phase in the tank of a tanker or a tanker
DE102007025869A1 (en) 2007-06-01 2008-07-03 Basf Se To service tube bundle of gas-phase hydrocarbon oxidation reactor immediately prior to re-charging with fresh bed of catalyst solids, they are brushed internally
DE102007028333A1 (en) 2007-06-15 2008-12-18 Basf Se Method for introducing a subset taken from at least one production batch of annular shell catalysts K into a reaction tube of a tube bundle reactor
DE102008040799A1 (en) 2008-07-28 2008-12-11 Basf Se Separating a three carbon precursor compound of acrylic acid as main component containing acrylic acid and as byproduct containing glyoxal, in a product mixture of a heterogeneously catalyzed partial gas phase oxidation
JP2011529094A (en) 2008-07-28 2011-12-01 ビーエーエスエフ ソシエタス・ヨーロピア Method for separating acrylic acid contained as main product and glyoxal contained as by-product from gaseous product mixture of C3 precursor compound of acrylic acid
DE102008041573A1 (en) 2008-08-26 2010-03-04 Basf Se Separating acrylic acid and glyoxal from gaseous product mixture of gas phase oxidation of a three carbon-precursor compound of acrylic acid comprises producing a liquid phase containing acrylic acid and glyoxal, and separating glyoxal
JP2010070579A (en) * 2010-01-07 2010-04-02 Nippon Shokubai Co Ltd Method for producing acrylic acid
DE102010042216A1 (en) 2010-10-08 2011-06-09 Basf Se Inhibiting the unwanted radical polymerization of acrylic acid present in a liquid phase, comprises adding a chemical compound of copper to the liquid phase, and the liquid phase additionally contains propionic acid and glyoxal
JP6452169B2 (en) 2016-09-14 2019-01-16 日本化薬株式会社 Catalyst for producing acrylic acid and method for producing acrylic acid
EP3826987A1 (en) 2018-07-26 2021-06-02 Basf Se Method for inhibiting unwanted radical polymerisation of acrylic acid present in a liquid phase p
JP2023519280A (en) 2020-03-26 2023-05-10 ベーアーエスエフ・エスエー Method for Suppressing Undesired Free Radical Polymerization of Acrylic Acid Present in Liquid Phase P

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203906A (en) 1977-07-13 1980-05-20 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for catalytic vapor phase oxidation
JPS5673041A (en) * 1979-11-19 1981-06-17 Mitsubishi Petrochem Co Ltd Preparation of acrylic acid
US6384274B1 (en) * 1998-09-27 2002-05-07 Rohm And Haas Company Single reactor process for preparing acrylic acid from propylene having improved capacity
JP3938646B2 (en) * 2000-01-14 2007-06-27 株式会社日本触媒 Acrylic acid production method
JP2001247510A (en) * 2000-03-08 2001-09-11 Nippon Shokubai Co Ltd Method of producing acrylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378207B2 (en) * 2007-05-29 2013-12-25 株式会社日本触媒 Method for producing (meth) acrylic acid

Also Published As

Publication number Publication date
TWI259176B (en) 2006-08-01
EP1388533A1 (en) 2004-02-11
CN100341841C (en) 2007-10-10
CN1480442A (en) 2004-03-10
US7109372B2 (en) 2006-09-19
US20040063998A1 (en) 2004-04-01
KR20040014280A (en) 2004-02-14
SA03240238B1 (en) 2007-03-05
DE60321626D1 (en) 2008-07-31
JP4465144B2 (en) 2010-05-19
EP1388533B1 (en) 2008-06-18
TW200403219A (en) 2004-03-01

Similar Documents

Publication Publication Date Title
JP3908118B2 (en) Acrylic acid production method
JP5940045B2 (en) Process for heterogeneously catalyzed partial gas phase oxidation of propylene to form acrylic acid
JP5361393B2 (en) Process for heterogeneously catalyzed partial gas phase oxidation of propylene to form acrylic acid
US7332624B2 (en) Method for production of acrylic acid
JP4465144B2 (en) Acrylic acid production method
JPS6139298B2 (en)
JP2001226320A (en) Method for collecting acrylic acid and method for purifying acrylic acid
JPH08239342A (en) Method of isolating (meth)acrylic acid from mixture
JP2004359611A (en) Method for producing (meth)acrylic acid
JP5921676B2 (en) Aqueous solution containing acrylic acid and its conjugate base
BRPI0607566B1 (en) process for the preparation of at least one organic target compound, and apparatus
JPH1180077A (en) Production of methyl methacrylate
JP5380434B2 (en) Method for producing acrylic acid, method for producing hydrophilic resin using the method, and method for producing water-absorbing resin
JP2023100734A (en) Method for producing unsaturated carboxylic acid ester
JP2010070579A (en) Method for producing acrylic acid
JP2003176253A (en) Method of distillation of (meth)acrylic acids
JP2003238485A (en) Method and equipment for collecting (meth)acrylic acid
JP2008019275A (en) Method for producing (meth)acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070307

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4465144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees