JP2004066219A - Water treatment system and water treatment method - Google Patents

Water treatment system and water treatment method Download PDF

Info

Publication number
JP2004066219A
JP2004066219A JP2003093470A JP2003093470A JP2004066219A JP 2004066219 A JP2004066219 A JP 2004066219A JP 2003093470 A JP2003093470 A JP 2003093470A JP 2003093470 A JP2003093470 A JP 2003093470A JP 2004066219 A JP2004066219 A JP 2004066219A
Authority
JP
Japan
Prior art keywords
water
hydrogen peroxide
treated
reaction tank
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003093470A
Other languages
Japanese (ja)
Inventor
Brahim Messaudi
メッサウディ ブラヒム
Junji Hirotsuji
廣辻 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003093470A priority Critical patent/JP2004066219A/en
Publication of JP2004066219A publication Critical patent/JP2004066219A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the injecting quantity of hydrogen peroxide by injecting hydrogen peroxide to a water to be treated introduced into a reaction vessel in a water treatment system for decomposing organic compounds in the water to be treated. <P>SOLUTION: The water treatment system is provided with the reaction vessel 1 in which a hydrogen peroxide decomposition catalyst 2 composed of a metal compound selected from the group composed of nickel, manganese, iron, copper and cobalt and activated carbon is packed, a water-to-be-treated introducing means 3 for introducing the water to be treated in the reaction vessel 1, a treated water discharge means 4 for discharging treated water from the reaction vessel 1 and hydrogen peroxide injection means 5a-5c for injecting hydrogen peroxide into the reaction vessel 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば工業排水処理場やオンサイトリサイクルなどで用いられる水処理システム及び水処理方法に関する。
【0002】
【従来の技術】
過酸化水素と活性炭を用いる従来の水処理システムでは、被処理水に過酸化水素を注入して混合させ、有機化合物に接触した過酸化水素によって有機化合物を酸化分解する。その後、被処理水と過酸化水素との混合水を活性炭に接触させて、未分解の有機化合物を活性炭に吸着させるとともに、過酸化水素を活性炭で分解処理する。このような方式では、有機化合物と過酸化水素との接触度合が処理水質に影響するため、過酸化水素の注入口から活性炭までの配管距離を十分に長くして有機化合物と過酸化水素との接触時間の確保を図っている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平5−115868号公報
【0004】
【発明が解決しようとする課題】
しかしながら、水処理システムの設置空間的な制約などがあると、有機化合物と過酸化水素との接触が不十分となり、有機化合物を酸化分解する前に活性炭に接触する過酸化水素が多くなりやすい。このため、有機化合物の十分な酸化分解のためには過酸化水素を余剰に注入する必要があった。
【0005】
この発明は、上記のような問題点を解決するためになされたものであり、活性炭と金属化合物とからなる過酸化水素分解触媒を充填した反応槽を用い、この反応槽に導入された被処理水に対して過酸化水素を注入することにより、過酸化水素の注入量の低減を図った水処理システム及び水処理方法を提供する。
【0006】
【課題を解決するための手段】
請求項1にかかる水処理システムは、被処理水の有機化合物を分解するための水処理システムにおいて、ニッケル、マンガン、鉄、銅及びコバルトからなる群から選択された金属を含む金属化合物と活性炭とからなる過酸化水素分解触媒を充填した反応槽と、反応槽に被処理水を導入する被処理水導入手段と、反応槽から処理水を排出する処理水排出手段と、反応槽に過酸化水素を注入する過酸化水素注入手段とを備えたものである。
【0007】
請求項2にかかる水処理システムは、過酸化水素注入手段が、被処理水導入手段側から処理水排出手段側に向かって複数配置されており、被処理水導入手段側に配置された過酸化水素注入手段は処理水排出手段側に配置された過酸化水素注入手段より過酸化水素の注入量が多いものである。
【0008】
請求項3にかかる水処理システムは、過酸化水素分解触媒が、被処理水導入手段側における金属化合物の構成比が処理水排出手段側よりも大きいものである。
【0009】
請求項4にかかる水処理方法は、被処理水の有機化合物を分解するための水処理方法において、ニッケル、マンガン、鉄、銅及びコバルトからなる群から選択された金属を含む金属化合物と活性炭とからなる過酸化水素分解触媒を充填した反応槽と、反応槽に被処理水を導入する被処理水導入手段と、反応槽から処理水を排出する処理水排出手段と、反応槽に過酸化水素を注入する過酸化水素注入手段とを備えた水処理システムを用いて、反応槽に被処理水を導入する工程と、被処理水を保持して活性炭に有機化合物を吸着させる工程と、反応槽に過酸化水素を注入する工程と、有機化合物が分解された処理水を排出する工程とを備えたものである。
【0010】
請求項5にかかる水処理システムは、処理水の溶存酸素濃度測定手段と、溶存酸素濃度の測定値が所定値を超えた場合に反応槽に流入する被処理水に対する過酸化水素の流量比を低下させる流量制御手段とを備えたものである。
【0011】
請求項6にかかる水処理システムは、反応槽または被処理水を冷却し、水中の溶存酸素濃度が飽和酸素濃度を下回るように水温を設定するための冷却手段を備えたものである。
【0012】
請求項7にかかる水処理システムは、反応槽に設けられた溶存酸素還元電極と前記溶存酸素還元電極に接続された電源とを備えたものである。
【0013】
請求項8にかかる水処理システムは、反応槽または被処理水の酸素を除去するための脱気手段を備えたものである。
【0014】
【発明の実施の形態】
実施の形態1.
図1は、本発明が適用される水処理システムの実施の形態1を説明するための概略構成図である。1は反応槽、2は反応槽1に充填された過酸化水素分解触媒であり、活性炭と金属化合物とからなる。この金属化合物は、例えばニッケル、マンガン、鉄、銅及びコバルトのいずれかの金属を含み、金属単体、金属酸化物、金属水酸化物あるいはこれらの混合物である。3は被処理水導入手段として被処理水導入口、4は処理水排出手段としての処理水排出口である。5a〜5cは反応槽1に過酸化水素を注入する過酸化水素注入手段としての過酸化水素注入口であり、被処理水導入口3側から処理水排出口4側に向かって3個配置されている。このように、過酸化水素は反応槽1に直接的に注入される。
【0015】
次に、動作について説明する。被処理水は被処理水導入口3から反応槽1に導入される。被処理水に含まれる有機化合物は、過酸化水素分解触媒2を構成する活性炭に吸着される。このとき、有機化合物の吸着濃度は、被処理水注入口3側が処理水排出口4側よりも一般に高い。
【0016】
過酸化水素は過酸化水素注入口5a〜5cから反応槽1に注入される。過酸化水素は水溶液として注入され、その注入量は被処理水導入口3から処理水排出口に向かって傾斜的に減少する。すなわち、最も被処理水導入口3側に配置された過酸化水素注入口5aからの注入量が最も多く、次いで過酸化水素注入口5bからの注入量が多く、最も処理水排出口4側に配置された過酸化水素注入口5cからの注入量が最も少ない。それぞれの過酸化水素注入口からの注入量の調整は、活性炭に吸着された有機化合物の濃度分布に対応して行われるのがよい。
【0017】
過酸化水素は、過酸化水素分解触媒2を構成する金属化合物に接触すると分解される。このとき、分解反応中間体として、酸化力の強いOHラジカルや酸素原子といった活性種が生成される。金属化合物が、ニッケル、マンガン、鉄、銅及びコバルトのいずれかの金属を含むと、過酸化水素との反応速度が大きく、これらの活性種を著しく生成させることができる。さらに、OHラジカルや酸素原子といった活性種は、活性炭に吸着した有機化合物を速やかに酸化分解する。なお、過酸化水素が活性炭により分解される反応、OHラジカルや酸素原子と活性炭との反応、過酸化水素が有機化合物を分解する反応も起きているが、反応速度の関係から、過酸化水素が金属化合物によりOHラジカルや酸素原子を生成する反応、OHラジカルや酸素原子が有機化合物を分解する反応が支配的である。
【0018】
ここで、過酸化水素分解触媒2における活性炭と金属化合物の構成比については、金属化合物が10〜75体積%であり、活性炭が残り90〜25体積%であることが好ましい。さらには、被処理水導入口3側における金属化合物の構成比が処理水排出口4側よりも大きいことが好ましい。例えば金属化合物が、被処理水導入口3側において50〜75体積%、処理水排出口4側において10〜20体積%であることが好ましい。なお、過酸化水素分解触媒は反応槽に充填された状態で空隙を有するが、ここでの記載は活性炭と金属化合物の構成比に関することであり、空隙の体積についてはとくに限定しない。
【0019】
このように、金属化合物により過酸化水素からOHラジカルや酸素原子が生成され、これらの強い酸化力によって有機化合物を効率的に分解できる。このため、反応槽1に過酸化水素を直接的に注入することが可能となり、被処理水を導入するための配管距離を長くする必要がない。よって、配管距離を長くできない場合でも過酸化水素を余剰に注入する必要がない。したがって、過酸化水素の注入量の低減を図ることができる。さらに、反応槽1における有機化合物の濃度分布を考慮して過酸化水素を注入するため、過酸化水素を一段と節約できる。
【0020】
最後に、有機化合物の分解処理がなされた後は、処理水として処理水排出口4を通じて反応槽1から排出する。なお、被処理水のpHが2〜5に調整されていると、過酸化水素が酸として解離しにくく、しかも金属化合物の顕著な劣化や溶解を抑制できる。
【0021】
実施の形態2.
図2は、実施の形態2を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として、反応槽を移動層式にしたものである。図2において、6は過酸化水素分解触媒2を反応槽1から引き抜く触媒引抜口、7は過酸化水素分解触媒2を反応槽1に返送する触媒返送口である。
【0022】
この実施の形態では、反応槽1が移動層式であるため、反応槽1全体にわたる有機化合物の吸着濃度が、実施の形態1と比較して均一化されやすい。したがって、過酸化水素注入口5a〜5cから反応槽1に注入される過酸化水素の注入量は、活性炭に吸着された有機化合物の濃度分布に対応して調整されるのが好ましいことから、均等に近いのがよい。ただし、処理水中に未反応の過酸化水素が残存しないような配慮は必要であり、そうであれば過酸化水素注入口は被処理水導入口3側に比較的近いところに1つであってもかまわない。また、過酸化水素分解触媒2における活性炭と金属化合物の構成比については、移動層式において処理水質の安定性の観点から、金属化合物が10〜75体積%で反応槽1全体にわたって均一であることが好ましい。
【0023】
このような移動層式の水処理システムは、有機化合物が例えばドデシルベンゼンスルホン酸などの界面活性剤である場合に有効である。界面活性剤を含む被処理水は、表面張力が低下するために局所的に大きな気泡が発生しやすい。反応槽内の気泡が増えすぎると水処理性能の低下につながるため、このような不均一な気泡発生を抑制する必要がある。これに対して、移動層式では過酸化水素分解触媒の移動によって局所的な気泡の成長が妨げられるため、水処理システムを安定して運転できる。なお、ここでは移動層式について説明したが、流動層式の場合も気泡と過酸化水素分解触媒との衝突によって気泡の成長が妨げられるため、同様の効果が得られる。
【0024】
実施の形態3.
図3は、実施の形態3を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として2つの反応槽を具備した水処理システムを用いるものであり、活性炭に有機化合物を吸着させる工程と、過酸化水素を注入して有機化合物を分解する工程とを、時間的に交互に行うものである。図3において、11及び21は反応槽、12及び22は過酸化水素分解触媒、13及び23は被処理水導入口、14及び24は処理水排出口、15a〜15c及び25a〜25cは過酸化水素注入口、18aは反応槽11に被処理水の導入を制御する被処理水バルブ、18bは反応槽11に過酸化水素の注入を制御する過酸化水素バルブ、28aは反応槽21に被処理水の導入を制御する被処理水バルブ、28bは反応槽21に過酸化水素の注入を制御する過酸化水素バルブである。
【0025】
次に、動作について説明する。図4は、実施の形態3を説明するためのタイムチャート図である。まず時刻t0では、反応槽11には有機化合物が分解された処理水が入った状態、反応槽21には被処理水が入った状態とする。
【0026】
続いて時刻t1で、被処理水バルブ18aを開状態として反応槽11に被処理水を被処理水導入口13から導入する。同時に、被処理水に押されて処理水は処理水排出口14から排出される。このとき、過酸化水素バルブ18bは閉状態である。
【0027】
一方、被処理水バルブ28a及び過酸化水素バルブ28bは閉状態で、反応槽21の中に被処理水を保持しておく。このとき、被処理水の有機化合物が過酸化水素分解触媒22の活性炭に吸着されている。被処理水の保持状態が所定時間経過した時刻t2で、過酸化水素バルブ28bを開状態として過酸化水素を注入する。金属化合物により過酸化水素からOHラジカルや酸素原子が生成され、活性炭に吸着した有機化合物の酸化分解が進行する。この実施の形態では、被処理水を保持するため、有機化合物の活性炭への吸着が一段と進行し、反応槽21内に有機化合物が濃縮吸着された状態になっている。そのため、OHラジカルや酸素原子といった活性種と有機化合物との反応効率が向上する。
【0028】
反応槽11への被処理水の導入が終了した時刻t3で、被処理水バルブ18aを閉状態とする。また、反応槽21における有機化合物の分解が十分に進行したところで、過酸化水素バルブ28bを閉状態とする。これは、反応槽11には被処理水が入った状態、反応槽21には有機化合物が分解された処理水が入った状態である。
【0029】
このとき、被処理水バルブ18a及び過酸化水素バルブ18bは閉状態で、反応槽11の中に保持された被処理水の有機化合物が、過酸化水素分解触媒12の活性炭に吸着されている。被処理水の保持状態が所定時間経過した時刻t4で、過酸化水素バルブ18bを開状態として過酸化水素を注入すると、活性炭に吸着した有機化合物の酸化分解が進行する。
【0030】
一方、時刻t3において、被処理水バルブ28aを開状態として反応槽21に被処理水を被処理水導入口23から導入すると、被処理水に押されて処理水は処理水排出口24から排出される。このとき、過酸化水素バルブ28bは閉状態である。
【0031】
反応槽21への被処理水の導入が終了した時刻t5で、被処理水バルブ28aを閉状態とする。また、反応槽11における有機化合物の分解が十分に進行したところで、過酸化水素バルブ18bを閉状態とする。これらの工程を繰り返すことにより、被処理水を連続的に処理できる。しかも有機化合物の濃縮吸着によって、過酸化水素との反応効率が向上するため、過酸化水素の注入量の低減をさらに図ることができる。
【0032】
なお、時刻t3で被処理水バルブ18aを閉状態とする際に、反応槽11への被処理水の導入が終了した時点の代わりに、処理水排出口14から排出される処理水の水質をモニタリングし、その水質が所定基準より劣った時点であってもかまわない。時刻t5で被処理水バルブ28aを閉状態とする際も同様である。このようにすれば、被処理水の水質や過酸化水素分解触媒の有機化合物吸着能力に応じて、より効率的に過酸化水素を注入でき、その結果として過酸化水素の注入量の低減を一段と図ることができる。
【0033】
実施の形態4.
図5は、実施の形態4を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として、処理水の溶存酸素濃度に応じて過酸化水素の注入量または被処理水の導入量を制御するものである。図5において、被処理水は被処理水導入口3から反応槽1に導入され、過酸化水素は過酸化水素注入口5a〜5cから反応槽1に注入される。過酸化水素は、過酸化水素分解触媒2に接触すると、酸化力の強いOHラジカルや酸素原子といった活性種に分解される。これらの活性種は、被処理水に含まれていた有機化合物を速やかに酸化分解する。ただし、活性種は化学的に不安定であるから、有機化合物と未反応なものは、活性種同士の反応により酸素分子などに変化して安定する。したがって、処理水には溶存酸素が含まれている。
【0034】
ところで、溶存酸素が増加して水中飽和濃度を超えた場合には、処理水中に気泡が発生する。この気泡が局所的に集中して発生すると、過酸化水素分解触媒2表面に付着した気泡が、過酸化水素と過酸化水素分解触媒2との接触を阻害する。そのため、局所的に活性種が不足して、水処理性能の低下につながりやすい。また、気泡の存在によって気水混合相としての体積膨張が起こると、その膨張圧力によって処理水が十分な処理時間を経ないうちに排出されたり、過酸化水素分解触媒2が処理水とともに排出されたりする。よって、不均一な酸素気泡の発生を抑制する必要がある。
【0035】
そこで、この実施の形態では、処理水排出口4から排出された処理水の溶存酸素濃度を、溶存酸素濃度計31によって測定する。溶存酸素濃度計31の設置箇所は、反応槽1内において処理水排出口4の近傍であってもかまわない。溶存酸素濃度の測定結果は流量制御装置32に送られる。流量制御装置32は、溶存酸素濃度が所定値を超えた場合には、過酸化水素流量調整器33に制御信号を送って過酸化水素の注入量を減少させたり、被処理水流量調整器34に制御信号を送って被処理水の導入量を増加させたりする制御を行なう。すなわち反応槽1に流入する被処理水に対する過酸化水素の流量比を低下させる。例えば、反応槽1内の水温における飽和酸素濃度が8mg/lのとき、処理水の溶存酸素濃度がその飽和酸素濃度よりやや低目の6mg/lを超えた場合にこのような制御を行なう。この際、過酸化水素の注入量、被処理水の導入量の一方のみを調整してもよく、両方を調整してもよい。
【0036】
したがって、過酸化水素の分解に伴なって発生する溶存酸素の処理水中の濃度に応じて、過酸化水素の注入量または被処理水の導入量を制御するため、溶存酸素濃度が過飽和になることがなく酸素気泡の発生を抑制できる。よって、水相流動は均一であり、良好な水処理性能が得られる。
【0037】
実施の形態5.
図6は、実施の形態5を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として反応槽1を冷却するものであって、実施の形態4と同様に不均一な酸素気泡の発生を抑制する。図6において、反応槽1内に設置された熱交換用配管35に、図示左上から図示右下に向かって冷媒を流入させる。このとき、反応槽1内の水相は冷媒との熱交換によって冷却される。
【0038】
水温が0〜20℃の範囲では、水温が2℃低下すると、飽和酸素濃度は約0.5mg/lの割合で上昇する。よって、反応槽1内の水相の溶存酸素濃度が飽和酸素濃度を超えそうであっても、反応槽1を冷却することによってそのおそれがなくなる。したがって、酸素気泡の発生を抑制でき、良好な水処理性能が得られる。このとき、反応槽1から排出された処理水の溶存酸素濃度を測定し、その溶存酸素濃度が飽和酸素濃度を下回るように反応槽1の水温を設定すると、過剰冷却することがなく好ましい。
【0039】
なお、反応槽1内の水相を冷却する例を説明したが、反応槽1に導入される前の被処理水を予め冷却しても、同様の効果が得られる。有機化合物と活性種との反応速度は水温の影響が小さく、水温低下によって気泡発生を抑制する効果は大きい。
【0040】
実施の形態6.
図7は、実施の形態6を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として反応槽1に溶存酸素還元電極36を設けたものであって、実施の形態4と同様に不均一な酸素気泡の発生を抑制する。図7において、反応槽1内に溶存酸素還元電極36が過酸化水素分解触媒2の層を貫通するように設置されている。溶存酸素還元電極36の陽極、陰極はそれぞれ電源の陽極側、陰極側に接続されている。溶存酸素還元電極36に電圧を印加すると、溶存酸素は例えば下式のように分解反応し、消失する。
 + H + e  →  HO
【0041】
したがって、酸素気泡の発生を抑制でき、良好な水処理性能が得られる。このとき、反応槽1から排出された処理水の溶存酸素濃度を測定し、溶存酸素濃度が飽和酸素濃度を下回るように印加電圧値を調整すると、活性種による有機化合物の酸化反応への影響を抑制することができる。
【0042】
実施の形態7.
図8は、実施の形態7を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として被処理水導入量制御装置37を設けたものである。図9は、この実施の形態における被処理水導入量のタイムチャート図である。図8において、被処理水導入量制御装置37は反応槽1への被処理水導入量を一時的に増加させることができる。図9では、被処理水導入量の増加タイミングが定期的であり増加量も一定な例を示している。
【0043】
このように、被処理水導入量を一時的に増加させると、反応槽1内に発生していた酸素気泡がその流動圧力によって移動する。例えば、過酸化水素分解触媒2表面に気泡がわずかに付着していたとしても、流動圧力によって気泡は過酸化水素分解触媒2から切離され、処理水とともに反応槽1の外部に排出される。よって、反応槽1内の気泡が少量のうちに脱気できる。さらに、被処理水導入量を一時的に増加させるものの通常時の導入量を抑制するため、水処理システム全体としての運転動力を維持したまま、水処理性能の低下を防止できる。なお、被処理水導入量の増加タイミングや増加量は、これに限定することなく適宜設定できる。
【0044】
実施の形態8.
図10は、実施の形態8を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として反応槽1の上部に接続された減圧装置38を備えたものである。減圧装置38は実施の形態7における被処理水導入量制御装置37と同様に一時的に作動するものであり、反応槽1内の水面より上方の気体を吸引する。過酸化水素分解触媒2表面に酸素気泡がわずかに付着していたとしても、減圧中は反応槽1内の水面に加わる気体圧力が減少するため、水相中の気泡が上昇しやすくなる。よって、この酸素気泡は水面より上方の気相に移動する。さらに、ヘンリーの法則にしたがって、反応槽1内の溶存酸素が水面より上方の気相に移動する。気相に移動した酸素は、減圧装置38によって反応槽1の外部に排出される。この際、反応槽1では一時的に気泡が増加するものの、気泡が少量のうちに脱気できるため、水処理性能の低下を防止できる。
【0045】
実施の形態9.
図11は、実施の形態9を説明するための概略構成図である。この実施の形態は、実施の形態1の変形例として2つの反応槽を具備した水処理システムを用いるものであり、この2つの反応槽の間に脱気槽39を備えたものである。
【0046】
図11において、被処理水は前段の反応槽11に被処理水導入口13から導入され、過酸化水素は過酸化水素注入口15a〜15cから反応槽11に注入される。前段の処理を終えた被処理水は、溶存酸素を含有したまま前段の反応槽11から排出され、脱気槽39に流入する。脱気槽39には脱気用ガスとして例えば窒素が散気されている。窒素は水に対してほとんど溶解しないため、窒素気泡として脱気槽39内を移動する。このとき溶存酸素は、水と窒素気泡の気液界面を移動し、酸素ガスとして気泡中に取り込まれる。この気泡は脱気槽39から排出されるから、前段の処理を終えた被処理水の溶存酸素濃度を低減することができる。ここで、脱気槽39内において、前段の処理を終えた被処理水と脱気用ガスとは、溶存酸素が窒素気泡により多く取り込まれるように対向流が好ましい。
【0047】
このようにして、前段の処理を終えた被処理水は、溶存酸素濃度を十分に低減した状態で、後段の反応槽12に導入される。したがって、多段処理においても溶存酸素濃度が累積的に高まって過飽和に達することを防止できる。
【0048】
【発明の効果】
この発明によれば、ニッケル、マンガン、鉄、銅及びコバルトからなる群から選択された金属を含む金属化合物と活性炭とからなる過酸化水素分解触媒を充填した反応槽と、反応槽に被処理水を導入する被処理水導入手段と、反応槽から処理水を排出する処理水排出手段と、反応槽に過酸化水素を注入する過酸化水素注入手段とを備えたため、過酸化水素の注入量を低減できる。
【0049】
また、過酸化水素注入手段が、被処理水導入手段側から処理水排出手段側に向かって複数配置されており、被処理水導入手段側に配置された過酸化水素注入手段は処理水排出手段側に配置された過酸化水素注入手段より過酸化水素の注入量が多いため、過酸化水素の注入量を活性炭に吸着された有機化合物の濃度分布に対応して調整できる。
【0050】
また、過酸化水素分解触媒が、被処理水導入手段側における金属化合物の構成比が処理水排出手段側よりも大きいため、有機化合物を効率的に分解できる。
【0051】
この発明によれば、ニッケル、マンガン、鉄、銅及びコバルトからなる群から選択された金属を含む金属化合物と活性炭とからなる過酸化水素分解触媒を充填した反応槽と、反応槽に被処理水を導入する被処理水導入手段と、反応槽から処理水を排出する処理水排出手段と、反応槽に過酸化水素を注入する過酸化水素注入手段とを備えた水処理システムを用いて、反応槽に被処理水を導入する工程と、被処理水を保持して活性炭に有機化合物を吸着させる工程と、反応槽に過酸化水素を注入する工程と、有機化合物が分解された処理水を排出する工程とを備えたため、過酸化水素の注入量をさらに低減できる。
【0052】
また、処理水の溶存酸素濃度測定手段と、溶存酸素濃度の測定値が所定値を超えた場合に反応槽に流入する過酸化水素と被処理水との流量比を低下させる流量制御手段とを備えたため、気泡の発生を抑制できる。
【0053】
また、反応槽または被処理水を冷却し、水中の溶存酸素濃度が飽和酸素濃度を下回るように水温を設定するための冷却手段を備えたため、気泡の発生を抑制できる。
【0054】
また、反応槽に設けられた溶存酸素還元電極と前記溶存酸素還元電極に接続された電源とを備えたため、溶存酸素を分解できる。
【0055】
また、反応槽または被処理水の酸素を除去するための脱気手段を備えたため、水中の気泡を排出できる。
【図面の簡単な説明】
【図1】実施の形態1を説明するための概略構成図である。
【図2】実施の形態2を説明するための概略構成図である。
【図3】実施の形態3を説明するための概略構成図である。
【図4】実施の形態3を説明するためのタイムチャート図である。
【図5】実施の形態4を説明するための概略構成図である。
【図6】実施の形態5を説明するための概略構成図である。
【図7】実施の形態6を説明するための概略構成図である。
【図8】実施の形態7を説明するための概略構成図である。
【図9】実施の形態7を説明するためのタイムチャート図である。
【図10】実施の形態8を説明するための概略構成図である。
【図11】実施の形態9を説明するための概略構成図である。
【符号の説明】
1、11、21 反応槽、2、12、22 過酸化水素分解触媒、3、13、23 被処理水導入口、4、14、24 処理水排出口、5a〜5c、15a〜15c、25a〜25c 過酸化水素注入口、6 触媒引抜口、7 触媒返送口、18a、28a 被処理水バルブ、18b、28b 過酸化水素バルブ、31溶存酸素濃度計、32 流量制御装置、33 過酸化水素流量調整器、34 被処理水流量調整器、35 熱交換器、36 還元電極、37 被処理水導入量制御装置、38 減圧装置、39 脱気槽。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water treatment system and a water treatment method used in, for example, an industrial wastewater treatment plant or on-site recycling.
[0002]
[Prior art]
In a conventional water treatment system using hydrogen peroxide and activated carbon, hydrogen peroxide is injected into and mixed with water to be treated, and the organic compound is oxidatively decomposed by the hydrogen peroxide contacted with the organic compound. Then, the mixed water of the water to be treated and hydrogen peroxide is brought into contact with activated carbon to adsorb undecomposed organic compounds to activated carbon, and the hydrogen peroxide is decomposed with activated carbon. In such a method, since the degree of contact between the organic compound and hydrogen peroxide affects the quality of the treated water, the piping distance from the hydrogen peroxide injection port to the activated carbon should be sufficiently long to allow the organic compound to react with hydrogen peroxide. The contact time is ensured (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-5-115868
[0004]
[Problems to be solved by the invention]
However, if there is a restriction on the installation space of the water treatment system, the contact between the organic compound and hydrogen peroxide becomes insufficient, and the amount of hydrogen peroxide that comes into contact with activated carbon before oxidative decomposition of the organic compound tends to increase. For this reason, it is necessary to inject excess hydrogen peroxide for sufficient oxidative decomposition of the organic compound.
[0005]
The present invention has been made in order to solve the above-described problems, and uses a reaction tank filled with a hydrogen peroxide decomposition catalyst composed of activated carbon and a metal compound. Provided is a water treatment system and a water treatment method in which hydrogen peroxide is injected into water to reduce the injection amount of hydrogen peroxide.
[0006]
[Means for Solving the Problems]
The water treatment system according to claim 1, wherein in the water treatment system for decomposing the organic compound of the water to be treated, a metal compound containing a metal selected from the group consisting of nickel, manganese, iron, copper, and cobalt; and activated carbon. A reaction tank filled with a hydrogen peroxide decomposition catalyst consisting of: treated water introduction means for introducing treated water into the reaction tank; treated water discharge means for discharging treated water from the reaction tank; and hydrogen peroxide in the reaction tank. And hydrogen peroxide injection means for injecting hydrogen.
[0007]
In the water treatment system according to claim 2, a plurality of hydrogen peroxide injection means are arranged from the treated water introduction means side to the treated water discharge means side, and the peroxide is arranged on the treated water introduction means side. The hydrogen injection means has a larger injection amount of hydrogen peroxide than the hydrogen peroxide injection means arranged on the treated water discharge means side.
[0008]
According to a third aspect of the present invention, in the water treatment system, the composition ratio of the metal compound in the hydrogen peroxide decomposing catalyst on the side of the treated water introduction unit is larger than that in the treated water discharge unit.
[0009]
The water treatment method according to claim 4, wherein in the water treatment method for decomposing the organic compound of the water to be treated, a metal compound containing a metal selected from the group consisting of nickel, manganese, iron, copper and cobalt, and activated carbon are used. A reaction tank filled with a hydrogen peroxide decomposition catalyst consisting of: treated water introduction means for introducing treated water into the reaction tank; treated water discharge means for discharging treated water from the reaction tank; and hydrogen peroxide in the reaction tank. Introducing a water to be treated into a reaction vessel using a water treatment system having hydrogen peroxide injecting means for injecting hydrogen, a step of adsorbing an organic compound onto activated carbon while retaining the water to be treated, and a reaction vessel. And a step of discharging treated water in which organic compounds have been decomposed.
[0010]
The water treatment system according to claim 5, wherein the dissolved oxygen concentration measuring means of the treated water and the flow rate ratio of hydrogen peroxide to the water to be treated flowing into the reaction tank when the measured value of the dissolved oxygen concentration exceeds a predetermined value. And a flow control means for decreasing the flow rate.
[0011]
The water treatment system according to claim 6 is provided with cooling means for cooling the reaction tank or the water to be treated and setting the water temperature such that the dissolved oxygen concentration in the water is lower than the saturated oxygen concentration.
[0012]
A water treatment system according to claim 7 includes a dissolved oxygen reduction electrode provided in a reaction tank and a power supply connected to the dissolved oxygen reduction electrode.
[0013]
The water treatment system according to claim 8 is provided with deaeration means for removing oxygen from the reaction tank or the water to be treated.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram for describing Embodiment 1 of a water treatment system to which the present invention is applied. Reference numeral 1 denotes a reaction tank, and reference numeral 2 denotes a hydrogen peroxide decomposition catalyst filled in the reaction tank 1, which is composed of activated carbon and a metal compound. The metal compound contains, for example, any one of nickel, manganese, iron, copper, and cobalt, and is a simple metal, a metal oxide, a metal hydroxide, or a mixture thereof. Reference numeral 3 denotes a treated water introduction port as treated water introduction means, and reference numeral 4 denotes a treated water discharge port as treated water discharge means. Reference numerals 5a to 5c denote hydrogen peroxide injection ports as hydrogen peroxide injection means for injecting hydrogen peroxide into the reaction tank 1, and three hydrogen peroxide injection ports are arranged from the treated water inlet 3 side to the treated water discharge port 4 side. ing. As described above, hydrogen peroxide is directly injected into the reaction tank 1.
[0015]
Next, the operation will be described. The to-be-treated water is introduced into the reaction tank 1 from the to-be-treated water inlet 3. The organic compounds contained in the water to be treated are adsorbed on the activated carbon constituting the hydrogen peroxide decomposition catalyst 2. At this time, the adsorption concentration of the organic compound is generally higher on the treated water inlet 3 side than on the treated water outlet 4 side.
[0016]
Hydrogen peroxide is injected into the reaction tank 1 from the hydrogen peroxide injection ports 5a to 5c. Hydrogen peroxide is injected as an aqueous solution, and the amount of the injection decreases gradually from the water inlet 3 to the water outlet. That is, the injection amount from the hydrogen peroxide injection port 5a disposed closest to the treated water inlet 3 is the largest, the injection amount from the hydrogen peroxide injection port 5b is the next largest, and the injection amount is the largest from the treated water discharge port 4 side. The injection amount from the arranged hydrogen peroxide injection port 5c is the smallest. The adjustment of the injection amount from each hydrogen peroxide injection port is preferably performed according to the concentration distribution of the organic compound adsorbed on the activated carbon.
[0017]
Hydrogen peroxide is decomposed when it comes into contact with a metal compound constituting the hydrogen peroxide decomposition catalyst 2. At this time, an active species such as an OH radical or an oxygen atom having a strong oxidizing power is generated as a decomposition reaction intermediate. When the metal compound contains any one of nickel, manganese, iron, copper, and cobalt, the reaction rate with hydrogen peroxide is high, and these active species can be significantly generated. Further, active species such as OH radicals and oxygen atoms rapidly oxidatively decompose organic compounds adsorbed on activated carbon. In addition, a reaction in which hydrogen peroxide is decomposed by activated carbon, a reaction between OH radicals and oxygen atoms and activated carbon, and a reaction in which hydrogen peroxide decomposes organic compounds have occurred. The reaction of generating an OH radical or an oxygen atom by a metal compound and the reaction of decomposing an organic compound by the OH radical or an oxygen atom are dominant.
[0018]
Here, regarding the composition ratio of the activated carbon and the metal compound in the hydrogen peroxide decomposition catalyst 2, it is preferable that the metal compound is 10 to 75% by volume and the remaining activated carbon is 90 to 25% by volume. Furthermore, it is preferable that the constituent ratio of the metal compound on the treated water inlet 3 side is larger than that on the treated water outlet 4 side. For example, the metal compound is preferably 50 to 75% by volume on the treated water inlet 3 side and 10 to 20% by volume on the treated water outlet 4 side. The catalyst for decomposing hydrogen peroxide has voids in a state filled in the reaction vessel, but the description here relates to the composition ratio of the activated carbon and the metal compound, and the volume of the voids is not particularly limited.
[0019]
As described above, OH radicals and oxygen atoms are generated from hydrogen peroxide by the metal compound, and the organic compound can be efficiently decomposed by the strong oxidizing power. For this reason, hydrogen peroxide can be directly injected into the reaction tank 1, and there is no need to lengthen the piping distance for introducing the water to be treated. Therefore, even when the piping distance cannot be lengthened, it is not necessary to inject hydrogen peroxide excessively. Therefore, the injection amount of hydrogen peroxide can be reduced. Furthermore, since hydrogen peroxide is injected in consideration of the concentration distribution of the organic compound in the reaction tank 1, the amount of hydrogen peroxide can be further reduced.
[0020]
Finally, after the organic compound is decomposed, it is discharged from the reaction tank 1 through the treated water outlet 4 as treated water. In addition, when the pH of the water to be treated is adjusted to 2 to 5, hydrogen peroxide is hardly dissociated as an acid, and furthermore, remarkable deterioration and dissolution of the metal compound can be suppressed.
[0021]
Embodiment 2 FIG.
FIG. 2 is a schematic configuration diagram for explaining the second embodiment. In this embodiment, as a modification of the first embodiment, the reaction tank is a moving bed type. In FIG. 2, reference numeral 6 denotes a catalyst extraction port for extracting the hydrogen peroxide decomposition catalyst 2 from the reaction tank 1, and reference numeral 7 denotes a catalyst return port for returning the hydrogen peroxide decomposition catalyst 2 to the reaction tank 1.
[0022]
In this embodiment, since the reaction tank 1 is a moving bed type, the adsorption concentration of the organic compound over the entire reaction tank 1 is more likely to be uniform than in the first embodiment. Therefore, the injection amount of hydrogen peroxide injected into the reaction tank 1 from the hydrogen peroxide injection ports 5a to 5c is preferably adjusted according to the concentration distribution of the organic compound adsorbed on the activated carbon. It is better to be close to However, it is necessary to take care that unreacted hydrogen peroxide does not remain in the treated water. In such a case, there is one hydrogen peroxide injection port relatively close to the treated water inlet 3 side. It doesn't matter. The composition ratio of the activated carbon and the metal compound in the hydrogen peroxide decomposition catalyst 2 should be 10 to 75% by volume of the metal compound and uniform over the entire reaction tank 1 from the viewpoint of the stability of the treated water quality in the moving bed system. Is preferred.
[0023]
Such a moving bed type water treatment system is effective when the organic compound is a surfactant such as dodecylbenzenesulfonic acid. In the water to be treated containing a surfactant, large bubbles are easily generated locally because the surface tension is reduced. If the number of bubbles in the reaction tank is too large, the water treatment performance will be reduced. Therefore, it is necessary to suppress the generation of such non-uniform bubbles. On the other hand, in the moving bed system, the movement of the hydrogen peroxide decomposition catalyst hinders local growth of bubbles, so that the water treatment system can be operated stably. Although the moving bed type is described here, the same effect can be obtained also in the case of the fluidized bed type, because the growth of the bubbles is hindered by collision between the bubbles and the hydrogen peroxide decomposition catalyst.
[0024]
Embodiment 3 FIG.
FIG. 3 is a schematic configuration diagram for explaining the third embodiment. This embodiment uses a water treatment system provided with two reaction tanks as a modification of the first embodiment, in which an organic compound is adsorbed on activated carbon, and the organic compound is injected by injecting hydrogen peroxide. And the step of decomposing are performed alternately in time. In FIG. 3, 11 and 21 are reaction tanks, 12 and 22 are hydrogen peroxide decomposition catalysts, 13 and 23 are treated water inlets, 14 and 24 are treated water outlets, and 15a to 15c and 25a to 25c are peroxides. A hydrogen injection port, 18a is a treated water valve for controlling the introduction of the treated water into the reaction vessel 11, 18b is a hydrogen peroxide valve for controlling the injection of hydrogen peroxide into the reaction vessel 11, and 28a is a treated water valve for the reaction vessel 21. A treated water valve for controlling the introduction of water, and a hydrogen peroxide valve 28b for controlling the injection of hydrogen peroxide into the reaction tank 21 are shown.
[0025]
Next, the operation will be described. FIG. 4 is a time chart for explaining the third embodiment. First, at time t0, the reaction tank 11 is in a state in which treated water in which an organic compound is decomposed is contained, and the reaction tank 21 is in a state in which water to be treated is contained.
[0026]
Subsequently, at time t1, the to-be-treated water valve 18a is opened, and the to-be-treated water is introduced into the reaction tank 11 from the to-be-treated water inlet 13. At the same time, the treated water is discharged from the treated water outlet 14 by being pushed by the treated water. At this time, the hydrogen peroxide valve 18b is in a closed state.
[0027]
On the other hand, the to-be-treated water valve 28a and the hydrogen peroxide valve 28b are closed, and the to-be-treated water is held in the reaction tank 21. At this time, the organic compound of the water to be treated is adsorbed on the activated carbon of the hydrogen peroxide decomposition catalyst 22. At a time t2 when the holding state of the water to be treated elapses a predetermined time, the hydrogen peroxide valve 28b is opened to inject the hydrogen peroxide. OH radicals and oxygen atoms are generated from hydrogen peroxide by the metal compound, and oxidative decomposition of the organic compound adsorbed on the activated carbon proceeds. In this embodiment, in order to retain the water to be treated, the adsorption of the organic compound to the activated carbon proceeds further, and the organic compound is in a state of being concentrated and adsorbed in the reaction tank 21. Therefore, the reaction efficiency between the active compound such as an OH radical and an oxygen atom and the organic compound is improved.
[0028]
At time t3 when the introduction of the water to be treated into the reaction tank 11 is completed, the water valve 18a is closed. When the decomposition of the organic compound in the reaction tank 21 has sufficiently proceeded, the hydrogen peroxide valve 28b is closed. This is a state in which water to be treated is contained in the reaction tank 11 and a state in which treated water in which an organic compound is decomposed is contained in the reaction tank 21.
[0029]
At this time, the to-be-treated water valve 18a and the hydrogen peroxide valve 18b are closed, and the organic compound of the to-be-treated water held in the reaction tank 11 is adsorbed on the activated carbon of the hydrogen peroxide decomposition catalyst 12. When hydrogen peroxide is injected with the hydrogen peroxide valve 18b opened at the time t4 when the state of holding the water to be treated elapses for a predetermined time, the oxidative decomposition of the organic compound adsorbed on the activated carbon proceeds.
[0030]
On the other hand, at time t3, when the water-to-be-treated is introduced into the reaction tank 21 from the water-to-be-treated inlet 23 with the water-to-be-treated valve 28a being opened, the water to be treated is pushed by the water-to-be-treated and discharged from the treated water outlet 24. Is done. At this time, the hydrogen peroxide valve 28b is closed.
[0031]
At time t5 when the introduction of the water to be treated into the reaction tank 21 is completed, the water valve 28a is closed. When the decomposition of the organic compound in the reaction tank 11 has sufficiently proceeded, the hydrogen peroxide valve 18b is closed. By repeating these steps, the water to be treated can be continuously treated. In addition, the efficiency of the reaction with hydrogen peroxide is improved by the concentrated adsorption of the organic compound, so that the injection amount of hydrogen peroxide can be further reduced.
[0032]
When closing the treated water valve 18a at the time t3, the quality of the treated water discharged from the treated water discharge port 14 is changed instead of the time when the introduction of the treated water into the reaction tank 11 is completed. It may be monitored, and the water quality may be lower than the prescribed standard. The same applies when the to-be-treated water valve 28a is closed at the time t5. In this way, hydrogen peroxide can be injected more efficiently according to the quality of the water to be treated and the ability of the hydrogen peroxide decomposition catalyst to adsorb organic compounds, and as a result, the amount of hydrogen peroxide injected can be further reduced. Can be planned.
[0033]
Embodiment 4 FIG.
FIG. 5 is a schematic configuration diagram for explaining the fourth embodiment. In this embodiment, as a modification of the first embodiment, the injection amount of hydrogen peroxide or the introduction amount of the water to be treated is controlled in accordance with the dissolved oxygen concentration of the treatment water. In FIG. 5, the water to be treated is introduced into the reaction tank 1 through the water introduction port 3, and the hydrogen peroxide is injected into the reaction tank 1 through the hydrogen peroxide injection ports 5a to 5c. When hydrogen peroxide comes into contact with the hydrogen peroxide decomposition catalyst 2, it is decomposed into active species such as OH radicals and oxygen atoms having strong oxidizing power. These active species rapidly oxidatively decompose organic compounds contained in the water to be treated. However, since the active species is chemically unstable, those that have not reacted with the organic compound are changed to oxygen molecules and the like by the reaction between the active species and stabilized. Therefore, the treated water contains dissolved oxygen.
[0034]
By the way, when the dissolved oxygen increases and exceeds the saturated concentration in water, bubbles are generated in the treated water. When these bubbles are locally concentrated and generated, the bubbles attached to the surface of the hydrogen peroxide decomposition catalyst 2 inhibit the contact between the hydrogen peroxide and the hydrogen peroxide decomposition catalyst 2. For this reason, active species are locally insufficient, which easily leads to a decrease in water treatment performance. Further, when the volume expansion of the gas-water mixed phase occurs due to the presence of bubbles, the expanded water causes the treated water to be discharged before a sufficient treatment time has passed, or the hydrogen peroxide decomposition catalyst 2 is discharged together with the treated water. Or Therefore, it is necessary to suppress the generation of uneven oxygen bubbles.
[0035]
Therefore, in this embodiment, the dissolved oxygen concentration of the treated water discharged from the treated water outlet 4 is measured by the dissolved oxygen concentration meter 31. The installation location of the dissolved oxygen concentration meter 31 may be in the vicinity of the treated water outlet 4 in the reaction tank 1. The measurement result of the dissolved oxygen concentration is sent to the flow control device 32. When the dissolved oxygen concentration exceeds the predetermined value, the flow control device 32 sends a control signal to the hydrogen peroxide flow regulator 33 to reduce the injection amount of hydrogen peroxide, or the treated water flow regulator 34 To increase the introduction amount of the water to be treated. That is, the flow ratio of hydrogen peroxide to the water to be treated flowing into the reaction tank 1 is reduced. For example, when the saturated oxygen concentration at the water temperature in the reaction tank 1 is 8 mg / l and the dissolved oxygen concentration of the treated water exceeds 6 mg / l, which is slightly lower than the saturated oxygen concentration, such control is performed. At this time, only one of the injection amount of hydrogen peroxide and the introduction amount of the water to be treated may be adjusted, or both may be adjusted.
[0036]
Therefore, in order to control the injection amount of hydrogen peroxide or the introduction amount of the water to be treated according to the concentration of dissolved oxygen in the treated water generated due to the decomposition of hydrogen peroxide, the dissolved oxygen concentration becomes supersaturated. And the generation of oxygen bubbles can be suppressed. Therefore, the water phase flow is uniform and good water treatment performance is obtained.
[0037]
Embodiment 5 FIG.
FIG. 6 is a schematic configuration diagram for explaining the fifth embodiment. This embodiment cools the reaction tank 1 as a modification of the first embodiment, and suppresses the generation of non-uniform oxygen bubbles as in the fourth embodiment. In FIG. 6, a refrigerant flows from the upper left in the drawing to the lower right in the drawing into the heat exchange pipe 35 installed in the reaction tank 1. At this time, the aqueous phase in the reaction tank 1 is cooled by heat exchange with the refrigerant.
[0038]
When the water temperature is in the range of 0 to 20 ° C., when the water temperature decreases by 2 ° C., the saturated oxygen concentration increases at a rate of about 0.5 mg / l. Therefore, even if the dissolved oxygen concentration of the aqueous phase in the reaction tank 1 is likely to exceed the saturated oxygen concentration, there is no danger by cooling the reaction tank 1. Therefore, generation of oxygen bubbles can be suppressed, and good water treatment performance can be obtained. At this time, it is preferable to measure the dissolved oxygen concentration of the treated water discharged from the reaction tank 1 and set the water temperature of the reaction tank 1 so that the dissolved oxygen concentration is lower than the saturated oxygen concentration without excessive cooling.
[0039]
Although the example in which the water phase in the reaction tank 1 is cooled has been described, the same effect can be obtained by cooling the water to be treated before being introduced into the reaction tank 1 in advance. The reaction rate between the organic compound and the active species is less affected by the water temperature, and the effect of suppressing the generation of bubbles by lowering the water temperature is great.
[0040]
Embodiment 6 FIG.
FIG. 7 is a schematic configuration diagram for explaining the sixth embodiment. In this embodiment, as a modification of the first embodiment, a dissolved oxygen reduction electrode 36 is provided in the reaction tank 1, and the generation of non-uniform oxygen bubbles is suppressed as in the fourth embodiment. In FIG. 7, a dissolved oxygen reduction electrode 36 is provided in a reaction tank 1 so as to penetrate a layer of the hydrogen peroxide decomposition catalyst 2. The anode and cathode of the dissolved oxygen reduction electrode 36 are connected to the anode and cathode sides of a power supply, respectively. When a voltage is applied to the dissolved oxygen reducing electrode 36, the dissolved oxygen undergoes a decomposition reaction and disappears, for example, as in the following equation.
O2+ H++ E→ HO2
[0041]
Therefore, generation of oxygen bubbles can be suppressed, and good water treatment performance can be obtained. At this time, the dissolved oxygen concentration of the treated water discharged from the reaction tank 1 is measured, and the applied voltage value is adjusted so that the dissolved oxygen concentration is lower than the saturated oxygen concentration. Can be suppressed.
[0042]
Embodiment 7 FIG.
FIG. 8 is a schematic configuration diagram for explaining the seventh embodiment. In the present embodiment, a to-be-treated water introduction amount control device 37 is provided as a modification of the first embodiment. FIG. 9 is a time chart of the amount of introduced water to be treated in this embodiment. In FIG. 8, the treatment water introduction amount control device 37 can temporarily increase the treatment water introduction amount into the reaction tank 1. FIG. 9 shows an example in which the timing of increasing the amount of water to be treated is regular and the amount of increase is constant.
[0043]
As described above, when the introduction amount of the water to be treated is temporarily increased, the oxygen bubbles generated in the reaction tank 1 move due to the flowing pressure. For example, even if bubbles slightly adhere to the surface of the hydrogen peroxide decomposing catalyst 2, the bubbles are separated from the hydrogen peroxide decomposing catalyst 2 by the flow pressure and discharged to the outside of the reaction tank 1 together with the treated water. Therefore, bubbles in the reaction tank 1 can be deaerated in a small amount. Furthermore, although the amount of water to be treated is temporarily increased, the amount of water to be treated is suppressed at the normal time, so that the water treatment performance can be prevented from lowering while the operating power of the entire water treatment system is maintained. The increase timing and the increase amount of the introduction amount of the water to be treated can be appropriately set without being limited thereto.
[0044]
Embodiment 8 FIG.
FIG. 10 is a schematic configuration diagram for explaining the eighth embodiment. This embodiment includes a pressure reducing device 38 connected to the upper part of the reaction tank 1 as a modification of the first embodiment. The pressure reducing device 38 is temporarily operated like the device 37 for controlling the amount of introduced water to be treated in the seventh embodiment, and sucks gas above the water surface in the reaction tank 1. Even if oxygen bubbles slightly adhere to the surface of the hydrogen peroxide decomposing catalyst 2, the gas pressure applied to the water surface in the reaction tank 1 decreases during depressurization, so that bubbles in the aqueous phase easily rise. Therefore, the oxygen bubbles move to the gas phase above the water surface. Further, according to Henry's law, the dissolved oxygen in the reaction tank 1 moves to the gas phase above the water surface. The oxygen that has moved to the gas phase is discharged to the outside of the reaction tank 1 by the pressure reducing device 38. At this time, although bubbles increase temporarily in the reaction tank 1, the bubbles can be degassed in a small amount, so that a decrease in water treatment performance can be prevented.
[0045]
Embodiment 9 FIG.
FIG. 11 is a schematic configuration diagram for explaining the ninth embodiment. This embodiment uses a water treatment system having two reaction tanks as a modification of the first embodiment, and has a deaeration tank 39 between the two reaction tanks.
[0046]
In FIG. 11, the water to be treated is introduced into the reaction tank 11 in the preceding stage from the water introduction port 13, and the hydrogen peroxide is injected into the reaction tank 11 from the hydrogen peroxide inlets 15a to 15c. The water to be treated after the treatment in the former stage is discharged from the reaction tank 11 in the former stage while containing dissolved oxygen, and flows into the deaeration tank 39. In the deaeration tank 39, for example, nitrogen is diffused as a deaeration gas. Since nitrogen hardly dissolves in water, it moves in the degassing tank 39 as nitrogen bubbles. At this time, the dissolved oxygen moves on the gas-liquid interface between water and nitrogen bubbles, and is taken into the bubbles as oxygen gas. Since these bubbles are discharged from the deaeration tank 39, the concentration of dissolved oxygen in the water to be treated after the previous treatment can be reduced. Here, in the deaeration tank 39, the water to be treated and the deaeration gas, which have been subjected to the preceding treatment, preferably have a counterflow so that dissolved oxygen is taken in more by nitrogen bubbles.
[0047]
In this way, the water to be treated, which has been subjected to the first-stage treatment, is introduced into the second-stage reaction tank 12 with the dissolved oxygen concentration sufficiently reduced. Therefore, it is possible to prevent the dissolved oxygen concentration from accumulating and reaching supersaturation even in the multi-stage processing.
[0048]
【The invention's effect】
According to the present invention, a reaction tank filled with a hydrogen peroxide decomposition catalyst comprising a metal compound containing a metal selected from the group consisting of nickel, manganese, iron, copper, and cobalt and activated carbon; Water introduction means for introducing treated water, treated water discharge means for discharging treated water from the reaction tank, and hydrogen peroxide injection means for injecting hydrogen peroxide into the reaction tank, so that the amount of hydrogen peroxide injected is reduced. Can be reduced.
[0049]
Further, a plurality of hydrogen peroxide injection means are arranged from the treated water introduction means side to the treated water discharge means side, and the hydrogen peroxide injection means arranged on the treated water introduction means side is a treated water discharge means. Since the injection amount of hydrogen peroxide is larger than that of the hydrogen peroxide injection means arranged on the side, the injection amount of hydrogen peroxide can be adjusted according to the concentration distribution of the organic compound adsorbed on the activated carbon.
[0050]
Further, since the composition ratio of the metal compound in the hydrogen peroxide decomposition catalyst on the side of the treated water introduction means is larger than that in the treated water discharge means, the organic compound can be decomposed efficiently.
[0051]
According to the present invention, a reaction tank filled with a hydrogen peroxide decomposition catalyst comprising a metal compound containing a metal selected from the group consisting of nickel, manganese, iron, copper, and cobalt and activated carbon; Using a water treatment system comprising: a treated water introducing means for introducing water; a treated water discharging means for discharging treated water from the reaction tank; and a hydrogen peroxide injection means for injecting hydrogen peroxide into the reaction tank. Introducing the water to be treated into the tank, holding the water to be treated to adsorb the organic compound on the activated carbon, injecting hydrogen peroxide into the reaction tank, and discharging the treated water in which the organic compound has been decomposed. And the amount of hydrogen peroxide injected can be further reduced.
[0052]
Further, a dissolved oxygen concentration measuring means of the treated water, and a flow control means for reducing the flow ratio of the hydrogen peroxide and the water to be treated flowing into the reaction tank when the measured value of the dissolved oxygen concentration exceeds a predetermined value, Because of the provision, generation of bubbles can be suppressed.
[0053]
Further, since a cooling means for cooling the reaction tank or the water to be treated and setting the water temperature so that the dissolved oxygen concentration in the water is lower than the saturated oxygen concentration is provided, generation of bubbles can be suppressed.
[0054]
In addition, since the apparatus includes the dissolved oxygen reduction electrode provided in the reaction tank and the power supply connected to the dissolved oxygen reduction electrode, dissolved oxygen can be decomposed.
[0055]
In addition, since degassing means for removing oxygen from the reaction tank or the water to be treated is provided, bubbles in the water can be discharged.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram for explaining Embodiment 1;
FIG. 2 is a schematic configuration diagram for explaining Embodiment 2;
FIG. 3 is a schematic configuration diagram for explaining Embodiment 3;
FIG. 4 is a time chart for explaining Embodiment 3;
FIG. 5 is a schematic configuration diagram for explaining Embodiment 4;
FIG. 6 is a schematic configuration diagram for explaining Embodiment 5;
FIG. 7 is a schematic configuration diagram for explaining Embodiment 6;
FIG. 8 is a schematic configuration diagram for explaining Embodiment 7;
FIG. 9 is a time chart for explaining Embodiment 7;
FIG. 10 is a schematic configuration diagram for explaining Embodiment 8;
FIG. 11 is a schematic configuration diagram for explaining Embodiment 9;
[Explanation of symbols]
1, 11, 21 reaction tank, 2, 12, 22 hydrogen peroxide decomposition catalyst, 3, 13, 23 treatment water inlet, 4, 14, 24 treatment water discharge, 5a-5c, 15a-15c, 25a- 25c hydrogen peroxide injection port, 6 catalyst removal port, 7 catalyst return port, 18a, 28a treated water valve, 18b, 28b hydrogen peroxide valve, 31 dissolved oxygen concentration meter, 32 flow control device, 33 hydrogen peroxide flow control , Treated water flow controller, 35 heat exchanger, 36 reduction electrode, 37 treated water introduction control device, 38 decompression device, 39 degassing tank.

Claims (8)

被処理水の有機化合物を分解するための水処理システムにおいて、ニッケル、マンガン、鉄、銅及びコバルトからなる群から選択された金属を含む金属化合物と活性炭とからなる過酸化水素分解触媒を充填した反応槽と、前記反応槽に被処理水を導入する被処理水導入手段と、前記反応槽から処理水を排出する処理水排出手段と、前記反応槽に過酸化水素を注入する過酸化水素注入手段とを備えたことを特徴とする水処理システム。In a water treatment system for decomposing organic compounds of the water to be treated, a hydrogen peroxide decomposition catalyst comprising a metal compound containing a metal selected from the group consisting of nickel, manganese, iron, copper and cobalt and activated carbon was filled. A reaction tank, treated water introduction means for introducing treated water into the reaction tank, treated water discharging means for discharging treated water from the reaction tank, and hydrogen peroxide injection for injecting hydrogen peroxide into the reaction tank. And a water treatment system. 前記過酸化水素注入手段は、被処理水導入手段側から処理水排出手段側に向かって複数配置されており、被処理水導入手段側に配置された過酸化水素注入手段は処理水排出手段側に配置された過酸化水素注入手段より過酸化水素の注入量が多いことを特徴とする請求項1記載の水処理システム。A plurality of the hydrogen peroxide injection means are arranged from the treated water introduction means side to the treated water discharge means side, and the hydrogen peroxide injection means arranged on the treated water introduction means side is a treated water discharge means side. 2. The water treatment system according to claim 1, wherein the amount of hydrogen peroxide injected is larger than that of the hydrogen peroxide injection means arranged in the water treatment system. 前記過酸化水素分解触媒は、被処理水導入手段側における前記金属化合物の構成比が処理水排出手段側よりも大きいことを特徴とする請求項2記載の水処理システム。3. The water treatment system according to claim 2, wherein in the hydrogen peroxide decomposition catalyst, the composition ratio of the metal compound on the treated water introduction unit side is larger than that on the treated water discharge unit side. 4. 被処理水の有機化合物を分解するための水処理方法において、ニッケル、マンガン、鉄、銅及びコバルトからなる群から選択された金属を含む金属化合物と活性炭とからなる過酸化水素分解触媒を充填した反応槽と、前記反応槽に被処理水を導入する被処理水導入手段と、前記反応槽から処理水を排出する処理水排出手段と、前記反応槽に過酸化水素を注入する過酸化水素注入手段とを備えた水処理システムを用いて、前記反応槽に被処理水を導入する工程と、被処理水を保持して活性炭に有機化合物を吸着させる工程と、前記反応槽に過酸化水素を注入する工程と、有機化合物が分解された処理水を排出する工程とを備えたことを特徴とする水処理方法。In a water treatment method for decomposing an organic compound of water to be treated, a hydrogen peroxide decomposition catalyst comprising a metal compound containing a metal selected from the group consisting of nickel, manganese, iron, copper, and cobalt and activated carbon was filled. A reaction tank, treated water introduction means for introducing treated water into the reaction tank, treated water discharging means for discharging treated water from the reaction tank, and hydrogen peroxide injection for injecting hydrogen peroxide into the reaction tank. Means for introducing the water to be treated into the reaction tank, a step of holding the water to be treated and adsorbing the organic compound on activated carbon, and supplying hydrogen peroxide to the reaction tank. A water treatment method comprising a step of injecting and a step of discharging treated water in which an organic compound is decomposed. 処理水の溶存酸素濃度測定手段と、溶存酸素濃度の測定値が所定値を超えた場合に反応槽に流入する被処理水に対する過酸化水素の流量比を低下させる流量制御手段とを備えたことを特徴とする請求項1記載の水処理システム。Disposed oxygen concentration measuring means for treated water, and flow rate control means for reducing the flow rate ratio of hydrogen peroxide to the water to be treated flowing into the reaction tank when the measured value of the dissolved oxygen concentration exceeds a predetermined value. The water treatment system according to claim 1, wherein: 反応槽または被処理水を冷却し、水中の溶存酸素濃度が飽和酸素濃度を下回るように水温を設定するための冷却手段を備えたことを特徴とする請求項1記載の水処理システム。The water treatment system according to claim 1, further comprising cooling means for cooling the reaction tank or the water to be treated, and setting a water temperature such that the dissolved oxygen concentration in the water is lower than the saturated oxygen concentration. 反応槽に設けられた溶存酸素還元電極と前記溶存酸素還元電極に接続された電源とを備えたことを特徴とする請求項1記載の水処理システム。The water treatment system according to claim 1, further comprising a dissolved oxygen reduction electrode provided in the reaction tank, and a power supply connected to the dissolved oxygen reduction electrode. 反応槽または被処理水の酸素を除去するための脱気手段を備えたことを特徴とする請求項1記載の水処理システム。2. The water treatment system according to claim 1, further comprising a degassing unit for removing oxygen from the reaction tank or the water to be treated.
JP2003093470A 2002-06-10 2003-03-31 Water treatment system and water treatment method Pending JP2004066219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093470A JP2004066219A (en) 2002-06-10 2003-03-31 Water treatment system and water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002168487 2002-06-10
JP2003093470A JP2004066219A (en) 2002-06-10 2003-03-31 Water treatment system and water treatment method

Publications (1)

Publication Number Publication Date
JP2004066219A true JP2004066219A (en) 2004-03-04

Family

ID=32032160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093470A Pending JP2004066219A (en) 2002-06-10 2003-03-31 Water treatment system and water treatment method

Country Status (1)

Country Link
JP (1) JP2004066219A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103292A (en) * 2009-10-16 2011-05-26 Japan Organo Co Ltd Water treatment device and method for fuel cell
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
CN103274503A (en) * 2013-04-25 2013-09-04 河北钢铁股份有限公司 Iron-carbon micro-electrolysis filler and preparation method thereof
CN103332774A (en) * 2013-07-10 2013-10-02 四川师范大学 Method used for processing high-concentration degradation-resistant organic wastewater
CN103936113A (en) * 2014-05-14 2014-07-23 湖南景翌湘台环保高新技术开发有限公司 Iron carbon reactor facility and technique for treating high-concentration organic wastewater
CN104743652A (en) * 2015-03-05 2015-07-01 武汉森泰环保工程有限公司 Method for processing degradation-resistant organic wastewater and multi-element catalyst adopted by method
CN106745478A (en) * 2015-11-24 2017-05-31 杀菌净化环境技术有限公司 Photooxidation reaction device
CN107285516A (en) * 2017-07-17 2017-10-24 山西大学 Catalytic oxidizing equipment, its preparation method and water treatment technology for water process
CN111039350A (en) * 2020-01-09 2020-04-21 苏州晟德水处理有限公司 Oxidation treatment assembly for water treatment and integrated deep oxidation equipment
WO2022190608A1 (en) * 2021-03-10 2022-09-15 オルガノ株式会社 Method and apparatus for treating water

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103292A (en) * 2009-10-16 2011-05-26 Japan Organo Co Ltd Water treatment device and method for fuel cell
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
CN103274503A (en) * 2013-04-25 2013-09-04 河北钢铁股份有限公司 Iron-carbon micro-electrolysis filler and preparation method thereof
CN103332774B (en) * 2013-07-10 2015-08-05 四川师范大学 A kind of method processing high concentration hard-degraded organic waste water
CN103332774A (en) * 2013-07-10 2013-10-02 四川师范大学 Method used for processing high-concentration degradation-resistant organic wastewater
CN103936113A (en) * 2014-05-14 2014-07-23 湖南景翌湘台环保高新技术开发有限公司 Iron carbon reactor facility and technique for treating high-concentration organic wastewater
CN103936113B (en) * 2014-05-14 2015-12-09 湖南景翌湘台环保高新技术开发有限公司 A kind of iron charcoal reactor apparatus and treatment process processing high concentrated organic wastewater
CN104743652A (en) * 2015-03-05 2015-07-01 武汉森泰环保工程有限公司 Method for processing degradation-resistant organic wastewater and multi-element catalyst adopted by method
CN106745478A (en) * 2015-11-24 2017-05-31 杀菌净化环境技术有限公司 Photooxidation reaction device
JP2017100122A (en) * 2015-11-24 2017-06-08 エスアンドピー エンバイロメンタル テクノロジー カンパニー リミテッドS&P Environmental Technology Co., Ltd. Apparatus for photo oxidation reaction
CN106745478B (en) * 2015-11-24 2020-08-14 杀菌净化环境技术有限公司 Photo-oxidation reaction device
CN107285516A (en) * 2017-07-17 2017-10-24 山西大学 Catalytic oxidizing equipment, its preparation method and water treatment technology for water process
CN107285516B (en) * 2017-07-17 2020-07-10 山西大学 Catalytic oxidation device for water treatment, manufacturing method thereof and water treatment process
CN111039350A (en) * 2020-01-09 2020-04-21 苏州晟德水处理有限公司 Oxidation treatment assembly for water treatment and integrated deep oxidation equipment
WO2022190608A1 (en) * 2021-03-10 2022-09-15 オルガノ株式会社 Method and apparatus for treating water

Similar Documents

Publication Publication Date Title
CN108473306B (en) Ozone supply device and ozone supply method
JP2004066219A (en) Water treatment system and water treatment method
JP5892904B2 (en) Ozone supply system and wastewater treatment system
JP6224859B1 (en) Impurity removing device and recycle gas recovery and purification system equipped with the impurity removing device
US20070034230A1 (en) Method and system for producing ozonized deionized water
JPH11333476A (en) Ozone mixing treatment method and apparatus
JP2010089020A (en) Waste water treatment apparatus
TWI673928B (en) Excimer laser oscillation device having gas recycle function
JP2015166064A (en) Apparatus for manufacturing ultrapure water
TW201930200A (en) Method and apparatus for removing hydrogen peroxide
JP3701828B2 (en) Wastewater treatment equipment
JPH11128958A (en) Water denitrification treatment apparatus
JP6670869B2 (en) Laser gas recycling system and method
JPH08311676A (en) Method for removing dissolved hydrogen of electrolyzer and device therefor
JPH10230291A (en) Biological denitrification method of water and device therefor
JP2005169221A (en) GAS REGENERATION TYPE ADSORPTION/DISCHARGE-USED METHOD FOR TREATING NOx AND ITS APPARATUS
JP2002292378A (en) Method and device for accelerated oxidation treatment
JP6725712B1 (en) Water treatment method
JP2005161138A (en) Water treatment method and water treatment apparatus
JP3769093B2 (en) Advanced wastewater treatment device and advanced treatment method
JP2002136860A5 (en)
JP2002001366A (en) Method and system for treating organic substance in water
JP2000167570A (en) Treatment of waste water
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
JPH09299963A (en) Removing method of oxidized nitrogen in water and device therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709