JP2004066257A - Press-forming die and method for producing double helical gear - Google Patents

Press-forming die and method for producing double helical gear Download PDF

Info

Publication number
JP2004066257A
JP2004066257A JP2002224903A JP2002224903A JP2004066257A JP 2004066257 A JP2004066257 A JP 2004066257A JP 2002224903 A JP2002224903 A JP 2002224903A JP 2002224903 A JP2002224903 A JP 2002224903A JP 2004066257 A JP2004066257 A JP 2004066257A
Authority
JP
Japan
Prior art keywords
helical gear
double helical
die
mold
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002224903A
Other languages
Japanese (ja)
Other versions
JP4267269B2 (en
Inventor
Hiroshi Ishikawa
石川 博
Masahito Yamanaka
山中 雅仁
Akiteru Son
孫 暁輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Yamanaka Engineering Co Ltd
Original Assignee
Toyota Motor Corp
Yamanaka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Yamanaka Engineering Co Ltd filed Critical Toyota Motor Corp
Priority to JP2002224903A priority Critical patent/JP4267269B2/en
Publication of JP2004066257A publication Critical patent/JP2004066257A/en
Application granted granted Critical
Publication of JP4267269B2 publication Critical patent/JP4267269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a press-forming die and a method for producing a double helical gear with which the double helical gear having high precision can be obtained by correcting an angle phase at the initial stage around the axial lines of an upper die and a lower die according to mechanical characteristics of a blank, and a forming condition such as a lubricating condition. <P>SOLUTION: A punch is fitted to a rotary block 14 by supporting the rotary block 14 so as to be rotatable with a punch holder and also, a rotary member 17 integrally rotating the rotary block 14, is arranged in the rotary block 14. Further, a regulating member 18 is arranged on a base plate and the plate 19 of the rotary member 17 is abutted on a reference block 21 of the regulating member 18 and the angle phase around the axial lines of the punch 6 and the die 7 is returned back to the initial phase. Therefore, the punch and the die are surely returned back to the initial phase with high precision, and thus, the angle phase around the axial lines among respective helical teeth in the double helical gear, is formed with high precision. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形金型及びダブルヘリカルギヤの製造方法に関する。
【0002】
【従来の技術】
ヘリカルギヤを製造する手段の一として、プレス成形によるものがある。上型と下型とに分割して構成されたプレス成形金型でプレス成形して素材をヘリカルギヤに形成する場合、下型に対して上型がヘリカルギヤの軸線の回りに固定されていると、プレス成形時に金型内部で素材がダイスに付設されたヘリカル歯形のリードに沿って軸線回りに捩れるように回動して、歯形精度の悪化や型の破損の虞がある。そこで従来から、成形時に下型に対して上型をヘリカルギヤの軸線の回りに回動させることで素材に生じる捩れモーメントを吸収することが行われている。例えば、特公平6−85971号公報には、内周面にヘリカル歯形形成用内歯を有する貫通孔が設けられた回動自在なダイスと、上記貫通孔の軸心上に軸方向へ進退可能に配置されたエジェクタピンとを備え、まず、略円筒状の素材をパンチによってダイスの貫通孔内へ押し込んで素材を回動させることなく一方向へ通過させ、次に、エジェクタピンによりダイスの貫通孔内に押し込まれた素材を回動させることなく逆方向へ通過させることにより、素材の外周面にヘリカル歯形を形成するヘリカルギヤの製造方法が開示されている。
【0003】
上記先行技術文献では、素材がダイスの貫通孔を通過する際のパンチの押し込み作用により、素材の外周面にダイスのヘリカル歯形形成用内歯との圧接面側が高精度となるヘリカル歯形が成形される。また、素材がエジェクタピンにより押し出される際にヘリカル歯形の不完全な面、即ち上記圧接面と反対側の面が高精度に成形されることとなる。そして、押し込み、押し出しのいずれの場合も、素材を回動させずにダイス(可動ダイス)を回動させている。ところで、ヘリカルギヤには同一の軸に二つのヘリカル歯形が形成されるダブルヘリカルギヤがある。該ダブルヘリカルギヤをプレス成形により形成する場合、二つのヘリカル歯形の相互の軸線回りの位相角度は、上型と下型とに分割された各型の単体精度とこれらの型の組付け精度とで保証される。
【0004】
しかしながら、上述した理由から、高精度のヘリカル歯形を得るためには、成形時に下型(上型)に対して上型(下型)をヘリカルギヤの軸線の回りに回動(以下、単に回動と称す)させる必要がある。そして、成形時に下型に対して上型を回動させた場合、下型に対する上型のヘリカルギヤの軸線の回りの角度位相(以下、単に角度位相と称す)を成形前の角度位相(以下、初期位相と称す)に復帰させる必要がある。ところが、素材の機械的な特性や潤滑条件等により型の転写性や下型に対する上型の回動量に差が生じるので、下型に対する上型の初期位相は、同一形状のダブルヘリカルギヤを成形する場合であっても一様ではない。従って、下型に対する上型の初期位相を諸条件に応じて補正する必要があるが、下型に対する上型の初期位相を補正可能な技術は従来皆無であった。
【0005】
【発明が解決しようとする課題】
そこで本発明は、上記事情に鑑みてなされたもので、第1の目的は、素材の機械的な特性や潤滑条件等の成形条件に応じて上型と下型との軸線の回りの初期の角度位相を補正することで高い精度のダブルヘリカルギヤを得ることができるプレス成形金型を提供することにある。また、第2の目的は、素材の機械的な特性や潤滑条件等の成形条件に応じて上型と下型との軸線の回りの初期の角度位相を補正して高い精度のダブルヘリカルギヤを得ることができるダブルヘリカルギヤの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記第1の目的を達成するために、本発明のうち請求項1に記載の発明は、ダブルヘリカルギヤの一方のヘリカル歯形の像を有する上型とダブルヘリカルギヤの他方のヘリカル歯形の像を有する下型とを備え、上型と下型とがダブルヘリカルギヤの軸線の回りに相対回動動作可能なプレス成形金型であって、相対回動動作された上型と下型との角度位相を初期の角度位相に復帰させる初期位相復帰手段と、上型と下型との初期の角度位相を補正する初期位相補正手段と、を具備することを特徴とする。
【0007】
請求項2に記載の発明は、請求項1に記載の発明において、初期位相復帰手段は、上型又は下型と一体でダブルヘリカルギヤの軸線の回りに回動させる回動部材と、上型又は下型をダブルヘリカルギヤの軸線の回りに回動可能に支持するホルダに固定され、回動部材を当接させて回動部材の回動動作を規制して上型と下型との角度位相を初期の位相角度に復帰させる規制部材と、を具備することを特徴とする。
【0008】
請求項3に記載の発明は、請求項2に記載の発明において、回動部材は、規制部材に当接させる当接部と該当接部を着脱可能に支持する支持部とを含んで構成され、初期位相補正手段は、当接部と支持部との間にシムを介在させて上型と下型との初期の角度位相を補正することを特徴とする。
【0009】
上記第2の目的を達成するために、本発明のうち請求項4に記載の発明は、ダブルヘリカルギヤの一方のヘリカル歯形の像を有する上型とダブルヘリカルギヤの他方のヘリカル歯形の像を有する下型とを備えるプレス成形金型を用いて素材をプレス成形してダブルヘリカルギヤを形成するダブルヘリカルギヤの製造方法であって、プレス成形時に、上型と下型とをダブルヘリカルギヤの軸線の回りに相対回動動作させてダブルヘリカルギヤを形成し、成形終了後、該ダブルヘリカルギヤをプレス成形金型から取り出し、次に上型と下型とをダブルヘリカルギヤの軸線の回りに相対回動動作させて上型と下型とのダブルヘリカルギヤの軸線の回りの角度位相を成形前の初期の角度位相に復帰させることを特徴とする。
【0010】
請求項5に記載の発明は、請求項4に記載の発明において、上型又は下型と一体でダブルヘリカルギヤの軸線の回りに回動する回動部材を、上型又は下型をダブルヘリカルギヤの軸線の回りに回動可能に支持するホルダに固定された規制部材に当接させて、上型と下型とのダブルヘリカルギヤの軸線の回りの角度位相を成形前の初期の角度位相に復帰させることを特徴とする。
【0011】
請求項6に記載の発明は、請求項5に記載の発明において、回動部材を当接させる当接部と該当接部を着脱可能に支持する支持部との間にシムを介在させて上型と下型との初期の角度位相を補正することを特徴とする。
【0012】
従って、請求項1に記載の発明では、成形時にダブルヘリカルギヤの軸線の回りに相対回動動作された上型と下型との角度位相を初期位相復帰手段により初期の角度位相に復帰させることができる。また、上型と下型との初期の角度位相を必要に応じて初期位相補正手段により補正することができる。
【0013】
請求項2に記載の発明では、初期位相復帰手段は、回動部材を規制部材に当接させて回動部材の回動動作を規制することで、上型と下型との角度位相を初期の位相角度に復帰させることができる。
【0014】
請求項3に記載の発明では、初期位相補正手段は、当接部と支持部との間に介在させるシムの厚みを調節することで上型と下型との初期の角度位相を補正することができる。
【0015】
請求項4に記載の発明では、プレス成形時に、上型と下型とをダブルヘリカルギヤの軸線の回りに相対回動動作させ、成形終了後、該ダブルヘリカルギヤをプレス成形金型から取り出し、次に上型と下型とをダブルヘリカルギヤの軸線の回りに相対回動動作させて上型と下型とのダブルヘリカルギヤの軸線の回りの角度位相を成形前の初期の角度位相に復帰させるので、高い精度のダブルヘリカルギヤをプレス成形により形成することが可能となる。
【0016】
請求項5に記載の発明では、回動部材を規制部材に当接させることにより、上型と下型とのダブルヘリカルギヤの軸線の回りの角度位相を成形前の初期の角度位相に復帰させることができる。
【0017】
請求項6に記載の発明では、規制部材の当接部と支持部との間に介在させるシムの厚みを調節して上型と下型との初期の角度位相を補正することができる。
【0018】
【発明の実施の形態】
本発明の一実施の形態を図1〜図6に基づいて説明する。本プレス成形金型1は、略円柱状の素材2を成形して、図6に示すように、同一軸に二つのヘリカル歯形3,4が形成されたダブルヘリカルギヤ5を形成するもので、成形時に、パンチ6(上型)をダイス7(下型)に対して、パンチ6とダイス7とが素材2の軸線(以下、単に軸線と称す)の回りの角度位相が図1及び図4に示す初期位相の状態から軸線の回りに図1における紙面視で時計回り方向へ回動させる。そして、パンチ6とダイス7とを脱離させた後、初期位相復帰手段によりダイス7に対してパンチ6を軸線の回りに成形時と反対回りに回動させて、図1に示すように、パンチ6とダイス7との軸線の回りの角度位相を成形前の初期位相に復帰させるように構成されている。また、本プレス成形金型1は、初期位相補正手段によりパンチ6とダイス7との初期位相を補正して、ダブルヘリカルギヤ5の二つのヘリカル歯形3,4の軸線の回りの角度位相を適正に調節させる構造になっている。
【0019】
本プレス成形金型1は、図3に示すように、プレス成形機のラムに取付けられた型上部9と、プレス成形機のテーブルに設置された型下部10と、に分割して構成されている。上記型下部10は、ダブルヘリカルギヤ5のヘリカル歯形4の像が付設されたダイス7を備え、該ダイス7をダイスホルダ34で保持している。また、型下部10には、素材2と同軸上に配置されたノックアウトピン11が上下にスライド移動可能に設けられており、成形が完了して型上部9を上昇させた後、ノックアウトピン11を上方へ駆動して、当該ノックアウトピン11でダイス7に嵌合された素材2(ダブルヘリカルギヤ5)を押し出すことで、素材2(ダブルヘリカルギヤ5)がダイス7から抜き取られる構造になっている。
【0020】
また、上記型上部9は、プレス成形機のラムに固定されるベースプレート8に取付けられたパンチホルダ12と、略円柱状に形成されてスラストベアリング13を介することで上記パンチホルダ12により軸線の回りに回動可能に支持された回動ブロック14と、を具備し、該回動ブロック14にダブルヘリカルギヤ5のヘリカル歯形3の像が付設されたパンチ6が装着されている。そして、上記回動ブロック14には、素材2と同軸上に配置されたパンチピン15が設けられ、成形完了後、パンチ6の上昇に同期させてパンチピン15を駆動してパンチピン15でパンチ6に嵌合された素材2(ダブルヘリカルギヤ5)を押し出すことで、素材2(ダブルヘリカルギヤ5)がパンチ6から抜き取られる構造になっている。また、上記回動ブロック14には、図1〜図3に示すように、当該回動ブロック14の直径上に配置されて両端部を回動ブロック14から半径方向へ突出させた回動アーム16が設けられている。また、該回動アーム16の両端面には、図3に示すように、対向する側壁24,25の一対が上下方向に配置される溝26が形成されている。
【0021】
さらに、回動アーム16の各溝26には、各流体圧シリンダ27のロッド28の先端部に取付けられたジョイントブロック29を貫通して当該回動アーム16と各ジョイントブロック29とを連結させるジョイントピン30が設けられている。また、図1及び図2に示すように、各流体圧シリンダ27の基部には取付ブラケット31が設けられており、各取付ブラケット31はベースプレート8の所定位置に立設された軸32により回動可能に支持されている。そして、本プレス成形金型1は、各流体圧シリンダ27を駆動して各ロッド28を突出側へ動作させることにより、回動ブロック14を図1及び図2における紙面視で軸線の回りに反時計回り方向へ回動させる構造になっている。
【0022】
また、上記回動ブロック14には、当該回動ブロック14の略半径方向に向けて突出して、図1及び図2における紙面視で上記回動アーム16に対して所定の角度位相をなして配置された回動部材17が設けられている。また、上記回動部材17は、図1及び図2に示すように、後述する規制部材18の基準面21aに当接可能な当接面19aが形成されたプレート19(当接部)と、該プレート19を着脱可能に保持して基部が回動ブロック14に固定された支持部20と、で構成されている。そして、上記パンチホルダ12の所定位置には、上記回動部材17のプレート19が当接して当該回動部材17の軸線の回りの回動動作を規制する規制部材18が設けられている。該規制部材18は、図1及び図2に示すように、略円筒状の部材の一側を軸線と平行な面で切欠いて形成された基準面21aを有する基準ブロック21と、パンチホルダ12に固定され上記基準ブロック21を軸22の回りに回動可能に支持する支持ブロック23と、で構成されている。
【0023】
また、本プレス成形金型1では、成形時に、各流体圧シリンダ27に所要の流体圧の流体が供給されており、これにより回動ブロック14は図1及び図2における紙面視で軸線の回りに反時計回り方向へ回動するように付勢されている。そして、成形時に素材2に生じる捩れモーメントが各流体圧シリンダ27が回動ブロック14を回動させる力に打ち勝って、図2に示すように、回動ブロック14が軸線の回りに時計回り方向へ回動される構造になっている。そして、成形完了後、型上部9が上昇して回動ブロック14が軸線の回りに回動可能となることで、当該回動ブロック14は各流体圧シリンダ27の駆動により反時計回り方向へ回動する。そして、回動部材17と一体で軸線の回りに回動するプレート19が規制部材18の基準面21aに当接することで、回動ブロック14の軸線の回りの回動動作が規制され、これにより本プレス成形金型1は、パンチ6(上型)とダイス7(下型)との軸線の回りの角度位相を初期位相に復帰させることができる構造になっている。
【0024】
そして、上記初期位相復帰手段は、上記回動アーム16、回動部材17、規制部材18、及び流体圧シリンダ27により主要な構成がなされている。また、本プレス成形金型1では、上記回動部材17のプレート19と支持部20との間にシム33を介挿させており、該シム33(初期位相補正手段)の厚みT(図1参照)を調節することでパンチ6(上型)とダイス7(下型)との初期位相を補正して、ダブルヘリカルギヤ5の各ヘリカル歯形3,4の軸線の回りの角度位相を適正に保持する構造になっている。
【0025】
次に、本プレス成形金型1(以下、単に金型1と称す)を用いて、図6に示すダブルヘリカルギヤ5を形成する際の作用を説明する。まず、図4に示すように、金型1に略円柱状の素材2をセットする。この状態での金型1は、図1に示すように、回動部材17のプレート19(当接部)の当接面19aが規制部材18の基準ブロック21の基準面21aに当接されており、パンチ6とダイス7との素材2の軸線の回りの角度位相が初期位相となるようにパンチ6がダイス7に対して素材2の軸線の回りに位置決めされている。次に、金型1で素材2を加圧して、図5に示すように、素材2にパンチ6とダイス7とに付設されたヘリカル歯形3,4の像を転造させることによりダブルヘリカルギヤ5を形成する。この時、素材2にヘリカル歯形3,4が成形(転造)されるのに伴い、当該素材2には軸線の回りの捩れモーメントが生じて、該捩れモーメントは、回動ブロック14を図1及び図2における紙面視で軸線の回りに反時計回り方向へ付勢させる各流体圧シリンダ27の力に打ち勝ち、回動ブロック14を、図1に示す状態から図2に示す状態へ時計回り方向へ回動させることとなる。
【0026】
次に、型上部9を上昇させてパンチ6を上昇させると共にパンチ6の上昇に同期させてパンチピン15を駆動して当該パンチピン15で素材2の上端面を押圧し、素材2(ヘリカル歯形3)をパンチ6から脱離させる。この時、パンチ6とヘリカル歯形3とが軸線方向へ相対移動するに伴い、回動ブロック14は成形時と反対方向(軸線の回りに反時計回り方向)へ回動する。そして、素材2(ヘリカル歯形3)とパンチ6とが脱離すると、各流体圧シリンダ27のロッド28が突出して回動ブロック14が軸線の回りに反時計回り方向へ回動し、回動ブロック14と一体で回動する規制部材18のプレート19の当接面19aが型上部9のベースプレート8に設けられた基準ブロック21の基準面21aに当接する。これにより、回動ブロック14の回動動作が制止され、図1に示すように、パンチ6(上型)とダイス7(下型)との軸線の回りの角度位相が初期位相に復帰する。
【0027】
次に、ノックアウトピン11を上昇させて当該ノックアウトピン11で素材2の下端面を押圧し、ダイス7から素材2(ヘリカル歯形4)を脱離させて金型1からダブルヘリカルギヤ5を取り出す。これにより、ヘリカル歯形3とヘリカル歯形4との軸線の回りの角度移動が高い精度で形成されたダブルヘリカルギヤ5を得ることができる。なお、上記パンチ6とダイス7との初期位相は、同一形状(角度位相)の製品(ダブルヘリカルギヤ5)を成形する場合であっても、素材2の機械的な特性や潤滑状態等の諸条件の差異により型転写性、回動ブロック14の回動量が異り、これら諸条件により生じる誤差は、テストピース成形後、製品の精度チェックを行い、正規値との誤差に応じて回動部材17のプレート19と支持部20との間にシム33を介挿させることで容易に補正することが可能である。
【0028】
この実施の形態では以下の効果を奏する。
パンチホルダ12で回動ブロック14を回動可能に支持して該回動ブロック14にパンチ6を装着し、成形時にパンチ6を素材2の軸線2の回りに回動させて素材2に作用する捩れモーメントを解放させた。従って、成形時に各ヘリカル歯形3,4に無理な力が作用することがなく、高い精度のダブルヘリカルギヤ5を得ることができる。
回動ブロック14に当該回動ブロック14と一体で回動する回動部材17を設け、またベースプレート8に上記規制部材18を設けておいて、回動部材17のプレート19を規制部材18の基準ブロック21に当接させてパンチ6とダイス7との軸線の回りの角度位相を初期位相に復帰させた。従って、パンチ6とダイス7とを確実に、且つ高い精度で初期位相に復帰させて、各ヘリカル歯形3,4間の軸線の回りの角度位相が高い精度で形成されたダブルヘリカルギヤ5を得ることができる。
回動ブロック17に半径方向へ延びる回動アーム16を設け、該回動アーム16を流体圧シリンダ27で押圧して回動ブロック14を回動させたので、構造が簡易で、機構としての信頼性が高く、また金型製作費を低く抑えて製造コストの増大を抑制することができる。
回動ブロック14を回動駆動させる流体圧シリンダ27の駆動力を、成形時に素材2に生じる軸線の回りの捩れモーメントが当該流体圧シリンダ27の駆動力に打ち勝って、該捩れモーメントにより回動ブロック14が回動されるように設定したので、成形時にパンチ6を素材2の軸線の回りに回動させることが可能となり、ヘリカル歯形3,4が高い精度で成形されたダブルヘリカルギヤ5を形成することができる。
回転部材17のプレート19と支持部20との間に介挿されるシム33の厚みを調節してパンチ6とダイス7との初期位相が補正されるので、素材2の機械的な特性、潤滑状態等の諸条件の差異により生じる各ヘリカル歯形3,4間の軸線の回りの角度位相の誤差を補正して、高い精度のダブルヘリカルギヤ5を形成することができる。
【0029】
なお、実施の形態は上記に限定されるものではなく、例えば次のように構成してもよい。
本実施の形態では、回動ブロック14を2つの流体圧シリンダ27で駆動して素材2の軸線の回りに回動させたが、1つの流体圧シリンダ27で回動ブロック14を回動させてもよい。
回動アーム16に流体圧シリンダ27のロッド28を連結して回動ブロック14を回動させる機構を構成したが、回動ブロック14と一体で素材2の軸線の回りに回動可能なピニオンギヤを設け、また該ピニオンギヤにラックギヤを噛合させて、当該ラックギヤを流体圧シリンダでスライド移動させて回動ブロック14を回動させてもよい。
回動ブロック14をサーボモータで素材2の軸線の回りに回動及び位置決めさせてもよい。
【0030】
【発明の効果】
以上詳述したように、本発明によれば、素材の機械的な特性や潤滑条件等の成形条件に応じて上型と下型との軸線の回りの初期の角度位相を補正することで高い精度のダブルヘリカルギヤを得ることができるプレス成形金型を提供することができる。また、本発明によれば、素材の機械的な特性や潤滑条件等の成形条件に応じて上型と下型との軸線の回りの初期の角度位相を補正して高い精度のダブルヘリカルギヤを得ることができるダブルヘリカルギヤの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本実施の形態の説明図で、特に、パンチとダイスとの素材の軸線の回りの角度位相が初期位相に復帰した状態を示す金型の一部の平面図である。
【図2】本実施の形態の説明図で、特に、図1の状態から回動ブロックが素材の軸線の回りに回動した成形完了時の状態を示す一部の平面図である。
【図3】本プレス成形金型の主要部を断面で示した図である。
【図4】本プレス成形金型の一部を断面で示した図で、特に、素材が金型にセットされた状態を示す図である。
【図5】本プレス成形金型の一部を断面で示した図で、特に、成形完了時の状態(パンチが下降端位置に位置する状態)を示す図である。
【図6】ダブルヘリカルギヤの説明図である。
【符号の説明】
1     プレス成形金型
2     素材
3,4   ヘリカル歯形
5     ダブルヘリカルギヤ
6     パンチ(上型)
7     ダイス(下型)
16    回動アーム(初期位相復帰手段)
17    回動部材(初期位相復帰手段)
18    規制部材(初期位相復帰手段)
27    流体圧シリンダ(初期位相復帰手段)
33    シム(初期位相補正手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a press molding die and a method for manufacturing a double helical gear.
[0002]
[Prior art]
As one of means for manufacturing the helical gear, there is a method by press molding. When the material is formed into a helical gear by press forming with a press forming mold divided into an upper mold and a lower mold, when the upper mold is fixed around the axis of the helical gear with respect to the lower mold, At the time of press molding, the material rotates inside the mold along the lead of the helical tooth profile attached to the die so as to be twisted around the axis, and there is a possibility that the tooth profile accuracy is deteriorated and the mold is damaged. Therefore, conventionally, the torsional moment generated in the material is absorbed by rotating the upper die around the axis of the helical gear with respect to the lower die during molding. For example, Japanese Patent Publication No. 6-85771 discloses a rotatable die having a through hole having an internal tooth for forming a helical tooth profile on an inner peripheral surface, and a reciprocating axially movable shaft on the axis of the through hole. First, a substantially cylindrical material is pushed into the through-hole of the die by a punch to pass the material in one direction without rotating, and then the through-hole of the die is rotated by the ejector pin. A method of manufacturing a helical gear that forms a helical tooth profile on an outer peripheral surface of a material by passing a material pushed into the material in a reverse direction without rotating the material is disclosed.
[0003]
In the above-mentioned prior art document, a helical tooth profile is formed on the outer peripheral surface of the material by pressing the punch with the internal teeth for forming the helical tooth profile of the die with high precision by a pressing action of the punch when the material passes through the through hole of the die. You. Further, when the material is extruded by the ejector pins, the incomplete surface of the helical tooth profile, that is, the surface on the opposite side to the press contact surface is formed with high precision. In both cases of pushing and pushing, the dies (movable dies) are rotated without rotating the material. By the way, a helical gear includes a double helical gear in which two helical teeth are formed on the same shaft. When the double helical gear is formed by press molding, the phase angle of the two helical teeth around the axis is determined by the unit accuracy of each mold divided into an upper mold and a lower mold and the assembly accuracy of these molds. Guaranteed.
[0004]
However, for the above-described reason, in order to obtain a high-precision helical tooth profile, the upper die (lower die) is rotated around the axis of the helical gear with respect to the lower die (upper die) during molding (hereinafter simply referred to as “rotation”). ). When the upper mold is rotated with respect to the lower mold at the time of molding, the angular phase around the axis of the helical gear of the upper mold with respect to the lower mold (hereinafter, simply referred to as an angular phase) is referred to as an angular phase before molding (hereinafter, referred to as an angular phase). (Referred to as the initial phase). However, differences occur in the transferability of the mold and the amount of rotation of the upper mold relative to the lower mold due to the mechanical properties of the material, lubrication conditions, etc., so that the initial phase of the upper mold relative to the lower mold forms a double helical gear of the same shape. Even in the case, it is not uniform. Therefore, it is necessary to correct the initial phase of the upper die with respect to the lower die according to various conditions. However, there has been no technique capable of correcting the initial phase of the upper die with respect to the lower die.
[0005]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above circumstances, and a first object is to provide an initial stage around the axis of the upper mold and the lower mold in accordance with molding conditions such as mechanical properties of the material and lubrication conditions. An object of the present invention is to provide a press-molding die capable of obtaining a high-precision double helical gear by correcting an angular phase. A second object is to obtain a high-precision double helical gear by correcting the initial angular phase around the axis of the upper mold and the lower mold in accordance with molding conditions such as mechanical properties of the material and lubrication conditions. It is an object of the present invention to provide a method for manufacturing a double helical gear that can be used.
[0006]
[Means for Solving the Problems]
In order to achieve the first object, the invention according to claim 1 of the present invention is directed to an upper die having an image of one helical tooth profile of a double helical gear and a lower die having an image of the other helical tooth profile of a double helical gear. The upper die and the lower die are press-molding dies in which the upper die and the lower die are relatively rotatable around the axis of the double helical gear. And an initial phase correcting means for correcting the initial angular phase of the upper mold and the lower mold.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the initial phase return means is integrally formed with the upper mold or the lower mold and pivots around the axis of the double helical gear; The lower die is fixed to a holder that supports the lower die so as to be rotatable around the axis of the double helical gear. And a regulating member for returning to the initial phase angle.
[0008]
According to a third aspect of the present invention, in the second aspect of the present invention, the rotating member includes a contact portion that contacts the regulating member and a support portion that detachably supports the contact portion. The initial phase correcting means corrects the initial angular phase of the upper die and the lower die by interposing a shim between the contact portion and the support portion.
[0009]
In order to achieve the second object, the invention according to claim 4 of the present invention is directed to an upper die having an image of one helical tooth profile of a double helical gear and a lower die having an image of the other helical tooth profile of a double helical gear. A method of manufacturing a double helical gear in which a material is press-formed using a press-molding die having a mold to form a double helical gear, wherein, during press molding, an upper mold and a lower mold are relatively moved around an axis of the double helical gear. After rotating, a double helical gear is formed. After molding, the double helical gear is removed from the press mold, and then the upper mold and the lower mold are relatively rotated about the axis of the double helical gear to form an upper mold. The angular phase around the axis of the double helical gear between the upper and lower dies is returned to the initial angular phase before molding.
[0010]
According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the rotating member that rotates around the axis of the double helical gear integrally with the upper mold or the lower mold is provided by using the upper mold or the lower mold with the double helical gear. The angular phase around the axis of the double helical gear of the upper mold and the lower mold is returned to the initial angular phase before molding by abutting on a regulating member fixed to a holder rotatably supporting the axis. It is characterized by the following.
[0011]
According to a sixth aspect of the present invention, in the fifth aspect of the invention, a shim is interposed between a contact portion for contacting the rotating member and a support portion for detachably supporting the contact portion. It is characterized in that the initial angular phase between the mold and the lower mold is corrected.
[0012]
Therefore, according to the first aspect of the present invention, the angle phase of the upper mold and the lower mold that have been relatively rotated around the axis of the double helical gear during molding can be returned to the initial angle phase by the initial phase returning means. it can. Also, the initial angular phase of the upper mold and the lower mold can be corrected by the initial phase correcting means as needed.
[0013]
According to the second aspect of the present invention, the initial phase return means restricts the rotational operation of the rotating member by contacting the rotating member with the regulating member, thereby initializing the angular phase of the upper mold and the lower mold. The phase angle can be returned to
[0014]
In the invention according to claim 3, the initial phase correcting means corrects the initial angular phase of the upper die and the lower die by adjusting the thickness of the shim interposed between the contact portion and the support portion. Can be.
[0015]
According to the invention as set forth in claim 4, at the time of press molding, the upper mold and the lower mold are relatively rotated around the axis of the double helical gear, and after the molding is completed, the double helical gear is taken out of the press molding die. Since the upper mold and the lower mold are relatively rotated around the axis of the double helical gear to return the angular phase around the axis of the double helical gear of the upper mold and the lower mold to the initial angular phase before molding, a high A double helical gear with high precision can be formed by press molding.
[0016]
According to the fifth aspect of the present invention, the angular phase around the axis of the double helical gear of the upper mold and the lower mold is returned to the initial angular phase before molding by bringing the rotating member into contact with the regulating member. Can be.
[0017]
According to the sixth aspect of the present invention, the initial angle phase of the upper mold and the lower mold can be corrected by adjusting the thickness of the shim interposed between the contact portion of the regulating member and the support portion.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. This press molding die 1 is formed by molding a substantially cylindrical raw material 2 to form a double helical gear 5 having two helical teeth 3 and 4 formed on the same axis as shown in FIG. At times, the punch 6 (upper die) is moved relative to the die 7 (lower die), and the punch 6 and the die 7 have the angular phase around the axis of the material 2 (hereinafter simply referred to as the axis) in FIGS. From the state of the initial phase shown, it is rotated around the axis in the clockwise direction as viewed in the drawing of FIG. Then, after the punch 6 and the die 7 are detached, the punch 6 is rotated around the axis with respect to the die 7 by the initial phase return means in a direction opposite to that at the time of molding, and as shown in FIG. The angular phase around the axis of the punch 6 and the die 7 is returned to the initial phase before molding. Further, in the press molding die 1, the initial phase of the punch 6 and the die 7 is corrected by the initial phase correcting means, so that the angular phase around the axis of the two helical teeth 3 and 4 of the double helical gear 5 is properly adjusted. It has a structure to adjust.
[0019]
As shown in FIG. 3, the press molding die 1 is divided into an upper mold portion 9 attached to a ram of the press molding machine and a lower mold portion 10 installed on a table of the press molding machine. I have. The lower mold section 10 includes a die 7 provided with an image of the helical tooth profile 4 of the double helical gear 5, and the die 7 is held by a die holder 34. A knockout pin 11 arranged coaxially with the material 2 is provided on the lower mold section 10 so as to be slidable up and down. After the molding is completed and the upper mold section 9 is lifted, the knockout pin 11 is removed. When the material 2 (double helical gear 5) fitted to the die 7 is pushed out by driving the knockout pin 11 upward, the material 2 (double helical gear 5) is extracted from the die 7.
[0020]
Further, the upper mold portion 9 has a punch holder 12 attached to a base plate 8 fixed to a ram of a press molding machine, and a substantially cylindrical shape. And a punch 6 having an image of the helical tooth profile 3 of the double helical gear 5 attached thereto. The rotary block 14 is provided with a punch pin 15 disposed coaxially with the material 2. After the molding is completed, the punch pin 15 is driven in synchronization with the rise of the punch 6 and fitted to the punch 6 with the punch pin 15. By pushing out the combined material 2 (double helical gear 5), the material 2 (double helical gear 5) is extracted from the punch 6. As shown in FIGS. 1 to 3, the turning block 14 has a turning arm 16 arranged on the diameter of the turning block 14 and having both ends protruding radially from the turning block 14. Is provided. As shown in FIG. 3, grooves 26 are formed on both end surfaces of the rotating arm 16 in which a pair of opposed side walls 24 and 25 are vertically arranged.
[0021]
Further, each groove 26 of the rotating arm 16 penetrates a joint block 29 attached to the tip of a rod 28 of each fluid pressure cylinder 27 to connect the rotating arm 16 to each joint block 29. A pin 30 is provided. As shown in FIGS. 1 and 2, a mounting bracket 31 is provided at the base of each hydraulic cylinder 27, and each mounting bracket 31 is rotated by a shaft 32 erected at a predetermined position on the base plate 8. Supported as possible. The press molding die 1 drives each fluid pressure cylinder 27 to move each rod 28 to the protruding side, so that the rotating block 14 is turned around the axis in the plane of FIG. 1 and FIG. It is designed to rotate clockwise.
[0022]
Further, the rotation block 14 is arranged so as to protrude in a substantially radial direction of the rotation block 14 and to form a predetermined angle phase with respect to the rotation arm 16 as viewed in the drawing in FIGS. 1 and 2. The rotating member 17 is provided. As shown in FIGS. 1 and 2, the rotating member 17 includes a plate 19 (contact portion) having a contact surface 19 a capable of contacting a reference surface 21 a of a regulating member 18 described below, And a support portion 20 whose base is fixed to the rotating block 14 while detachably holding the plate 19. At a predetermined position of the punch holder 12, there is provided a regulating member 18 which abuts a plate 19 of the rotating member 17 to regulate a rotating operation of the rotating member 17 around an axis. As shown in FIGS. 1 and 2, the regulating member 18 includes a reference block 21 having a reference surface 21 a formed by cutting one side of a substantially cylindrical member in a plane parallel to an axis, and a punch holder 12. And a support block 23 which is fixed and rotatably supports the reference block 21 around a shaft 22.
[0023]
Further, in the press molding die 1, at the time of molding, a fluid of a required fluid pressure is supplied to each fluid pressure cylinder 27, whereby the rotating block 14 rotates around the axis in the paper plane in FIGS. 1 and 2. , So as to rotate in the counterclockwise direction. Then, the torsional moment generated in the material 2 at the time of molding overcomes the force of each fluid pressure cylinder 27 rotating the rotary block 14, and as shown in FIG. 2, the rotary block 14 rotates clockwise around the axis. It has a structure that can be rotated. Then, after the molding is completed, the upper portion 9 of the mold rises and the rotating block 14 can rotate around the axis, so that the rotating block 14 is rotated counterclockwise by the driving of each fluid pressure cylinder 27. Move. When the plate 19 that rotates around the axis integrally with the rotating member 17 abuts on the reference surface 21a of the regulating member 18, the rotating operation of the rotating block 14 around the axis is regulated. The present press molding die 1 has a structure capable of returning an angular phase around the axis of the punch 6 (upper die) and the die 7 (lower die) to the initial phase.
[0024]
The main part of the initial phase return means is constituted by the turning arm 16, the turning member 17, the regulating member 18, and the fluid pressure cylinder 27. Further, in the present press molding die 1, a shim 33 is interposed between the plate 19 of the rotating member 17 and the support portion 20, and the thickness T of the shim 33 (initial phase correcting means) (see FIG. By adjusting the initial phase of the punch 6 (upper die) and the die 7 (lower die), the angular phase around the axis of each helical tooth profile 3, 4 of the double helical gear 5 is properly maintained. It has a structure to do.
[0025]
Next, the operation of forming the double helical gear 5 shown in FIG. 6 using the present press forming die 1 (hereinafter, simply referred to as the die 1) will be described. First, as shown in FIG. 4, a substantially cylindrical material 2 is set in a mold 1. In the mold 1 in this state, as shown in FIG. 1, the contact surface 19 a of the plate 19 (contact portion) of the rotating member 17 contacts the reference surface 21 a of the reference block 21 of the regulating member 18. The punch 6 is positioned around the axis of the material 2 with respect to the die 7 so that the angular phase of the punch 6 and the die 7 around the axis of the material 2 becomes the initial phase. Next, the material 2 is pressurized by the mold 1 and the images of the helical teeth 3 and 4 attached to the punch 6 and the die 7 are rolled on the material 2 as shown in FIG. To form At this time, as the helical tooth forms 3 and 4 are formed (rolled) on the material 2, a torsional moment about the axis is generated in the material 2, and the torsional moment causes the rotating block 14 to move in FIG. 2, and overcomes the force of each fluid pressure cylinder 27 for urging in the counterclockwise direction around the axis in the paper view in FIG. 2, and moves the rotating block 14 clockwise from the state shown in FIG. 1 to the state shown in FIG. To be rotated.
[0026]
Next, the upper part 9 is raised to raise the punch 6, and the punch pin 15 is driven in synchronization with the rise of the punch 6, and the upper end surface of the material 2 is pressed by the punch pin 15, thereby forming the material 2 (helical tooth 3). From the punch 6. At this time, with the relative movement of the punch 6 and the helical tooth profile 3 in the axial direction, the rotating block 14 rotates in the opposite direction (counterclockwise around the axis) during molding. Then, when the material 2 (helical tooth form 3) and the punch 6 are detached, the rod 28 of each hydraulic cylinder 27 protrudes, and the rotating block 14 rotates counterclockwise around the axis, thereby turning the rotating block. The contact surface 19 a of the plate 19 of the regulating member 18 that rotates integrally with the contact 14 abuts on the reference surface 21 a of the reference block 21 provided on the base plate 8 of the upper mold part 9. Thereby, the turning operation of the turning block 14 is stopped, and as shown in FIG. 1, the angular phase around the axis of the punch 6 (upper die) and the die 7 (lower die) returns to the initial phase.
[0027]
Next, the knockout pin 11 is raised, the lower end face of the material 2 is pressed by the knockout pin 11, the material 2 (helical tooth 4) is detached from the die 7, and the double helical gear 5 is taken out of the mold 1. Thereby, the double helical gear 5 in which the angular movement of the helical tooth profile 3 and the helical tooth profile 4 around the axis is formed with high accuracy can be obtained. Note that the initial phase of the punch 6 and the die 7 can be adjusted to various conditions such as the mechanical properties of the material 2 and the lubrication state even when a product (double helical gear 5) having the same shape (angular phase) is formed. The transferability of the mold and the amount of rotation of the rotation block 14 are different due to the difference between the two. It can be easily corrected by inserting a shim 33 between the plate 19 and the support portion 20.
[0028]
This embodiment has the following effects.
The rotating block 14 is rotatably supported by the punch holder 12, and the punch 6 is mounted on the rotating block 14, and the punch 6 is rotated around the axis 2 of the material 2 during molding to act on the material 2. The torsional moment was released. Therefore, no excessive force acts on each of the helical tooth profiles 3 and 4 during molding, and the double helical gear 5 with high accuracy can be obtained.
A rotation member 17 that rotates integrally with the rotation block 14 is provided on the rotation block 14, and the restriction member 18 is provided on the base plate 8, and the plate 19 of the rotation member 17 is used as a reference for the restriction member 18. By bringing the punch 6 and the die 7 into contact with the block 21, the angular phase around the axis of the punch 6 and the die 7 was returned to the initial phase. Therefore, the punch 6 and the die 7 can be reliably and accurately returned to the initial phase to obtain the double helical gear 5 in which the angular phase around the axis between the helical teeth 3 and 4 is formed with high precision. Can be.
Since the rotating block 16 is provided with the rotating arm 16 extending in the radial direction, and the rotating arm 16 is pressed by the fluid pressure cylinder 27 to rotate the rotating block 14, the structure is simple and the mechanism is reliable. Therefore, the mold manufacturing cost can be kept low and the increase in the manufacturing cost can be suppressed.
The torsional moment around the axis generated in the material 2 during molding overcomes the driving force of the fluid pressure cylinder 27 that drives the rotating block 14 to rotate. Since the setting is made to rotate, the punch 6 can be rotated around the axis of the material 2 during molding, and the double helical gear 5 in which the helical teeth 3, 4 are molded with high precision is formed. be able to.
Since the initial phase of the punch 6 and the die 7 is corrected by adjusting the thickness of the shim 33 inserted between the plate 19 and the support portion 20 of the rotating member 17, the mechanical properties of the material 2 and the lubrication state By correcting an error in the angular phase around the axis between the helical tooth profiles 3 and 4 caused by the difference in various conditions such as the above, the double helical gear 5 with high accuracy can be formed.
[0029]
The embodiment is not limited to the above, and may be configured as follows, for example.
In the present embodiment, the rotating block 14 is driven by the two hydraulic cylinders 27 to rotate around the axis of the material 2, but the rotating block 14 is rotated by the one hydraulic cylinder 27 Is also good.
A mechanism for rotating the rotary block 14 by connecting the rod 28 of the fluid pressure cylinder 27 to the rotary arm 16 is configured. A pinion gear that is rotatable about the axis of the material 2 integrally with the rotary block 14 is provided. Alternatively, a rack gear may be meshed with the pinion gear, and the rack gear may be slid by a hydraulic cylinder to rotate the rotation block 14.
The rotation block 14 may be rotated and positioned around the axis of the material 2 by a servomotor.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, the initial angular phase around the axis of the upper mold and the lower mold is corrected in accordance with the molding conditions such as the mechanical properties and lubrication conditions of the material. It is possible to provide a press molding die capable of obtaining a double helical gear with high accuracy. Further, according to the present invention, a high-precision double helical gear can be obtained by correcting the initial angular phase around the axis of the upper mold and the lower mold in accordance with molding conditions such as mechanical properties and lubrication conditions of the material. And a method for manufacturing a double helical gear.
[Brief description of the drawings]
FIG. 1 is an explanatory view of the present embodiment, and is a plan view of a part of a mold, particularly showing a state where an angular phase around an axis of a material of a punch and a die returns to an initial phase.
FIG. 2 is an explanatory view of the present embodiment, and is a partial plan view showing a state at the time of completion of molding in which the rotation block has been rotated around the axis of the material from the state of FIG.
FIG. 3 is a view showing a cross section of a main part of the present press molding die.
FIG. 4 is a cross-sectional view of a part of the press-molding die, particularly showing a state in which a material is set in the die.
FIG. 5 is a cross-sectional view of a part of the press forming die, particularly illustrating a state when the forming is completed (a state in which the punch is located at a lower end position).
FIG. 6 is an explanatory diagram of a double helical gear.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Press molding die 2 Material 3, 4 Helical tooth profile 5 Double helical gear 6 Punch (upper die)
7 dice (lower die)
16 Rotating arm (initial phase return means)
17 Rotating member (initial phase return means)
18 Regulation member (initial phase return means)
27 Fluid pressure cylinder (initial phase return means)
33 shim (initial phase correction means)

Claims (6)

ダブルヘリカルギヤの一方のヘリカル歯形の像を有する上型とダブルヘリカルギヤの他方のヘリカル歯形の像を有する下型とを備え、前記上型と前記下型とが前記ダブルヘリカルギヤの軸線の回りに相対回動動作可能なプレス成形金型であって、相対回動動作された前記上型と前記下型との角度位相を初期の角度位相に復帰させる初期位相復帰手段と、前記上型と前記下型との初期の角度位相を補正する初期位相補正手段と、を具備することを特徴とするプレス成形金型。An upper die having an image of one helical tooth profile of the double helical gear and a lower die having an image of the other helical tooth profile of the double helical gear, wherein the upper die and the lower die are relatively rotated around the axis of the double helical gear. A press-forming mold capable of moving operation, an initial phase return means for returning an angular phase between the upper mold and the lower mold that have been relatively rotated to an initial angular phase, and the upper mold and the lower mold And an initial phase correcting means for correcting an initial angular phase of the press molding die. 前記初期位相復帰手段は、前記上型又は前記下型と一体で前記ダブルヘリカルギヤの軸線の回りに回動させる回動部材と、前記上型又は前記下型を前記ダブルヘリカルギヤの軸線の回りに回動可能に支持するホルダに固定され、前記回動部材を当接させて前記回動部材の回動動作を規制して前記上型と前記下型との角度位相を初期の位相角度に復帰させる規制部材と、を具備することを特徴とするプレス成形金型。The initial phase return means includes a rotating member that rotates around the axis of the double helical gear integrally with the upper mold or the lower mold, and a rotating member that rotates the upper mold or the lower mold around the axis of the double helical gear. The rotating member is fixed to a holder that movably supports the rotating member, and the rotating member is brought into contact with the rotating member to restrict the rotating operation of the rotating member, thereby returning the angular phase of the upper mold and the lower mold to the initial phase angle. And a regulating member. 前記回動部材は、前記規制部材に当接させる当接部と該当接部を着脱可能に支持する支持部とを含んで構成され、前記初期位相補正手段は、前記当接部と前記支持部との間にシムを介在させて前記上型と前記下型との初期の角度位相を補正することを特徴とする請求項2に記載のプレス成形金型。The rotating member is configured to include a contact portion that makes contact with the regulating member and a support portion that detachably supports the contact portion, and the initial phase correction unit includes the contact portion and the support portion. The press-molding die according to claim 2, wherein an initial angular phase between the upper die and the lower die is corrected by interposing a shim between the upper die and the lower die. ダブルヘリカルギヤの一方のヘリカル歯形の像を有する上型とダブルヘリカルギヤの他方のヘリカル歯形の像を有する下型とを備えるプレス成形金型を用いて素材をプレス成形してダブルヘリカルギヤを形成するダブルヘリカルギヤの製造方法であって、プレス成形時に、前記上型と前記下型とを前記ダブルヘリカルギヤの軸線の回りに相対回動動作させてダブルヘリカルギヤを形成し、成形終了後、該ダブルヘリカルギヤをプレス成形金型から取り出し、次に前記上型と前記下型とを前記ダブルヘリカルギヤの軸線の回りに相対回動動作させて前記上型と前記下型との前記ダブルヘリカルギヤの軸線の回りの角度位相を成形前の初期の角度位相に復帰させることを特徴とするダブルヘリカルギヤの製造方法。A double helical gear for forming a double helical gear by press-forming a material using a press mold having an upper mold having an image of one helical tooth profile of the double helical gear and a lower mold having an image of the other helical tooth profile of the double helical gear In the press molding, the upper mold and the lower mold are relatively rotated around the axis of the double helical gear to form a double helical gear, and after the molding is completed, the double helical gear is press-molded. Take out from the mold, and then rotate the upper mold and the lower mold relatively around the axis of the double helical gear to change the angular phase of the upper mold and the lower mold around the axis of the double helical gear. A method for manufacturing a double helical gear, comprising returning to an initial angular phase before molding. 前記上型又は前記下型と一体で前記ダブルヘリカルギヤの軸線の回りに回動する回動部材を、前記上型又は前記下型を前記ダブルヘリカルギヤの軸線の回りに回動可能に支持するホルダに固定された規制部材に当接させて、前記上型と前記下型との前記ダブルヘリカルギヤの軸線の回りの角度位相を成形前の初期の角度位相に復帰させることを特徴とする請求項4に記載のダブルヘリカルギヤの製造方法。A rotating member that rotates around the axis of the double helical gear integrally with the upper mold or the lower mold to a holder that supports the upper mold or the lower mold so as to be rotatable around the axis of the double helical gear; The method according to claim 4, wherein an angular phase around the axis of the double helical gear of the upper mold and the lower mold is returned to an initial angular phase before molding by being brought into contact with a fixed regulating member. A method for manufacturing the double helical gear according to the above. 前記回動部材を当接させる当接部と該当接部を着脱可能に支持する支持部との間にシムを介在させて前記上型と前記下型との初期の角度位相を補正することを特徴とする請求項5に記載のダブルヘリカルギヤの製造方法。Correcting the initial angular phase of the upper mold and the lower mold by interposing a shim between a contact part that contacts the rotating member and a support part that detachably supports the contact part. The method for manufacturing a double helical gear according to claim 5, wherein
JP2002224903A 2002-08-01 2002-08-01 Press molding die and method for manufacturing double helical gear Expired - Fee Related JP4267269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224903A JP4267269B2 (en) 2002-08-01 2002-08-01 Press molding die and method for manufacturing double helical gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224903A JP4267269B2 (en) 2002-08-01 2002-08-01 Press molding die and method for manufacturing double helical gear

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007328735A Division JP4584301B2 (en) 2007-12-20 2007-12-20 Press molding die and method for manufacturing double helical gear

Publications (2)

Publication Number Publication Date
JP2004066257A true JP2004066257A (en) 2004-03-04
JP4267269B2 JP4267269B2 (en) 2009-05-27

Family

ID=32012736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224903A Expired - Fee Related JP4267269B2 (en) 2002-08-01 2002-08-01 Press molding die and method for manufacturing double helical gear

Country Status (1)

Country Link
JP (1) JP4267269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357071B2 (en) 2010-03-29 2013-01-22 Shimano Inc. Planetary gear mechanism for a bicycle internal hub transmission
CN112719473A (en) * 2020-12-18 2021-04-30 陕西法士特齿轮有限责任公司 Rapid centering method and system for tooth grooves of duplicate gears

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357071B2 (en) 2010-03-29 2013-01-22 Shimano Inc. Planetary gear mechanism for a bicycle internal hub transmission
CN112719473A (en) * 2020-12-18 2021-04-30 陕西法士特齿轮有限责任公司 Rapid centering method and system for tooth grooves of duplicate gears
CN112719473B (en) * 2020-12-18 2022-02-22 陕西法士特齿轮有限责任公司 Rapid centering method and system for tooth grooves of duplicate gears

Also Published As

Publication number Publication date
JP4267269B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4584301B2 (en) Press molding die and method for manufacturing double helical gear
JP4852922B2 (en) Manufacturing method of rack shaft
KR20030095164A (en) Rotary drive apparatus for rotary body
KR20070102917A (en) Bearing structure and press machine having the structure
KR100667196B1 (en) Negative-angle forming die
JP2007245220A (en) Forging device
JPH0631373A (en) Device and method for forming helical gear
US4351175A (en) Method of manufacturing an arc-like formed product and equipment for carrying out the method
JP3947204B2 (en) Manufacturing method of parts having internal teeth and rolling machine
JP2004066257A (en) Press-forming die and method for producing double helical gear
CN106825377A (en) The forging and molding mould and manufacture method of herringbone gear
CN100372626C (en) Method of manufacturing part with internal gear and rolling machine
JP2011073057A (en) Press machining device and shaft portion restriction device
JPH08276218A (en) Device for forming metal plate
JP3913636B2 (en) Multi-point press machine
JP3429711B2 (en) Cup-shaped gear manufacturing equipment
JPH0685971B2 (en) Helical gear formation method
JP5135837B2 (en) Gear rolling method and rolling apparatus
JP2002102942A (en) Press die device ! forming method of groove and fluidised forming device
TWI267412B (en) Method of manufacturing part with internal gear and rolling machine
US20150117943A1 (en) Method for machining a functional part
JP2002096139A (en) Cold forging method and its apparatus
JP2007069591A (en) Mold apparatus for helical gear and molded product
JP2010149128A (en) Gear forming apparatus and gear forming method
KR200409078Y1 (en) Coupling cam-feeder system for press

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees