JP2004066269A - Method and device for detecting penetration of laser welding - Google Patents

Method and device for detecting penetration of laser welding Download PDF

Info

Publication number
JP2004066269A
JP2004066269A JP2002226138A JP2002226138A JP2004066269A JP 2004066269 A JP2004066269 A JP 2004066269A JP 2002226138 A JP2002226138 A JP 2002226138A JP 2002226138 A JP2002226138 A JP 2002226138A JP 2004066269 A JP2004066269 A JP 2004066269A
Authority
JP
Japan
Prior art keywords
penetration
workpiece
laser beam
welding
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002226138A
Other languages
Japanese (ja)
Inventor
Seiichi Matsumoto
松本 清市
Yoshiro Awano
粟野 芳朗
Kazuhisa Sanpei
三瓶 和久
Takayuki Saeki
佐伯 隆之
Koji Kitayama
北山 綱次
Goro Watanabe
渡辺 吾朗
Hirozumi Azuma
東 博純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002226138A priority Critical patent/JP2004066269A/en
Publication of JP2004066269A publication Critical patent/JP2004066269A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for detecting penetration of the laser welding for easily and correctly detecting penetration or non-penetration of laser beams through a workpiece. <P>SOLUTION: A penetration monitoring metal layer 6 of a component different from that of a workpiece 2 is plated on an area corresponding to a laser beams irradiation scheduled area on a surface facing a surface of the workpiece 2 to irradiate laser beams 1a therefrom. During the laser welding, the plasma beam from a laser beams irradiation part of the workpiece is detected by an optical sensor 4 through a filter 3 to transmit the light of the frequency component range specific to the component of the penetration monitoring metal layer 6, and penetration or non-penetration of the laser beams 1a is detected by determining by a detection circuit 5 whether or not the intensity of the detection signal exceeds a predetermined value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ溶接時にレーザビームがワーク(被溶接物)を貫通したか否かを検知するレーザ溶接の貫通検知方法及び装置に関するものである。
【0002】
【従来の技術】
レーザ溶接は、レーザビームをワークに照射し、その部分を溶融して溶接を行うものであるが、このような溶接において、レーザビームがワークを貫通したか否かは溶接強度を評価する上で非常に重要である。
そこで、従来からレーザビームの貫通検知が行われていた。すなわち、レーザ溶接中に発生するプラズマ光をワーク表面から検出し、その検出信号中から特定の周波数成分をバンドパスフィルタにより取り出し、この周波数成分の信号強度の変化によってレーザビームの貫通を検知していた(特開平8−281456号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら上記従来技術では、溶接中に発生するプラズマ光は、レーザビームの強度等の溶接条件による変動が激しいため、その検出信号中の上記特定周波数成分は安定せず、貫通検知が困難で不正確になるという問題点があった。
【0004】
本発明は、上記従来技術の問題点を解消するためになされたもので、レーザビームの貫通・非貫通の検知が容易かつ正確に行い得るレーザ溶接の貫通検知方法及び装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、レーザビームをワークに照射して溶接を行うレーザ溶接において、ワークの、レーザビームを照射する面とは反対側の面の、少なくともレーザビーム照射の予定領域に対応する領域に、前記ワークの成分とは異なる成分を主成分とする貫通監視用金属層を予め被着しておき、レーザ溶接中に、ワークのレーザビーム照射部位から発生する光を、前記貫通監視用金属層の主成分に特有の周波数成分域の光を透過させるフィルタを通して検出し、この検出信号の強度によって前記レーザビームの貫通を検知することを特徴とする。
【0006】
請求項2に記載の発明は、請求項1に記載の発明において、貫通監視用金属層のワークへの被着をめっきによって行うことを特徴とする。
【0007】
請求項3に記載の発明は、レーザビームをワークに照射して溶接を行うレーザ溶接において、レーザ溶接中に、ワークのレーザビーム照射部位から発生する光を受け、この光の中から、ワークの成分とは異なる成分を主成分とする、予め決められた貫通監視用金属に特有の周波数成分域の光を透過させるフィルタと、このフィルタの透過光を受光する光センサと、この光センサの出力信号の強度によってレーザビームの貫通を検知する検知手段とを具備し、前記ワークは、前記レーザビームを照射する面とは反対側の面の、少なくともレーザビーム照射の予定領域に対応する領域に、前記貫通監視用金属からなる層が予め被着されていることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明によるレーザ溶接の貫通検知方法が適用された装置(本発明装置)の一実施形態の説明図、図2は図1中のワークを下方から見た図(ワーク下面図)である。
図1において、1はレーザ溶接用のトーチで、このトーチ1からのレーザビーム(光)1aをワーク(被溶接物)2に照射して溶接を行う。
ここでは、上下に積層された2枚の軟鋼板2a,2bからなるワーク2の重ね合わせ溶接を例にとって説明する。レーザには炭酸ガスレーザやYAGレーザが用いられ、トーチ1又はワーク2の少なくともいずれか一方を移動させ、ここではトーチ1を矢印イ方向に移動させ、ワーク2の短辺方向のほぼ中央部をワーク長辺方向に沿って溶接を行う例を示している。
【0009】
フィルタ3は、レーザ溶接中に、ワーク2のレーザビーム照射部位から発生するプラズマ光を受け、このプラズマ光の中から、予め決められた貫通監視用金属(成分)に特有の周波数成分域の光を透過させる光学フィルタである。
光センサ4は、上記フィルタ3からの透過光を受光し、その光の強さに応じた大きさの電気信号を出力するセンサで、例えばフォトダイオードからなる。
光センサ4は、上記フィルタ3の透過光を、レーザ溶接中、常時受光可能にトーチ1に一体に取り付けられ、またフィルタ3は、光センサ4を介して又は直接、トーチ1に一体に取り付けられており、共にレーザビーム照射側に位置する。
検知回路5は、上記光センサ4の出力信号の強度が所定の閾値を超えることによってレーザビーム1aの貫通を検知する回路で、ここでは、上記光センサ4の出力信号の強度(発光強度)が所定の閾値、例えば500を超えたときにレーザビーム1aがワーク2を貫通したことを検知するように構成されている。
この検知回路5は、例えば光センサ4の出力信号を増幅するアンプ5aと、このアンプ5aの出力信号をデジタル信号に変換するA/Dコンバータ5bと、このA/Dコンバータ5bの出力信号を受けて上記閾値処理を行い、レーザビーム1aがワーク2を貫通したことを検知するパーソナルコンピュータ5cによって構成されている。
【0010】
ここで、上記ワーク2の下面、より詳しくはワーク2の下側の軟鋼板2bの下面には、貫通監視用金属からなる層(貫通監視用金属層)6が溶接前に被着されている。
この貫通監視用金属層6は、レーザビーム1aが照射されることによって、予め決められた特有の周波数成分域、すなわち、ワーク2の成分(軟鋼材)による周波数成分域とは異なる周波数成分域の光を発する成分からなる金属層である。
この貫通監視用金属層6の成分選択においては、ワーク2の成分との関係で、その融点や沸点が検討される。貫通監視用金属層6の融点や沸点がワーク2に対して低過ぎると、この金属層6がレーザビーム1aの到達前にワーク下面から溶融落下あるいはガス化して殆ど消失し、高過ぎると、実際のワーク貫通からワーク貫通検知までに時遅れが生じるからである。
以上の点を鑑み、ここでは貫通監視用金属層6にニッケルめっき層が用いられている。
この貫通監視用金属層6は、レーザビーム照射の予定領域(溶接予定領域)に対応する領域に形成すればよいが、ここでは、図2中、綾目模様で示すようにワーク2(下側の軟鋼板2b)の下面のほぼ全域に形成されている。
なお、図1中の符号7は、溶接後のビード部を示す。
【0011】
図3は、ワーク2(軟鋼板2a,2b)の成分である軟鋼材と貫通監視用金属層(ニッケルめっき層)6の成分であるニッケルについての分光分析結果を表すグラフである。この図において、曲線αが軟鋼材、同βがニッケルの分光分析結果を表している。
この図3によれば、曲線β(ニッケル)のピークは500nmを若干超えた波長にあり、この波長周辺における曲線α(軟鋼材)の発光強度は曲線β(ニッケル)のそれに比べてかなり低い。
そこで上記フィルタ3には、例えば515±5nm程度の波長を透過させる特性をもつフィルタ3が用いられる。
【0012】
上述構成において、レーザ溶接の貫通検知は次のように行われる。
いま、溶接が開始されると、ワーク2のレーザビーム照射部位からはプラズマ光が発生する。
このプラズマ光は、フィルタ3を透過して光センサ4に入射され、電気信号に変換される。この時、レーザビーム1aがワーク2を貫通していなければ光センサ4に入射される光の強度は、ワーク2の材質(軟鋼材)のみが反映したレベル、つまり、図3中の曲線αの515±5nm程度の波長における強度=400〜450である。
上述したように、検知回路5におけるレーザビーム1aの貫通判定の閾値は500に設定されているので、この時点では、検知回路5はレーザビーム1aのワーク貫通を検知しない。
【0013】
その後、レーザビーム1aがワーク2を貫通すると、そのレーザビーム1aはワーク裏面の貫通監視用金属層6に到達し(貫通監視用金属層6をも貫通し)、貫通監視用金属層6を形成するニッケル特有の周波数成分域の光を発する。この光は、フィルタ3を透過して光センサ4に入射され、電気信号に変換される。この時、光センサ4に入射される光の強度は、貫通監視用金属層6を形成するニッケルを反映したレベル、つまり、図3中の曲線βの515±5nm程度の波長における強度=600以上となる。
この値600は、検知回路5におけるレーザビーム1aの貫通判定の閾値500を超えているので、この時点で検知回路5はレーザビーム1aのワーク貫通(貫通溶接)を検知する。
以上の動作は、溶接中(トーチ1の矢印イ方向への移動中)継続して行われ、検知回路5のパーソナルコンピュータ5cには、溶接部に沿う貫通・非貫通溶接の検知結果が蓄積される。
上述実施形態によれば、貫通監視用金属層6の成分に特有の周波数成分を有する一定強度以上のプラズマ光が検出されたか否かによってワーク貫通の検知を行うので、レーザビーム1aの強度等の溶接条件による変動の影響を受けることがなく、容易かつ正確なレーザビームの貫通・非貫通検知が行える。
【0014】
なお上述実施形態では、貫通監視用金属層6をめっきによってワーク2に被着したが、これのみに限定されることはない。レーザビーム1aが貫通監視用金属層6に達するまでワーク下面に保持され、レーザビーム1aが貫通監視用金属層6に達したときに、その金属層6の成分に特有の周波数成分域の光を発し得れば、めっき以外の被着方法であってもよい。
また、貫通監視用金属層6の成分をワーク2の成分との関係から適宜選択し、溶接時に上記両成分が融合し、溶接後、ビード部7が合金化されて溶接強度が高められるようにしてもよい。
更に、貫通監視用金属層6は、通常単一成分によるが、これのみに限定されるものではない。
また上述実施形態では、光センサ4の光軸がレーザビーム1aの光軸と一致していないが、ハーフミラー等を用いてそれらの光軸を一致するように構成してもよい。光センサ4の受光面側に集光レンズや減光フィルタを配置して、光センサ4への光量を増減するようにしてもよい。
【0015】
【発明の効果】
以上述べたように本発明では、ワークの、レーザビームを照射する面とは反対側の面に、ワークの成分とは異なる成分の貫通監視用金属層を被着しておき、レーザ溶接中に、ワークのレーザビーム照射部位から発生する光を、上記貫通監視用金属層の成分に特有の周波数成分域の光を透過させるフィルタを通して検出し、この検出信号の強度によってレーザビームの貫通を検知するようにしたので、レーザビームの貫通・非貫通の検知が容易かつ正確に行うことができる。
【図面の簡単な説明】
【図1】本発明方法が適用された装置の一実施形態の説明図である。
【図2】図1中のワークを下方から見た図である。
【図3】ワークの成分と貫通監視用金属層の成分の分光分析結果を表すグラフである。
【符号の説明】
1a レーザビーム
2 ワーク(被溶接物)
3 フィルタ
4 光センサ
5 検知回路(検知手段)
6 貫通監視用金属層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser welding penetration detection method and apparatus for detecting whether or not a laser beam has penetrated a workpiece (workpiece) during laser welding.
[0002]
[Prior art]
Laser welding involves irradiating a workpiece with a laser beam and melting the portion to perform welding. In such welding, whether or not the laser beam penetrates the workpiece is used to evaluate the welding strength. Very important.
Therefore, laser beam penetration detection has been conventionally performed. That is, plasma light generated during laser welding is detected from the workpiece surface, a specific frequency component is extracted from the detection signal by a bandpass filter, and penetration of the laser beam is detected by a change in the signal intensity of this frequency component. (See JP-A-8-281456).
[0003]
[Problems to be solved by the invention]
However, in the above prior art, since the plasma light generated during welding varies greatly depending on welding conditions such as the intensity of the laser beam, the specific frequency component in the detection signal is not stable, and penetration detection is difficult and inaccurate. There was a problem of becoming.
[0004]
The present invention has been made to solve the above-described problems of the prior art, and an object thereof is to provide a laser welding penetration detection method and apparatus capable of easily and accurately detecting penetration or non-penetration of a laser beam. And
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, in laser welding in which welding is performed by irradiating a workpiece with a laser beam, at least a surface of the workpiece opposite to the surface irradiated with the laser beam is provided. A metal layer for penetration monitoring mainly containing a component different from the component of the workpiece is previously deposited in a region corresponding to a planned region of the laser beam irradiation, and from the laser beam irradiation site of the workpiece during laser welding. The generated light is detected through a filter that transmits light in a frequency component region specific to the main component of the penetration monitoring metal layer, and the penetration of the laser beam is detected by the intensity of the detection signal.
[0006]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the metal layer for penetration monitoring is deposited on the workpiece by plating.
[0007]
According to a third aspect of the present invention, in laser welding in which welding is performed by irradiating a workpiece with a laser beam, light generated from a laser beam irradiation site of the workpiece is received during laser welding, and the workpiece A filter that transmits light in a frequency component region specific to a predetermined penetration monitoring metal, a light sensor that receives light transmitted through the filter, and an output of the light sensor. Detecting means for detecting penetration of a laser beam according to the intensity of the signal, and the workpiece is in a region corresponding to at least a planned region of laser beam irradiation on a surface opposite to the surface irradiated with the laser beam, The layer made of the penetration monitoring metal is previously deposited.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of an embodiment of an apparatus to which the laser welding penetration detection method according to the present invention is applied (the apparatus of the present invention), and FIG. 2 is a view of the work in FIG. It is.
In FIG. 1, reference numeral 1 denotes a laser welding torch which performs welding by irradiating a workpiece (workpiece) 2 with a laser beam (light) 1 a from the torch 1.
Here, an explanation will be given by taking as an example a lap welding of a workpiece 2 made up of two mild steel plates 2a, 2b stacked one above the other. As the laser, a carbon dioxide laser or a YAG laser is used, and at least one of the torch 1 and the work 2 is moved. Here, the torch 1 is moved in the direction of the arrow A, and the work 2 is moved substantially in the center in the short side direction. The example which welds along a long side direction is shown.
[0009]
The filter 3 receives plasma light generated from the laser beam irradiation site of the workpiece 2 during laser welding, and light in a frequency component region specific to a predetermined penetration monitoring metal (component) from the plasma light. Is an optical filter that transmits light.
The optical sensor 4 is a sensor that receives the transmitted light from the filter 3 and outputs an electrical signal having a magnitude corresponding to the intensity of the light.
The optical sensor 4 is integrally attached to the torch 1 so that the light transmitted through the filter 3 can always be received during laser welding, and the filter 3 is integrally attached to the torch 1 via the optical sensor 4 or directly. Both are located on the laser beam irradiation side.
The detection circuit 5 is a circuit that detects the penetration of the laser beam 1a when the intensity of the output signal of the photosensor 4 exceeds a predetermined threshold. Here, the intensity of the output signal (emission intensity) of the photosensor 4 is When a predetermined threshold value, for example, 500 is exceeded, it is configured to detect that the laser beam 1a has penetrated the workpiece 2.
The detection circuit 5 receives, for example, an amplifier 5a that amplifies the output signal of the optical sensor 4, an A / D converter 5b that converts the output signal of the amplifier 5a into a digital signal, and an output signal of the A / D converter 5b. The personal computer 5c detects the penetration of the laser beam 1a through the workpiece 2 by performing the threshold processing.
[0010]
Here, on the lower surface of the workpiece 2, more specifically, on the lower surface of the mild steel plate 2 b below the workpiece 2, a layer 6 made of a penetration monitoring metal (penetration monitoring metal layer) is deposited before welding. .
The penetration monitoring metal layer 6 is irradiated with the laser beam 1a, so that a specific frequency component region determined in advance, that is, a frequency component region different from the frequency component region due to the component of the workpiece 2 (mild steel material). It is a metal layer made of a component that emits light.
In selecting the component of the penetration monitoring metal layer 6, the melting point and boiling point thereof are examined in relation to the component of the workpiece 2. If the melting point or boiling point of the penetration monitoring metal layer 6 is too low with respect to the workpiece 2, the metal layer 6 melts and falls or gasifies from the lower surface of the workpiece before reaching the laser beam 1a. This is because there is a time delay between the workpiece penetration and the workpiece penetration detection.
In view of the above, here, a nickel plating layer is used for the penetration monitoring metal layer 6.
The penetration monitoring metal layer 6 may be formed in a region corresponding to a laser beam irradiation planned region (scheduled welding region). Here, as shown in FIG. Of the mild steel plate 2b).
In addition, the code | symbol 7 in FIG. 1 shows the bead part after welding.
[0011]
FIG. 3 is a graph showing the spectral analysis results for the mild steel material that is a component of the workpiece 2 (mild steel plates 2a and 2b) and the nickel that is the component of the penetration monitoring metal layer (nickel plating layer) 6. In this figure, the curve α represents the mild steel material and β represents the nickel spectral analysis result.
According to FIG. 3, the peak of the curve β (nickel) is at a wavelength slightly exceeding 500 nm, and the emission intensity of the curve α (soft steel material) around this wavelength is considerably lower than that of the curve β (nickel).
Therefore, for example, the filter 3 having a characteristic of transmitting a wavelength of about 515 ± 5 nm is used.
[0012]
In the above-described configuration, penetration detection of laser welding is performed as follows.
Now, when welding is started, plasma light is generated from the laser beam irradiation site of the workpiece 2.
The plasma light passes through the filter 3 and enters the optical sensor 4 to be converted into an electrical signal. At this time, if the laser beam 1a does not penetrate the workpiece 2, the intensity of the light incident on the optical sensor 4 is a level reflected only by the material (mild steel material) of the workpiece 2, that is, the curve α in FIG. Intensity at a wavelength of about 515 ± 5 nm = 400 to 450.
As described above, since the threshold value for determining whether the laser beam 1a penetrates in the detection circuit 5 is set to 500, the detection circuit 5 does not detect the workpiece penetration of the laser beam 1a at this time.
[0013]
Thereafter, when the laser beam 1a penetrates the workpiece 2, the laser beam 1a reaches the penetration monitoring metal layer 6 on the back surface of the workpiece (also penetrates the penetration monitoring metal layer 6) to form the penetration monitoring metal layer 6. Emits light in the frequency component region peculiar to nickel. This light passes through the filter 3 and enters the optical sensor 4 to be converted into an electric signal. At this time, the intensity of the light incident on the optical sensor 4 is a level reflecting the nickel forming the penetration monitoring metal layer 6, that is, the intensity at a wavelength of about 515 ± 5 nm of the curve β in FIG. It becomes.
Since this value 600 exceeds the threshold value 500 for determining whether the laser beam 1a penetrates in the detection circuit 5, the detection circuit 5 detects workpiece penetration (penetration welding) of the laser beam 1a at this point.
The above operation is continuously performed during welding (during movement of the torch 1 in the direction of arrow A), and the detection result of penetration / non-penetration welding along the welded portion is accumulated in the personal computer 5c of the detection circuit 5. The
According to the above-described embodiment, since the workpiece penetration is detected based on whether or not plasma light having a frequency component peculiar to the component of the penetration monitoring metal layer 6 is detected, the penetration of the workpiece is detected. Without being affected by fluctuations due to welding conditions, it is possible to easily and accurately detect penetration or non-penetration of a laser beam.
[0014]
In the above-described embodiment, the penetration monitoring metal layer 6 is deposited on the workpiece 2 by plating. However, the present invention is not limited to this. The laser beam 1a is held on the lower surface of the workpiece until it reaches the penetration monitoring metal layer 6. When the laser beam 1a reaches the penetration monitoring metal layer 6, light in a frequency component region peculiar to the component of the metal layer 6 is emitted. A deposition method other than plating may be used if it can be generated.
Further, the component of the penetration monitoring metal layer 6 is appropriately selected from the relationship with the component of the workpiece 2, and the two components are fused at the time of welding, and after welding, the bead portion 7 is alloyed to increase the welding strength. May be.
Further, the penetration monitoring metal layer 6 is usually formed of a single component, but is not limited thereto.
In the above-described embodiment, the optical axis of the optical sensor 4 does not coincide with the optical axis of the laser beam 1a. However, the optical axes may be configured to coincide with each other using a half mirror or the like. A light collecting lens or a neutral density filter may be disposed on the light receiving surface side of the optical sensor 4 so that the amount of light to the optical sensor 4 is increased or decreased.
[0015]
【The invention's effect】
As described above, according to the present invention, a penetration monitoring metal layer having a component different from the component of the workpiece is deposited on the surface of the workpiece opposite to the surface irradiated with the laser beam, and during laser welding. The light generated from the laser beam irradiation part of the workpiece is detected through a filter that transmits light in the frequency component region peculiar to the component of the penetration monitoring metal layer, and the penetration of the laser beam is detected by the intensity of the detection signal. As a result, the penetration / non-penetration of the laser beam can be detected easily and accurately.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of an apparatus to which a method of the present invention is applied.
FIG. 2 is a view of the workpiece in FIG. 1 as viewed from below.
FIG. 3 is a graph showing spectral analysis results of a component of a workpiece and a component of a penetration monitoring metal layer.
[Explanation of symbols]
1a Laser beam 2 Workpiece (workpiece)
3 Filter 4 Optical sensor 5 Detection circuit (detection means)
6 Metal layer for penetration monitoring

Claims (3)

レーザビームをワークに照射して溶接を行うレーザ溶接において、
ワークの、レーザビームを照射する面とは反対側の面の、少なくともレーザビーム照射の予定領域に対応する領域に、前記ワークの成分とは異なる成分を主成分とする貫通監視用金属層を予め被着しておき、レーザ溶接中に、ワークのレーザビーム照射部位から発生する光を、前記貫通監視用金属層の主成分に特有の周波数成分域の光を透過させるフィルタを通して検出し、この検出信号の強度によって前記レーザビームの貫通を検知することを特徴とするレーザ溶接の貫通検知方法。
In laser welding where welding is performed by irradiating a workpiece with a laser beam,
A metal layer for penetrating monitoring whose main component is a component different from the component of the workpiece is provided in advance on at least a region corresponding to a planned region of the laser beam irradiation on the surface opposite to the surface irradiated with the laser beam. This is detected by detecting the light generated from the laser beam irradiation part of the workpiece through a filter that transmits light in the frequency component region peculiar to the main component of the penetration monitoring metal layer during laser welding. A laser welding penetration detection method, wherein the penetration of the laser beam is detected based on a signal intensity.
貫通監視用金属層のワークへの被着をめっきによって行うことを特徴とする請求項1に記載のレーザ溶接の貫通検知方法。The method for detecting penetration of laser welding according to claim 1, wherein the metal layer for monitoring penetration is attached to the workpiece by plating. レーザビームをワークに照射して溶接を行うレーザ溶接において、
レーザ溶接中に、ワークのレーザビーム照射部位から発生する光を受け、この光の中から、ワークの成分とは異なる成分を主成分とする、予め決められた貫通監視用金属に特有の周波数成分域の光を透過させるフィルタと、
このフィルタの透過光を受光する光センサと、
この光センサの出力信号の強度によってレーザビームの貫通を検知する検知手段とを具備し、
前記ワークは、前記レーザビームを照射する面とは反対側の面の、少なくともレーザビーム照射の予定領域に対応する領域に、前記貫通監視用金属からなる層が予め被着されていることを特徴とするレーザ溶接の貫通検知装置。
In laser welding where welding is performed by irradiating a workpiece with a laser beam,
During laser welding, light generated from the laser beam irradiation part of the workpiece is received, and from this light, a frequency component specific to a predetermined penetration monitoring metal mainly composed of a component different from the component of the workpiece A filter that transmits light in the region,
An optical sensor that receives light transmitted through the filter;
Detecting means for detecting penetration of the laser beam by the intensity of the output signal of the optical sensor,
The workpiece is preliminarily coated with a layer made of the penetration monitoring metal in a region corresponding to at least a region to be irradiated with the laser beam on a surface opposite to the surface irradiated with the laser beam. Laser welding penetration detector.
JP2002226138A 2002-08-02 2002-08-02 Method and device for detecting penetration of laser welding Pending JP2004066269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226138A JP2004066269A (en) 2002-08-02 2002-08-02 Method and device for detecting penetration of laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226138A JP2004066269A (en) 2002-08-02 2002-08-02 Method and device for detecting penetration of laser welding

Publications (1)

Publication Number Publication Date
JP2004066269A true JP2004066269A (en) 2004-03-04

Family

ID=32013579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226138A Pending JP2004066269A (en) 2002-08-02 2002-08-02 Method and device for detecting penetration of laser welding

Country Status (1)

Country Link
JP (1) JP2004066269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458324A (en) * 2020-02-14 2020-07-28 华智焊测高科(苏州)有限公司 Detection device and detection method for deep-melting TIG (tungsten inert gas) welding perforation state

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285658A (en) * 1993-04-01 1994-10-11 Nissan Motor Co Ltd Method and equipment for lap welding of metallic material
JPH08281456A (en) * 1995-04-10 1996-10-29 Nissan Motor Co Ltd Method for detecting penetration of laser beam welding and device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285658A (en) * 1993-04-01 1994-10-11 Nissan Motor Co Ltd Method and equipment for lap welding of metallic material
JPH08281456A (en) * 1995-04-10 1996-10-29 Nissan Motor Co Ltd Method for detecting penetration of laser beam welding and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458324A (en) * 2020-02-14 2020-07-28 华智焊测高科(苏州)有限公司 Detection device and detection method for deep-melting TIG (tungsten inert gas) welding perforation state

Similar Documents

Publication Publication Date Title
JP3560135B2 (en) Quality monitoring method for YAG laser welds
JP5947740B2 (en) Welded part inspection device and inspection method
JP5043881B2 (en) Laser welding monitoring apparatus and laser welding monitoring method
JP5849985B2 (en) Welded part inspection device and inspection method
CN105073330B (en) Weld part detection means and its detection method
JP2824499B2 (en) Welding quality judgment method and device
WO2018185973A1 (en) Laser processing monitoring method and laser processing monitoring device
DK1371443T3 (en) System and method for monitoring laser welds and to give an indication of the quality of the weld
JP2004066269A (en) Method and device for detecting penetration of laser welding
JP4098025B2 (en) Laser superposition spot welding equipment
JP3184962B2 (en) Laser welding detection method
JP4026404B2 (en) Laser welding quality monitoring method and apparatus
JP3169354B2 (en) Laser welding monitoring system
JP4441129B2 (en) Method and apparatus for determining welding state in laser spot lap welding
JP4136551B2 (en) Laser welding method
JP3603829B2 (en) Quality inspection method for laser welding
JPS589783A (en) Method of inspection for laser working
Kamimuki et al. Behaviour of monitoring signals during detection of welding defects in YAG laser welding. Study of monitoring technology for YAG laser welding (Report 2)
JP3136556B2 (en) Laser welding machine
JP2002137073A (en) Monitoring method of laser beam welding for die-cast material and device therefor
JP3292008B2 (en) Method for determining the molten state of workpiece in laser welding
JP4136547B2 (en) Pulsed laser welding method
JP2008068325A (en) Method for determining output modulation waveform of laser welding
JP5186914B2 (en) Welding state detection device and welding state detection method
Kamimuki et al. Development of monitoring method for YAG laser welding and its application. Study of monitoring technology for YAG laser welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071024