JP2004066421A - Surface-covered superalloy cutting tool whose hard covering layer exhibits good chipping resistance and wear resistance in high-speed heavy cutting condition - Google Patents

Surface-covered superalloy cutting tool whose hard covering layer exhibits good chipping resistance and wear resistance in high-speed heavy cutting condition Download PDF

Info

Publication number
JP2004066421A
JP2004066421A JP2002231238A JP2002231238A JP2004066421A JP 2004066421 A JP2004066421 A JP 2004066421A JP 2002231238 A JP2002231238 A JP 2002231238A JP 2002231238 A JP2002231238 A JP 2002231238A JP 2004066421 A JP2004066421 A JP 2004066421A
Authority
JP
Japan
Prior art keywords
oxygen
carbon
highest content
layer
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002231238A
Other languages
Japanese (ja)
Other versions
JP3922132B2 (en
Inventor
Tetsuhiko Honma
本間 哲彦
Makoto Nishida
西田 真
Akira Osada
長田 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002231238A priority Critical patent/JP3922132B2/en
Publication of JP2004066421A publication Critical patent/JP2004066421A/en
Application granted granted Critical
Publication of JP3922132B2 publication Critical patent/JP3922132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-covered superalloy cutting tool whose hard covering layer exhibits good chipping resistance and wear resistance in a high-speed heavy cutting condition. <P>SOLUTION: In this surface-covered superalloy cutting tool having a hard covering layer made of a carbonated compound layer of Al and Ti deposited on a surface of a super hard substrate with an average layer thickness of 2 to 20 μm, the hard covering layer is formed in a manner that the maximum containing point of Al and oxygen and the maximum containing point of Ti and carbon are alternately present with a predetermined interval repeatedly along the layer thickness direction and that the layer has structure of component concentration distribution where the amount of AL and Ti and the amount of oxygen and carbon change successively between both of the containing points and a gap between adjacent containing points is 0.01 to 0.2 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高速切削加工を、高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、個々の層厚が1μm以下のAl酸化物(以下、Alで示す)層とTi炭化物(以下、TiCで示す)層とを交互積層して、2〜20μmの全体平均層厚で蒸着してなる被覆超硬工具が提案され、前記硬質被覆層を構成するAl−TiC交互積層が、Al層による高温硬さおよび耐熱性と、TiC層による強度を具備することから、かかる被覆超硬工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば800〜1100℃の範囲内の所定の温度に加熱した後、Al層形成には、反応ガスとして、容量%で(以下、反応ガスの%は容量%を示す)、
AlCl:2〜7%、
CO:2〜10%、
HCl:3〜7%、
:残り、
からなる組成を有する反応ガスを用い、また、TiC層形成には、
TiCl:1〜3%、
CH:   〜   %、
:残り、
からなる組成を有する反応ガスを用い、これらの反応ガスを予め真空排気された装置内に前記反応ガス吹き出し管を通して、装置内の反応ガス圧力を7〜40kPaの範囲内の所定の圧力に保持しながら、交互に導入することによりAl−TiC交互積層からなる硬質被覆層を形成することにより製造されることも知られている(例えば特許文献1参照)。
【0005】
【特許文献1】
特開昭52−105396号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向を強め、かつ高切り込みや高送りなどの重切削条件での切削加工を余儀なくされる傾向にあるが、上記の従来被覆超硬工具においては、これを高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削を高速で行なうのに用いると、特にAl−TiC交互積層からなる硬質被覆層のAl層はすぐれた高温硬さおよび耐熱性を有するものの強度が不十分であるために、高速重切削ではこれが破壊の起点となることから、チッピング(微小割れ)発生の原因となり、また同じくTiC層は高強度を有するものの高温硬さおよび耐熱性の低いものであることから、高速重切削では摩耗進行が急速に促進されるようになり、この結果比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する被覆超硬工具を開発すべく、研究を行った結果、
(a)上記の図1,2に示される化学蒸着装置を用いて、上記の従来被覆超硬工具の硬質被覆層の構成成分であるAlとTiCの複合化合物、すなわちAlとTiの複合炭酸化物(以下、Al−Ti炭酸化物という)層を形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記Al−Ti炭酸化物層からなる硬質被覆層に層厚方向にそってAlおよび酸素の最高含有点とTiおよび炭素の最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Alおよび酸素の最高含有点並びにTiおよび炭素の最高含有点に対応した反応ガス組成、並びに前記両点間のAlと酸素およびTiと炭素の連続変化に対応した反応ガス組成、さらに前記両点間の間隔を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのHガス、COガス、CHガス、およびHClガスの流量、さらにAlClガスおよびTiClガスの流量をそれぞれの原料ガス流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと炭素の含有量が連続的に変化する成分濃度分布構造をもつたAl−Ti炭酸化物層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のAl−Ti炭酸化物層において、
上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)を、それぞれ原子比で、
Al/(Al+Ti):0.80〜0.98、
酸素/(酸素+炭素):0.80〜0.98、
上記Tiおよび炭素の最高含有点におけるTiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)を、それぞれ原子比で、
Ti/(Ti+Al):0.80〜0.98、
炭素/(炭素+酸素):0.80〜0.98、
とし、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Alおよび酸素の最高含有点部分では、Alのもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性を示し、一方上記Tiおよび炭素の最高含有点部分では、TiCのもつ強度に相当する高強度が確保され、かつこれらAlおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性、および高強度を具備するようになり、さらに前記両点間でAlと酸素およびTiと炭素の含有量が連続的に変化(成分濃度分布構造)することにより、破壊の起点が存在しないことになり、したがって、硬質被覆層がかかる構成のAl−Ti炭酸化物層からなる被覆超硬工具は、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、Al−Ti炭酸化物層からなる硬質被覆層を2〜20μmの全体平均層厚で蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび炭素と酸素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)が、それぞれ原子比で、
Al/(Al+Ti):0.80〜0.98、
酸素/(酸素+炭素):0.80〜0.98、
上記Tiおよび炭素の最高含有点におけるTiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.80〜0.98、
炭素/(炭素+酸素):0.80〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の間隔が、0.01〜0.2μmである、
高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Alおよび酸素の最高含有点
Al−Ti炭酸化物層のTiおよび炭素成分には強度を向上させ、同Alおよび酸素成分には高温硬さおよび耐熱性を向上させる作用があり、したがってAlおよび酸素の最高含有点ではAlおよび酸素の含有割合を相対的に高くして高温硬さおよび耐熱性を向上させることにより、高熱発生を伴う高速切削に適合するものとするが、この場合AlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)がいずれも原子比で(以下、同じ)0.98を越えると、実質的にAl酸化物で構成されるようになることから、高強度を有するTiと炭素の最高含有点が隣接して存在しても層自体の強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同値が0.80未満になると高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となることから、Al/(Al+Ti)および酸素/(酸素+炭素)の値をいずれも0.80〜0.98と定めた。
【0011】
(b)Tiおよび炭素の最高含有点
上記の通りAlおよび酸素の最高含有点は相対的にすぐれた高温硬さおよび耐熱性を有するが、反面相対的に強度が不十分であるため、このAlおよび酸素の最高含有点の強度不足を補う目的で、高強度を有するTiおよび炭素の最高含有点を厚さ方向に交互に介在させるものである。しかし、TiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)が、それぞれ0.98を越えると、実質的にTi炭化物で構成されるようになることから、Tiおよび炭素の最高含有点に所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同値が0.80未満になると、所望のすぐれた強度を確保することができず、この結果チッピングが発生し易くなることから、Ti/(Ti+Al)および炭素/(炭素+酸素)の値をいずれも0.80〜0.98と定めた。
【0012】
(c)Alおよび酸素の最高含有点とTiおよび炭素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高強度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちAlおよび酸素の最高含有点であれば強度不足、Tiおよび炭素の最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0013】
(d)硬質被覆層の全体平均層厚
その層厚が2μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が20μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜20μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG160608のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの炭素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0016】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl:4.2%、N:30%、H:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で30分間保持して下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績にデータにしたがって、表3に示されるAlおよび酸素の最高含有点の目標Al/(Al+Ti)および酸素/(酸素+炭素)、さらにTiおよび炭素の最高含有点の目標Ti/(Ti+Al)および炭素/(炭素+酸素)に対応する反応ガス組成、前記Alおよび酸素の最高含有点とTiおよび炭素の最高含有点間のAlとTiおよび酸素と炭素の含有量の連続変化に対応する反応ガス組成、さらに表4、5に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるHガス、CHガス、COガス、およびHClガス、さらにAlClガスおよびTiClガス(この場合、AlClガスは、AlClガス発生器で金属Alと流量制御されたHClガスを反応させることにより形成され、また、TiClガスは、図示の通り流量制御されたHガスをキャリアガスとしてTiClガス発生器に送り、ここで液体から気化されたTiClガスと共に原料ガス流量自動制御装置に送られる)を、それぞれのガス流量を制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標Al/(Al+Ti)および酸素/(酸素+炭素)のAlおよび酸素の最高含有点と、目標Ti/(Ti+Al)および炭素/(炭素+酸素)のTiおよび炭素の最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、Al層の形成条件を、
反応ガス組成:AlCl:3%、CO:7%、HCl:3%、H:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:7kPa、
とし、また、TiC層の形成条件を、
反応ガス組成:TiCl:4.5%、CH:14%、H:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:7kPa、
として、それぞれ表6,7に示される目標層厚のAl層およびTiC層の交互積層からなる硬質被覆層を、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、同じく表6,7に示される目標全体層厚で蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM415の丸棒、
切削速度:330m/min.、
切り込み:4.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・S20Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:370m/min.、
切り込み:1.5mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0019】
【表1】

Figure 2004066421
【0020】
【表2】
Figure 2004066421
【0021】
【表3】
Figure 2004066421
【0022】
【表4】
Figure 2004066421
【0023】
【表5】
Figure 2004066421
【0024】
【表6】
Figure 2004066421
【0025】
【表7】
Figure 2004066421
【0026】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってAl、Ti、酸素、および炭素の含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるAl/(Al+Ti)および酸素/(酸素+炭素)値、さらにTi/(Ti+Al)および炭素/(炭素+酸素)値を算出したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Alおよび酸素の最高含有点と、Tiおよび炭素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつAlおよび酸素の最高含有点からTiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点からAlおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有することが確認され、硬質被覆層の平均層厚も目標全体層厚と実質的に同じ値を示した。また、従来被覆超硬チップ1〜16の硬質被覆層においても目標層厚と実質的に同じ平均層厚のAl層とTiC層とが交互に、かつ目標全体層厚と実質的に同じ平均層厚で形成されていることが確認された。
【0027】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的にすぐれた高温硬さと耐熱性を有するAlおよび酸素の最高含有点と相対的に高強度を有するTiおよび炭素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮するのに対して、硬質被覆層がAl層とTiC層の交互積層からなる従来被覆超硬チップ1〜16においては、前記硬質被覆層のAl層が特に高速重切削条件ではチッピング発生の起点となり、また前記TiC層の摩耗進行が切削時の高熱発熱により促進されることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を例示する概略縦断面図である。
【図2】化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆超硬工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムの概略チャート図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having high strength and excellent high-temperature hardness and heat resistance. Therefore, high-speed cutting of various steels and cast irons can be performed particularly at high cutting and high cutting rates with high thermal mechanical impact. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter referred to as a coated cemented carbide tool) in which a hard coating layer exhibits excellent chipping resistance and wear resistance even when performed under heavy cutting conditions such as feed. .
[0002]
[Prior art]
In general, coated carbide tools are used for throw-away inserts, drilling, etc., which are removably attached to the tip of a cutting tool for turning or planing of various materials such as steel and cast iron. There are solid type end mills used for drilling and miniature drills, as well as for face milling, grooving, shoulder processing, etc., and the cutting is performed in the same manner as the solid type end mill by detachably attaching the throw-away tip. A throw-away end mill tool and the like are known.
[0003]
Further, as a coated cemented carbide tool, a substrate made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter, referred to as TiCN) -based cermet (hereinafter, these are collectively referred to as a cemented carbide substrate) ), An Al oxide (hereinafter referred to as Al 2 O 3 ) layer and a Ti carbide (hereinafter referred to as TiC) layer each having a thickness of 1 μm or less are alternately laminated on the surface of A coated cemented carbide tool having been deposited with an average layer thickness has been proposed, and the Al 2 O 3 —TiC alternating layer constituting the hard coating layer has a high-temperature hardness and heat resistance due to the Al 2 O 3 layer and a TiC layer. Due to its strength, it is also known that such coated carbide tools exhibit excellent cutting performance when used for continuous or interrupted cutting of various types of steel or cast iron (see, for example, Patent Document 1). ).
[0004]
Further, as shown in the schematic vertical sectional view of FIG. 1, for example, the above coated carbide tool is provided with a reaction gas blowing pipe made of stainless steel at the center thereof, and the reaction gas blowing pipe is provided with a reaction gas blowing pipe shown in FIG. Graphite carbide substrate support pallets exemplified in a schematic perspective view in a) and a schematic plan view in b) are skewered, stacked and fitted, and heated by a heater via a stainless steel cover. Using a chemical vapor deposition apparatus having a structure as shown in the figure, the cemented carbide substrate is mounted on the chemical vapor deposition apparatus in a state where it is placed as shown in a number of reaction gas passage holes formed on the bottom surface of the cemented carbide support pallet. Then, after heating the inside of the apparatus with a heater to a predetermined temperature in the range of, for example, 800 to 1100 ° C., for forming an Al 2 O 3 layer, the reaction gas is used as a reaction gas by volume% (hereinafter,% of the reaction gas is Volume%),
AlCl 3 : 2 to 7%,
CO 2 : 2 to 10%,
HCl: 3-7%,
H 2 : remaining,
Using a reaction gas having a composition consisting of:
TiCl 4: 1~3%,
CH 4: ~%,
H 2 : remaining,
These reaction gases are passed through the reaction gas blow-out pipe into a device which has been evacuated in advance, and the reaction gas pressure in the device is maintained at a predetermined pressure within a range of 7 to 40 kPa. However, it is also known to manufacture by forming a hard coating layer composed of Al 2 O 3 —TiC alternately laminated by alternately introducing (see Patent Document 1, for example).
[0005]
[Patent Document 1]
JP-A-52-105396 [0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, but on the other hand, there has been a strong demand for labor-saving and energy-saving cutting, as well as low cost. There is a tendency for cutting under heavy cutting conditions such as high feed, but in the above-mentioned conventional coated carbide tools, heavy cutting such as high cutting and high feed with high thermal mechanical impact is required. When used at high speeds, the Al 2 O 3 layer of the hard coating layer composed of the Al 2 O 3 —TiC alternately laminated layer has excellent high-temperature hardness and heat resistance, but has insufficient strength. In heavy cutting, this is the starting point of fracture, which causes chipping (micro cracking). Similarly, the TiC layer has high strength but low high-temperature hardness and low heat resistance. However, in high-speed heavy cutting, the progress of wear is rapidly accelerated, and as a result, the service life is relatively short in service life.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have conducted research in order to develop a coated carbide tool in which a hard coating layer exhibits excellent chipping resistance and wear resistance particularly in high-speed heavy cutting. result,
(A) Using the chemical vapor deposition apparatus shown in FIGS. 1 and 2, a composite compound of Al 2 O 3 and TiC, which is a component of the hard coating layer of the conventional coated carbide tool, that is, Al and Ti In forming a composite carbonate (hereinafter referred to as Al-Ti carbonate) layer, for example, as shown in a schematic chart of a reaction gas composition automatic control system in FIG. -For the purpose of repeatedly forming the highest content points of Al and oxygen and the highest content points of Ti and carbon alternately at predetermined intervals on the hard coating layer composed of the Ti carbonate layer in the layer thickness direction at predetermined intervals. A reaction gas composition corresponding to the highest content point of oxygen and the highest content point of Ti and carbon, and a reaction gas composition corresponding to a continuous change of Al and oxygen and Ti and carbon between the two points; Wherein the distance between two points, and inputs based on historical data, according to a control signal from the reaction gas composition and flow rates central controller, H 2 gas from the raw material gas cylinder, CO 2 gas, CH 4 gas , And the flow rates of the HCl gas, and the flow rates of the AlCl 3 gas and the TiCl 4 gas, while being controlled by the respective raw material gas flow rate automatic controllers, are introduced into the reaction gas blowing pipe of the chemical vapor deposition apparatus. , The highest content points of Al and oxygen and the highest content points of Ti and carbon are alternately and repeatedly present at a predetermined interval, and the highest content points of Ti and carbon from the highest content points of Al and oxygen; And the component concentration at which the contents of Al and oxygen and Ti and carbon continuously change from the highest content point of carbon to the highest content point of Al and oxygen A hard coating layer composed of an Al—Ti carbonate layer having a distribution structure is formed.
[0008]
(B) In the Al—Ti carbonate layer having the concentration distribution structure of the repeated continuous change component of (a),
Al / (Al + Ti) and oxygen / (oxygen + carbon), which indicate the mutual content of Al and Ti and oxygen and carbon at the highest content points of Al and oxygen, are represented by the following atomic ratios:
Al / (Al + Ti): 0.80 to 0.98,
Oxygen / (oxygen + carbon): 0.80 to 0.98,
Ti / (Ti + Al) and carbon / (carbon + oxygen), which indicate the mutual content of Ti and Al and carbon and oxygen at the highest content points of Ti and carbon, are represented by the following atomic ratios:
Ti / (Ti + Al): 0.80 to 0.98,
Carbon / (carbon + oxygen): 0.80 to 0.98,
And, when the interval in the thickness direction between the adjacent highest content points of Al and oxygen and the highest content points of Ti and carbon is 0.01 to 0.2 μm,
The highest Al and oxygen content points show excellent high temperature hardness and heat resistance corresponding to the high temperature hardness and heat resistance of Al 2 O 3 , while the highest Ti and carbon content points have TiC High strength equivalent to the strength was secured, and the interval between the highest content points of Al and oxygen and the highest content points of Ti and carbon was extremely small, so that the properties of the entire layer were excellent in high-temperature hardness and heat resistance, And high strength, and furthermore, the content of Al and oxygen and the content of Ti and carbon continuously change (component concentration distribution structure) between the two points, so that there is no origin of fracture. Therefore, a coated carbide tool made of an Al—Ti carbonate layer having such a structure as a hard coating layer is particularly suitable for cutting various kinds of steel and cast iron at high speed and high thermal mechanical impact. Also, it is like chipping resistance of the hard coating layer has excellent and exhibits abrasion resistance when made in heavy cutting conditions such as high cut and high feed with.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results, and is obtained by vapor-depositing a hard coating layer made of an Al-Ti carbonate layer on the surface of a superhard substrate with a total average layer thickness of 2 to 20 μm. In coated carbide tools,
In the hard coating layer, the highest content points of Al and oxygen and the highest content points of Ti and carbon are alternately present at predetermined intervals along the layer thickness direction, and the highest content points of the Al and oxygen are present. Has a component concentration distribution structure in which the contents of Al, Ti, carbon and oxygen continuously change from the highest content point of Ti and carbon and the highest content point of Ti and carbon to the highest content point of Al and oxygen. And
Further, Al / (Al + Ti) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Ti and oxygen and carbon at the highest content points of Al and oxygen are represented by atomic ratios, respectively.
Al / (Al + Ti): 0.80 to 0.98,
Oxygen / (oxygen + carbon): 0.80 to 0.98,
Ti / (Ti + Al) and carbon / (carbon + oxygen), which indicate the mutual content of Ti and Al and carbon and oxygen at the highest content points of Ti and carbon, are represented by atomic ratios, respectively.
Ti / (Ti + Al): 0.80 to 0.98,
Carbon / (carbon + oxygen): 0.80 to 0.98,
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Ti and carbon is 0.01 to 0.2 μm,
The present invention is characterized by coated carbide tools in which a hard coating layer exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
[0010]
Next, the reason why the configuration of the hard coating layer constituting the coated carbide tool of the present invention is limited as described above will be described.
(A) The highest content point of Al and oxygen The Ti and carbon components of the Al-Ti carbonate layer improve the strength, and the Al and oxygen components have the effect of improving high-temperature hardness and heat resistance. At the highest content point of oxygen and by increasing the content ratio of Al and oxygen relatively to improve high-temperature hardness and heat resistance, it is suitable for high-speed cutting with high heat generation. When Al / (Al + Ti) and oxygen / (oxygen + carbon), which indicate the mutual content ratio of Ti and oxygen and carbon, both exceed 0.98 in atomic ratio (the same applies hereinafter), they are substantially composed of Al oxide. Therefore, even if the highest content points of Ti and carbon having high strength are present adjacent to each other, a decrease in the strength of the layer itself is inevitable, and as a result, chipping and the like are likely to occur. When the value is less than 0.80, the high-temperature hardness and heat resistance rapidly decrease and cause abrasion acceleration. Therefore, the values of Al / (Al + Ti) and oxygen / (oxygen + carbon) are both set to 0.80. 0.90.98.
[0011]
(B) Maximum content of Ti and carbon As described above, the maximum content of Al and oxygen has relatively excellent high-temperature hardness and heat resistance, but the strength is relatively insufficient. In order to compensate for the lack of strength at the highest content point of oxygen and oxygen, the highest content points of Ti and carbon having high strength are alternately interposed in the thickness direction. However, when Ti / (Ti + Al) and carbon / (carbon + oxygen), which indicate the mutual content ratio of Ti and Al and carbon and oxygen, respectively exceed 0.98, they become substantially composed of Ti carbide. Therefore, the predetermined high-temperature hardness and heat resistance cannot be secured at the highest content points of Ti and carbon, and this causes the acceleration of wear. On the other hand, when the value is less than 0.80, the desired excellent strength is obtained. Since it is not possible to secure them, and as a result chipping easily occurs, the values of Ti / (Ti + Al) and carbon / (carbon + oxygen) are both set to 0.80 to 0.98.
[0012]
(C) Spacing between the highest content points of Al and oxygen and the highest content points of Ti and carbon If the spacing is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, the layer It is impossible to ensure the desired high-temperature hardness and heat resistance as well as high strength, and if the spacing exceeds 0.2 μm, the disadvantages of each point, that is, the highest content points of Al and oxygen. If the strength is insufficient, and if the content of Ti and carbon is the highest, high-temperature hardness and insufficient heat resistance locally appear in the layer, which may cause chipping or promote abrasion. For this reason, the interval is set to 0.01 to 0.2 μm.
[0013]
(D) If the average thickness of the hard coating layer is less than 2 μm, the desired wear resistance cannot be ensured. On the other hand, if the average thickness exceeds 20 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 2 to 20 μm.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cemented carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 μm were prepared. The mixture was wet-mixed for 72 hours in a ball mill, dried and pressed into a green compact at a pressure of 100 MPa, and the green compact was heated to 1400 ° C. for 1 hour in a vacuum of 6 Pa. After sintering under the conditions of holding, after sintering, the cutting edge portion is subjected to honing processing of R: 0.03, and a carbide substrate A1 to A10 made of a WC-based cemented carbide having a chip shape of ISO standard CNMG160608. Was formed.
[0015]
Further, as raw material powder, TiCN (TiC / TiN = 50/50 by weight) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle diameter of 0.5 to 2 μm , Co powder, and Ni powder were prepared, and these raw material powders were blended in the composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was sintered in a carbon atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge was subjected to a honing process of R: 0.03 to conform to ISO standard CNMG160612. Carbide bases B1 to B6 made of TiCN-based cermet having the chip shape described above were formed.
[0016]
Next, each of the above-mentioned super-hard substrates A1 to A10 and B1 to B6 is subjected to ultrasonic cleaning in acetone, dried, and then placed in a chemical vapor deposition apparatus shown in FIG. It was loaded while being placed in the positioning holes of the substrate supporting pallet. First, when the inside of the apparatus was heated to 900 ° C. with a heater, TiCl 4 : 4.2%, N 2 : 30%, and H 2 : remainder. A reaction gas having a composition is introduced through a reaction gas blow-out tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 30 minutes, and titanium nitride having an average layer thickness of 0.3 μm as a base adhesion layer ( After a TiN) layer was formed and the atmosphere temperature in the apparatus was also increased to 1020 ° C. by a heater, the reaction gas composition and flow rate central control device of the reaction gas composition automatic control system shown in FIG. According to the data of the past results, the target Al / (Al + Ti) and oxygen / (oxygen + carbon) of the maximum Al and oxygen contents shown in Table 3 and the target Ti / (Ti + Al) and the reaction gas composition corresponding to carbon / (carbon + oxygen), the continuous change of the content of Al and Ti and the content of oxygen and carbon between the highest content point of Al and oxygen and the highest content point of Ti and carbon. The corresponding reaction gas composition, and also the target spacing between the two points and the target total layer thickness of the hard coating layer shown in Tables 4 and 5, are input and actuated according to the reaction gas composition and the signal from the central flow controller. Source gas H 2 gas, CH 4 gas, CO 2 gas, and HCl gas, and further, AlCl 3 gas and TiCl 4 gas (in this case, AlCl 3 gas is formed by reacting metal Al with HCl gas whose flow rate is controlled by an AlCl 3 gas generator, and TiCl 4 gas is flow controlled as shown in the figure. The supplied H 2 gas is sent as a carrier gas to a TiCl 4 gas generator, which is sent to the raw material gas flow automatic control device together with the TiCl 4 gas vaporized from the liquid, while controlling the respective gas flow rates. Introduced into the apparatus from the reaction gas blow-out pipe of the chemical vapor deposition apparatus 1 (the pressure of the reaction atmosphere in the apparatus is always kept at 7 kPa). 4, the target Al / (Al + Ti) and oxygen / (oxygen + carbon) maximum Al and oxygen content points and the target Ti / (Ti + Al) and carbon / (charcoal) + Oxygen) and the highest content points of Ti and carbon are alternately present at the same target intervals shown in Tables 3 and 4, and the highest content points of Ti and carbon are determined from the highest content points of Al and oxygen. It has a component concentration distribution structure in which the contents of Al, Ti, oxygen and carbon continuously change from the highest content point of Ti and carbon to the highest content point of Al and oxygen, respectively, and are also shown in Tables 3 and 4. By depositing a hard coating layer having a target overall layer thickness to be obtained, the throw-away tips made of the surface-coated cemented carbide of the present invention (hereinafter referred to as the coated cemented carbide tips of the present invention) 1 to 16 as the coated carbide tools of the present invention. Each was manufactured.
[0017]
For the purpose of comparison, these super-hard substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the ordinary chemical vapor deposition apparatus shown in FIGS. , Al 2 O 3 layer forming conditions are as follows:
Reaction gas composition: AlCl 3 : 3%, CO 2 : 7%, HCl: 3%, H 2 : remaining,
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: 7 kPa,
And the conditions for forming the TiC layer are as follows:
Reaction gas composition: TiCl 4: 4.5%, CH 4: 14%, H 2: remainder,
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: 7 kPa,
A hard coating layer composed of alternately laminated Al 2 O 3 layers and TiC layers having the target layer thicknesses shown in Tables 6 and 7, respectively, was formed on the surfaces of the super-hard substrates A1 to A10 and B1 to B6, respectively. By depositing with the target total layer thickness shown in Tables 6 and 7, the conventional surface-coated cemented carbide throwaway tips (hereinafter, referred to as conventionally-coated cemented carbide tips) 1 to 16 as the conventionally-coated cemented carbide tools are respectively provided. Manufactured.
[0018]
Next, with respect to the above-mentioned coated carbide tips 1 to 16 of the present invention and conventional coated carbide tips 1 to 16, in a state where they were screwed to the tip of a tool steel tool with a fixing jig,
Work material: JIS SCM415 round bar,
Cutting speed: 330 m / min. ,
Cut: 4.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed high-cut cutting test of alloy steel under the conditions
Work material: JIS S20C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 370 m / min. ,
Cut: 1.5 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes,
Intermittent high-speed high-feed cutting test of carbon steel under the conditions of
Work material: Round bar with four vertical grooves at equal intervals in the length direction of JIS FC250
Cutting speed: 350 m / min. ,
Cut: 5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry intermittent high-speed, high-cut cutting test was performed on cast iron under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. Table 7 shows the measurement results.
[0019]
[Table 1]
Figure 2004066421
[0020]
[Table 2]
Figure 2004066421
[0021]
[Table 3]
Figure 2004066421
[0022]
[Table 4]
Figure 2004066421
[0023]
[Table 5]
Figure 2004066421
[0024]
[Table 6]
Figure 2004066421
[0025]
[Table 7]
Figure 2004066421
[0026]
Regarding the hard coating layers constituting the coated carbide tips 1 to 16 of the present invention and the conventional coated carbide tips 1 to 16 obtained as described above, the contents of Al, Ti, oxygen, and carbon in the thickness direction were Auger. The measurement was carried out using a spectroscopic analyzer, and the Al / (Al + Ti) and oxygen / (oxygen + carbon) values, and further the Ti / (Ti + Al) and carbon / (carbon + oxygen) values at each measurement point were calculated from the measurement results. However, in the hard coating layers of the coated carbide tips 1 to 16 of the present invention, the highest content points of Al and oxygen and the highest content points of Ti and carbon are alternately repeated at substantially the same composition and interval as the target values, respectively. Al and Ti and oxygen present and from the highest content of Al and oxygen to the highest content of Ti and carbon, from the highest content of Ti and carbon to the highest content of Al and oxygen It was confirmed to have a component concentration distribution structure content changes continuously carbon, the average layer thickness of the hard layer showed a target total layer thickness substantially the same value. Further, in the conventional coating carbide target layer thickness even in the hard coating layer of the chip 1 to 16 and substantially the same average layer thickness of the Al 2 O 3 layer and the TiC layer alternately, and the target total layer thickness and substantially It was confirmed that they were formed with the same average layer thickness.
[0027]
【The invention's effect】
From the results shown in Tables 3 to 7, it can be seen that the hard coating layer has, in the layer thickness direction, the highest content points of Al and oxygen having relatively excellent high-temperature hardness and heat resistance and the relatively high strength of Ti and carbon having relatively high strength. The highest content points are alternately present at predetermined intervals, and the highest content points of Al and oxygen are the highest content points of Ti and carbon, and the highest content points of Ti and carbon are the highest content points of Al and oxygen. The coated carbide tips 1 to 16 of the present invention having a component concentration distribution structure in which the content of Al and Ti and the content of oxygen and carbon continuously change to the content point are capable of cutting various kinds of steel and cast iron at a high speed. The hard coating layer exhibits excellent chipping and wear resistance even under heavy cutting conditions such as high depth of cut and high feed with high thermal mechanical impact. Coating layer In the conventional coated cemented carbide chips 1-16 of alternating lamination of l 2 O 3 layer and TiC layer, Al 2 O 3 layer of the hard coating layer becomes a starting point of chipping, especially in high-speed heavy cutting conditions and the TiC It is clear that the wear life of the layer is accelerated by the high heat generation during cutting, so that the service life is reached in a relatively short time.
As described above, the coated cemented carbide tool of the present invention can be used not only for cutting under normal conditions, but also for cutting various kinds of steel and cast iron, at high speed, and with high thermal mechanical impact. Even when performed under heavy cutting conditions such as high cutting and high feed, it exhibits excellent chipping resistance and abrasion resistance, and exhibits excellent cutting performance over a long period of time. It is also possible to satisfactorily cope with energy saving and cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic vertical sectional view illustrating a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool.
FIGS. 2A and 2B show a super hard substrate supporting pallet as a structural member of the chemical vapor deposition apparatus, wherein FIG. 2A is a schematic perspective view and FIG. 2B is a schematic plan view.
FIG. 3 is a schematic chart of a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated carbide tool of the present invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、AlとTiの複合炭酸化物層からなる硬質被覆層を2〜20μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)が、それぞれ原子比で、
Al/(Al+Ti):0.80〜0.98、
酸素/(酸素+炭素):0.80〜0.98、
上記Tiおよび炭素の最高含有点におけるTiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.80〜0.98、
炭素/(炭素+酸素):0.80〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具。
A surface-coated cemented carbide obtained by depositing a hard coating layer composed of a composite carbonate layer of Al and Ti on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate with a total average thickness of 2 to 20 μm. Cutting tools
In the hard coating layer, the highest content points of Al and oxygen and the highest content points of Ti and carbon are alternately present at predetermined intervals along the layer thickness direction, and the highest content points of the Al and oxygen are present. From the maximum content point of Ti and carbon, and the maximum content point of Ti and carbon to the maximum content point of Al and oxygen. And
Further, Al / (Al + Ti) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Ti and oxygen and carbon at the highest content points of Al and oxygen are represented by atomic ratios, respectively.
Al / (Al + Ti): 0.80 to 0.98,
Oxygen / (oxygen + carbon): 0.80 to 0.98,
Ti / (Ti + Al) and carbon / (carbon + oxygen), which indicate the mutual content of Ti and Al and carbon and oxygen at the highest content points of Ti and carbon, are represented by atomic ratios, respectively.
Ti / (Ti + Al): 0.80 to 0.98,
Carbon / (carbon + oxygen): 0.80 to 0.98,
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Ti and carbon is 0.01 to 0.2 μm,
Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2002231238A 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions. Expired - Fee Related JP3922132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231238A JP3922132B2 (en) 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231238A JP3922132B2 (en) 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.

Publications (2)

Publication Number Publication Date
JP2004066421A true JP2004066421A (en) 2004-03-04
JP3922132B2 JP3922132B2 (en) 2007-05-30

Family

ID=32017063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231238A Expired - Fee Related JP3922132B2 (en) 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.

Country Status (1)

Country Link
JP (1) JP3922132B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034730A1 (en) * 2012-08-28 2014-03-06 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034730A1 (en) * 2012-08-28 2014-03-06 三菱マテリアル株式会社 Surface-coated cutting tool
US9415446B2 (en) 2012-08-28 2016-08-16 Mitsubishi Materials Corporation Surface coated cutting tool

Also Published As

Publication number Publication date
JP3922132B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2005034912A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in wear resistance and chipping resistance under high-speed and heavy-cutting condition
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2004130494A (en) Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition
JP2004174615A (en) Surface covering cemented carbide cutting tool having hard covering layer exhibiting excellent chipping resistance under high speed multiple cutting conditions
JP2004050382A (en) Surface-coated cemented carbide tool exhibiting superior chipping resistance under high-speed and heavy-duty cutting conditions
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2004154878A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting excellent wear resistance under high speed heavy cutting condition
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Effective date: 20070212

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees