JP2004063826A - Method and unit for removing residual charge - Google Patents

Method and unit for removing residual charge Download PDF

Info

Publication number
JP2004063826A
JP2004063826A JP2002220611A JP2002220611A JP2004063826A JP 2004063826 A JP2004063826 A JP 2004063826A JP 2002220611 A JP2002220611 A JP 2002220611A JP 2002220611 A JP2002220611 A JP 2002220611A JP 2004063826 A JP2004063826 A JP 2004063826A
Authority
JP
Japan
Prior art keywords
attraction
adsorption
charge removing
gas
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002220611A
Other languages
Japanese (ja)
Other versions
JP4387642B2 (en
Inventor
Ken Maehira
前平 謙
Ko Fuwa
不破 耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002220611A priority Critical patent/JP4387642B2/en
Publication of JP2004063826A publication Critical patent/JP2004063826A/en
Application granted granted Critical
Publication of JP4387642B2 publication Critical patent/JP4387642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for removing residual charge left on an attraction object formed of insulating material. <P>SOLUTION: The residual charge removing method comprises a process in which an electrostatic chuck 6 equipped with attraction electrodes 6a and 6b is used, a prescribed voltage is applied to the attraction electrodes 6a and 6b in a vacuum to attract a glass substrate 5 by electrostatic attraction, and the glass substrate 5 is exposed to the prescribed electricity removing gas while the voltage applied to the suction electrodes 6a and 6b is shut off. The glass substrate 5 may be exposed to the prescribed electricity removing gas before or after a voltage applied to the attraction electrodes 6a and 6b is shut off. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、真空装置内で使用される静電吸着装置に関し、特にガラス基板等の絶縁性の吸着対象物を吸着する静電吸着装置に関する。
【0002】
【従来の技術】
一般に、この種の静電吸着装置においては、吸着動作後においても吸着力が残存することが知られている。
【0003】
この残留吸着力は、プロセスの条件や吸着対象物の種類、あるいは印加電圧や吸着時間により変動するが、吸着対象物が例えばシリコンウェハーのようなほぼ導体とみなせるような材料からなる場合は、吸着動作終了後に、残留吸着力に応じた逆極性の電圧を、電圧及び時間をパラメータとして吸着電極に印加することによって低減させ、これにより吸着対象物を静電吸着装置からスムーズに離脱させることが可能になる。
【0004】
【発明が解決しようとする課題】
ところで、近年の半導体装置や液晶、プラズマディスプレイに代表されるフラットパネルの製造装置のプロセスにおいては、絶縁性材料であるガラス基板を静電吸着装置によって基板を保持し、搬送したり、成膜時のステージクランプに利用している。
【0005】
一般に、基板がガラスのような絶縁性基板の場合、静電チャック上への搬送時、及び吸着動作時に基板と静電チャック表面が僅かながら擦れ合い、接触、摩擦帯電を生じるが、従来、このような残留電荷は、上述したような吸着電極への逆極性の電圧印加では除去できなかった。
【0006】
本発明は、このような従来の技術の課題を解決するためになされたもので、絶縁性材料からなる吸着対象物における残留電荷を除去する技術を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するためになされた請求項1記載の発明は、所定の吸着電極を有する静電吸着装置を用い、真空中で前記吸着電極に所定の電圧を印加して吸着対象物を静電吸着した後、前記吸着電極に対する電圧の印加をオフにした状態で前記吸着対象物を所定の除電用ガスに曝す工程を有する残留電荷除去方法である。
請求項2記載の発明は、請求項1において、前記吸着電極に対する電圧の印加をオフにした後に前記吸着対象物を所定の除電用ガスに曝す工程を有するものである。
請求項3記載の発明は、請求項1において、前記吸着電極に対する電圧の印加をオフにする前に前記吸着対象物を所定の除電用ガスに曝す工程を有するものである。
請求項4記載の発明は、請求項1乃至請求項3のいずれかの方法に用いる残留電荷除去装置であって、前記静電吸着装置が配置される真空槽と、前記真空槽に所定のガスを導入するガス導入部とを有する残留電荷除去装置である。
請求項5記載の発明は、請求項4において、前記静電吸着装置が、前記吸着対象物を搬送するように構成されているものである。
【0008】
本発明においては、吸着電極に対する電圧の印加をオフにした状態で吸着対象物を所定の除電用ガスに曝すことによって、電離、イオン化した除電用ガスの電荷が、吸着対象物の残留電荷に吸着されて瞬時に中和され、吸着対象物の除電が行われる。
【0009】
その結果、本発明によれば、吸着動作終了後に、残留電荷の低減された状態で吸着対象物を搬送し又は種々の処理を行うことが可能になる。
【0010】
【発明の実施の形態】
以下、本発明に係る残留電荷除去方法及び残留電荷除去装置の実施の形態を図面を参照して詳細に説明する。
【0011】
図1は、本発明に係る残留電荷除去装置の一実施の形態を適用したスパッタリング装置の概略構成図である。
図1に示すように、この残留電荷除去装置装置1は、図示しない真空排気系に接続されたチャンバー(真空槽)2を有し、このチャンバー2内の上部には、成膜材料であるターゲット3が配置されている。
【0012】
このターゲット3は、チャンバー2の外部に設けられコンピュータ10によって制御される直流電源11に接続されている。ターゲット3は、チャンバー2に対して絶縁され、プロセス中においてマイナスにバイアスされるようになっている。
【0013】
チャンバー2内のステージ4上には、ガラス基板5を吸着保持するための静電チャック(静電吸着装置)6が設けられている。
【0014】
静電チャック6は、一対の吸着電極6a、6bを配して構成され、これら吸着電極6a、6bは、チャンバー2の外部に設けられた静電チャック電源12に接続されている。
【0015】
静電チャック電源12は、印加電圧の極性反転及び印加時間のタイマー機構を有し、コンピュータ10からの命令によってシーケンスがコントロールできるようになっている。
【0016】
さらに、本実施の形態においては、チャンバー2の外部にガス供給源20が設けられている。このガス供給源20は、コンピュータ10からの命令によって所定のタイミングでチャンバー2内に所定の除電用ガスを導入できるように構成されている。
【0017】
本発明の場合、除電用ガスの種類は特に限定されることはないが、プロセスへの悪影響を及ぼさない観点からは、Ar、N、He等の不活性ガスを用いることが好ましい。
【0018】
このような構成においてガラス基板5の残留電荷を除去するには、図示しない搬送ロボットによってガラス基板5を真空槽2内に導入し、静電チャック6によってガラス基板5を吸着保持した状態で真空排気を行ってチャンバー2内の圧力を所定の圧力にする。
【0019】
この場合、チャンバー2内の圧力は特に限定されることはないが、プロセス条件に応じて、1×10−3〜10−4Paにすることが好ましい。
【0020】
そして、静電チャック6の吸着電極6a、6bに対する電圧の印加をオフにするとともに、ガス供給源20からチャンバー2内に除電用ガスを導入してガラス基板5の表面を除電用ガスに曝すようにする。
【0021】
この場合、除電用ガス導入後のチャンバー2内の圧力は特に限定されることはないが、除電を端時間で効率よく行うという装置スループットの観点からは、1×10−2Paより大きく大気圧以下にすることが好ましい。
【0022】
また、本発明の静電チャック6の電圧印加をオフにするタイミングとチャンバー2内に除電用ガスを導入するタイミングの先後は問わず、どちらが先であってもよい。
【0023】
ただし、静電チャック6の電圧印加をオフにする前にチャンバー2内に除電用ガスを導入する場合には、除電用ガスの反応を防止するため、除電用ガス導入後のチャンバー2内の圧力を1×10−2〜100Paにすることが好ましい。
【0024】
そして、真空槽2内に導入された除電用ガスは、ガラス基板5の表面に残留している正負の電荷によってイオン化され、この電離、イオン化した電荷が、それぞれの残留電荷と吸着することによって瞬時に中和され、ガラス基板5の除電が行われる。
【0025】
その結果、本発明によれば、吸着動作終了後に、残留電荷の低減された状態でガラス基板5を搬送し又は種々の処理を行うことが可能となる。
【0026】
なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、除電用ガスとして、予めイオナイザー装置によってイオン化したガスや、成膜プロセスでのプラズマによってイオン化したガスを用いることも可能である。
【0027】
また、上述の実施の形態においては、スパッタリング装置を例にとって説明したが、本発明はこれに限られず、CVD装置、エッチング装置、イオン注入装置等、あるいは静電チャックを使った搬送機構など、静電チャック機構を具備するすべての装置において適用可能である。
【0028】
さらに、吸着対象物は絶縁性のものであればその種類は問わず、また、静電吸着装置の種類、構成等についても限定されないものである。
【0029】
【実施例】
以下、本発明の実施例を比較例とともに詳細に説明する。
図2は、ガラス基板の静電吸着後における残留吸着力の実測値を示すグラフである。
ここでは、ガラス基板を±3kVで60秒吸着し、印加電圧オフ後の経過時間をパラメータとして基板を離脱させる際の残留吸着力を実測した。
【0030】
また、残留吸着力は、真空中において、基板を静電チャック上に載置し、基板に取り付けたフックを垂直方向に引き上げることで基板を離脱させ、そのときの張力をロードセルによって測定した。
【0031】
図2のグラフAから理解されるように、印加電圧をオフにすると、放置した経過時間に対し電荷量が減少しているが、30秒以降は減少の傾きが小さくなり、60秒以降では残留吸着力が一定になり、放置しても除去できない残留吸着力が存在することを示している。
【0032】
このため、ガラスのような絶縁性材料基板であっても吸着力が残存し、スループットの短縮化を要する半導体装置やフラットパネル製造装置に搭載し使用するためには、吸着動作終了後、残留吸着力を直ちに除去する手段が必要であることを示している。
【0033】
一方、グラフBから理解されるように、逆極性の電圧を印加すると、却って残留吸着力が大きくなってしまう。
【0034】
図3は、ガラス基板の静電吸着後基板を離脱させる際に真空槽内にArガスを導入した場合の残留吸着力の実測値を示すグラフである。
この場合、吸着及び測定の条件は、図2の場合と同一である。
【0035】
図3のグラフDから理解されるように、何もせずに放置した場合(グラフC)と比較し、残留吸着力が除去できている。これは、ガラス基板に残留している正負の電荷によってArガスがイオン化され、電離、イオン化した電荷が、それぞれの残留電荷と吸着し、中和され除電が行われていることを示している。
【0036】
さらには、イオナイザーによって予め電離イオン化したArガスを導入した場合も同じく残留吸着力を除去可能であることが確認された。
【0037】
図4は、ガラス基板の静電吸着後基板を離脱させる際に真空槽内に異なる種類のガスを導入した場合の残留吸着力の実測値を示すグラフである。
この場合、吸着及び測定の条件は、図2の場合と同一である。
【0038】
図4から理解されるように、何もせずに放置した場合(グラフE)と比較し、ガスの種類をN2、He(グラフF)に変えた場合であっても、Arガスの場合と同様にガラス基板の除電を行うことができた。
【0039】
【発明の効果】
以上述べたように本発明によれば、絶縁性の吸着対象物の除電を行うことができるので、吸着動作終了後に、残留電荷の低減された状態で吸着対象物を搬送し又は種々の処理を行うことが可能になる。
【図面の簡単な説明】
【図1】本発明に係る残留電荷除去装置の一実施の形態を適用したスパッタリング装置の概略構成図
【図2】ガラス基板の静電吸着後における残留吸着力の実測値を示すグラフ
【図3】ガラス基板の静電吸着後基板を離脱させる際に真空槽内にArガスを導入した場合の残留吸着力の実測値を示すグラフ
【図4】ガラス基板の静電吸着後基板を離脱させる際に真空槽内に異なる種類のガスを導入した場合の残留吸着力の実測値を示すグラフ
【符号の説明】
1…残留電荷除去装置 2…チャンバー(真空槽) 6…静電チャック(静電吸着装置) 6a、6b…吸着電極 20…ガス供給源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrostatic attraction device used in a vacuum device, and more particularly to an electrostatic attraction device that attracts an insulating attraction object such as a glass substrate.
[0002]
[Prior art]
In general, it is known that in this type of electrostatic attraction device, the attraction force remains even after the attraction operation.
[0003]
This residual adsorption force varies depending on the process conditions, the type of the adsorption target, the applied voltage and the adsorption time, but if the adsorption target is made of a material such as a silicon wafer that can be regarded as almost a conductor, the adsorption power is changed. After the operation is completed, the voltage of the opposite polarity according to the residual adsorption force is reduced by applying the voltage and time to the adsorption electrode using the voltage and time as parameters, so that the adsorption target can be smoothly separated from the electrostatic adsorption device. become.
[0004]
[Problems to be solved by the invention]
By the way, in the process of a flat panel manufacturing apparatus represented by a semiconductor device, a liquid crystal, and a plasma display in recent years, a glass substrate, which is an insulating material, is held by an electrostatic attraction device, transported, or used for film formation. Used for stage clamps.
[0005]
In general, when the substrate is an insulating substrate such as glass, the substrate and the surface of the electrostatic chuck slightly rub during transfer onto the electrostatic chuck and during the suction operation, causing contact and triboelectric charging. Such residual charges could not be removed by applying a voltage of opposite polarity to the adsorption electrode as described above.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve such problems of the related art, and has as its object to provide a technique for removing a residual charge in an adsorption target made of an insulating material.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 uses an electrostatic attraction device having a predetermined attraction electrode, and applies a predetermined voltage to the attraction electrode in a vacuum to electrostatically attract the attraction object. A method of removing residual charges, comprising a step of exposing the object to be adsorbed to a predetermined gas for static elimination in a state where application of a voltage to the adsorption electrode is turned off after the adsorption.
According to a second aspect of the present invention, in the first aspect, a step of exposing the object to be adsorbed to a predetermined neutralization gas is performed after the application of the voltage to the adsorption electrode is turned off.
According to a third aspect of the present invention, in the first aspect, a step of exposing the object to be adsorbed to a predetermined charge removing gas before turning off the voltage application to the adsorption electrode is provided.
According to a fourth aspect of the present invention, there is provided a residual charge removing device used in the method according to any one of the first to third aspects, wherein a vacuum chamber in which the electrostatic suction device is disposed, and a predetermined gas stored in the vacuum chamber. And a gas introduction part for introducing the residual charge.
According to a fifth aspect of the present invention, in the fourth aspect, the electrostatic attraction device is configured to transport the object to be attracted.
[0008]
In the present invention, by exposing the object to be adsorbed to a predetermined charge removing gas in a state where the voltage application to the adsorption electrode is turned off, the charges of the ionized and ionized charge removing gas are adsorbed by the residual charges of the object to be absorbed. Then, it is neutralized instantaneously, and the object to be adsorbed is neutralized.
[0009]
As a result, according to the present invention, it is possible to transport the suction target object or perform various processes in a state where the residual charge is reduced after the end of the suction operation.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a residual charge removing method and a residual charge removing device according to the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a schematic configuration diagram of a sputtering apparatus to which an embodiment of a residual charge removing apparatus according to the present invention is applied.
As shown in FIG. 1, the residual charge removing device 1 has a chamber (vacuum tank) 2 connected to a vacuum evacuation system (not shown). 3 are arranged.
[0012]
The target 3 is connected to a DC power supply 11 provided outside the chamber 2 and controlled by a computer 10. The target 3 is insulated from the chamber 2 so as to be negatively biased during the process.
[0013]
On the stage 4 in the chamber 2, an electrostatic chuck (electrostatic chuck) 6 for holding the glass substrate 5 by suction is provided.
[0014]
The electrostatic chuck 6 includes a pair of suction electrodes 6 a and 6 b. The suction electrodes 6 a and 6 b are connected to an electrostatic chuck power supply 12 provided outside the chamber 2.
[0015]
The electrostatic chuck power supply 12 has a timer mechanism for reversing the polarity of the applied voltage and applying time, and the sequence can be controlled by a command from the computer 10.
[0016]
Further, in the present embodiment, a gas supply source 20 is provided outside the chamber 2. The gas supply source 20 is configured so that a predetermined charge removing gas can be introduced into the chamber 2 at a predetermined timing according to a command from the computer 10.
[0017]
In the case of the present invention, the type of the charge removing gas is not particularly limited, but from the viewpoint of not adversely affecting the process, it is preferable to use an inert gas such as Ar, N 2 , or He.
[0018]
In order to remove the residual charge of the glass substrate 5 in such a configuration, the glass substrate 5 is introduced into the vacuum chamber 2 by a transfer robot (not shown), and the glass substrate 5 is evacuated while being suction-held by the electrostatic chuck 6. To set the pressure in the chamber 2 to a predetermined pressure.
[0019]
In this case, the pressure in the chamber 2 is not particularly limited, but is preferably 1 × 10 −3 to 10 −4 Pa according to the process conditions.
[0020]
Then, the application of the voltage to the attraction electrodes 6a and 6b of the electrostatic chuck 6 is turned off, and the charge removing gas is introduced into the chamber 2 from the gas supply source 20 to expose the surface of the glass substrate 5 to the charge removing gas. To
[0021]
In this case, although not the pressure in the chamber 2 after neutralization gas introduction is particularly limited, from the viewpoint of device throughput of efficiently performing neutralization at the end time is greater than 1 × 10 -2 Pa atmospheric pressure It is preferable to set the following.
[0022]
Further, the timing of turning off the voltage application to the electrostatic chuck 6 of the present invention and the timing of introducing the charge removing gas into the chamber 2 do not matter before or after, and either may be the first.
[0023]
However, when the charge removing gas is introduced into the chamber 2 before the voltage application to the electrostatic chuck 6 is turned off, the pressure inside the chamber 2 after the charge removing gas is introduced to prevent the reaction of the charge removing gas. Is preferably set to 1 × 10 −2 to 100 Pa.
[0024]
The neutralization gas introduced into the vacuum chamber 2 is ionized by positive and negative charges remaining on the surface of the glass substrate 5, and the ionized and ionized charges are instantaneously adsorbed by the respective residual charges. The glass substrate 5 is neutralized.
[0025]
As a result, according to the present invention, it is possible to transport the glass substrate 5 or perform various processes in a state where the residual charge is reduced after the end of the suction operation.
[0026]
Note that the present invention is not limited to the above-described embodiment, and various changes can be made.
For example, as the charge removing gas, a gas ionized by an ionizer device in advance or a gas ionized by plasma in a film forming process can be used.
[0027]
Further, in the above-described embodiment, a sputtering apparatus has been described as an example. However, the present invention is not limited to this, and a static apparatus such as a CVD apparatus, an etching apparatus, an ion implantation apparatus, or a transfer mechanism using an electrostatic chuck may be used. The present invention can be applied to all devices having an electric chuck mechanism.
[0028]
Further, the type of the suction target is not limited as long as it is insulating, and the type and configuration of the electrostatic suction device are not limited.
[0029]
【Example】
Hereinafter, examples of the present invention will be described in detail along with comparative examples.
FIG. 2 is a graph showing measured values of the residual adsorption force after electrostatic adsorption of the glass substrate.
Here, the glass substrate was adsorbed at ± 3 kV for 60 seconds, and the residual adsorption force when the substrate was separated was measured using the elapsed time after the application voltage was turned off as a parameter.
[0030]
The residual attraction force was measured by placing a substrate on an electrostatic chuck in a vacuum and lifting the hook attached to the substrate in a vertical direction to detach the substrate, and measuring the tension at that time with a load cell.
[0031]
As can be understood from the graph A of FIG. 2, when the applied voltage is turned off, the charge amount decreases with respect to the elapsed time that has been left, but the slope of the decrease decreases after 30 seconds, and remains after 60 seconds. The adsorption power becomes constant, indicating that there is a residual adsorption power that cannot be removed even if left.
[0032]
For this reason, even if the substrate is made of an insulating material such as glass, the suction force remains, and in order to use the semiconductor device or the flat panel manufacturing apparatus which requires a reduction in the throughput, use the residual suction after the suction operation is completed. This indicates that a means to immediately remove the force is needed.
[0033]
On the other hand, as understood from the graph B, when a voltage of the opposite polarity is applied, the residual attraction force is rather increased.
[0034]
FIG. 3 is a graph showing measured values of the residual adsorption force when Ar gas is introduced into the vacuum chamber when the glass substrate is separated after electrostatic adsorption of the glass substrate.
In this case, the conditions for adsorption and measurement are the same as those in FIG.
[0035]
As can be understood from the graph D in FIG. 3, the residual adsorption force can be removed as compared with the case where the device is left without any operation (Graph C). This indicates that the Ar gas is ionized by the positive and negative charges remaining on the glass substrate, and the ionized and ionized charges are adsorbed to the respective residual charges, neutralized, and neutralized.
[0036]
Furthermore, it was confirmed that the residual adsorptive power could be similarly removed when Ar gas ionized and ionized in advance by an ionizer was introduced.
[0037]
FIG. 4 is a graph showing measured values of the residual adsorption force when different types of gases are introduced into the vacuum chamber when the substrate is separated after electrostatic adsorption of the glass substrate.
In this case, the conditions for adsorption and measurement are the same as those in FIG.
[0038]
As can be understood from FIG. 4, even when the type of gas is changed to N2 and He (Graph F) as compared with the case where the device is left without doing anything (Graph E), the same as in the case of Ar gas As a result, the glass substrate was neutralized.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to remove electricity from an insulating adsorption target. It is possible to do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a sputtering apparatus to which an embodiment of a residual charge removing device according to the present invention is applied; FIG. 2 is a graph showing measured values of residual adsorption force after electrostatic adsorption of a glass substrate FIG. 4 is a graph showing the actual measured value of the residual adsorption force when Ar gas is introduced into the vacuum chamber when the substrate is released after electrostatic adsorption of the glass substrate. FIG. 4 When the substrate is released after electrostatic adsorption of the glass substrate. Showing measured values of residual adsorptive power when different types of gases are introduced into a vacuum chamber [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Residual charge removal apparatus 2 ... Chamber (vacuum tank) 6 ... Electrostatic chuck (electrostatic suction apparatus) 6a, 6b ... Adsorption electrode 20 ... Gas supply source

Claims (5)

所定の吸着電極を有する静電吸着装置を用い、真空中で前記吸着電極に所定の電圧を印加して吸着対象物を静電吸着した後、前記吸着電極に対する電圧の印加をオフにした状態で前記吸着対象物を所定の除電用ガスに曝す工程を有する残留電荷除去方法。Using an electrostatic attraction device having a predetermined attraction electrode, applying a predetermined voltage to the attraction electrode in a vacuum to electrostatically attract the attraction object, and then turning off the voltage application to the attraction electrode A method for removing residual charges, comprising exposing the object to be adsorbed to a predetermined charge removing gas. 請求項1において、前記吸着電極に対する電圧の印加をオフにした後に前記吸着対象物を所定の除電用ガスに曝す工程を有する残留電荷除去方法。2. The residual charge removing method according to claim 1, further comprising exposing the adsorption target to a predetermined charge removing gas after turning off the application of a voltage to the adsorption electrode. 請求項1において、前記吸着電極に対する電圧の印加をオフにする前に前記吸着対象物を所定の除電用ガスに曝す工程を有する残留電荷除去方法。2. The residual charge removing method according to claim 1, further comprising: exposing the adsorption target to a predetermined charge removing gas before turning off the voltage application to the adsorption electrode. 請求項1乃至請求項3のいずれかの方法に用いる残留電荷除去装置であって、
前記静電吸着装置が配置される真空槽と、前記真空槽に所定のガスを導入するガス導入部とを有する残留電荷除去装置。
A residual charge removing device used in the method according to any one of claims 1 to 3, wherein
A residual charge removing device, comprising: a vacuum chamber in which the electrostatic suction device is arranged; and a gas introduction unit for introducing a predetermined gas into the vacuum chamber.
請求項4において、前記静電吸着装置が、前記吸着対象物を搬送するように構成されている残留電荷除去装置。5. The residual charge removing device according to claim 4, wherein the electrostatic suction device is configured to transport the suction target.
JP2002220611A 2002-07-30 2002-07-30 Residual charge removal method and residual charge removal apparatus Expired - Lifetime JP4387642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220611A JP4387642B2 (en) 2002-07-30 2002-07-30 Residual charge removal method and residual charge removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220611A JP4387642B2 (en) 2002-07-30 2002-07-30 Residual charge removal method and residual charge removal apparatus

Publications (2)

Publication Number Publication Date
JP2004063826A true JP2004063826A (en) 2004-02-26
JP4387642B2 JP4387642B2 (en) 2009-12-16

Family

ID=31941150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220611A Expired - Lifetime JP4387642B2 (en) 2002-07-30 2002-07-30 Residual charge removal method and residual charge removal apparatus

Country Status (1)

Country Link
JP (1) JP4387642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508987A (en) * 2008-11-13 2012-04-12 メイベン オプトロニクス コーポレイション System and method for forming thin film phosphor layers for phosphor converted light emitting devices
JP2016115759A (en) * 2014-12-12 2016-06-23 株式会社アルバック Vacuum processor and vacuum processing method
CN109837506A (en) * 2017-11-29 2019-06-04 佳能特机株式会社 The manufacturing method of film formation device, film build method and organic EL display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508987A (en) * 2008-11-13 2012-04-12 メイベン オプトロニクス コーポレイション System and method for forming thin film phosphor layers for phosphor converted light emitting devices
US9797041B2 (en) 2008-11-13 2017-10-24 Maven Optronics Corp. System and method for forming a thin-film phosphor layer for phosphor-converted light emitting devices
JP2016115759A (en) * 2014-12-12 2016-06-23 株式会社アルバック Vacuum processor and vacuum processing method
CN109837506A (en) * 2017-11-29 2019-06-04 佳能特机株式会社 The manufacturing method of film formation device, film build method and organic EL display device
CN109837506B (en) * 2017-11-29 2022-10-11 佳能特机株式会社 Film forming apparatus, film forming method, and method for manufacturing organic EL display device

Also Published As

Publication number Publication date
JP4387642B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
KR100238629B1 (en) Stage having eletrostatic chuck and plasma processing apparatus using same
JP5295808B2 (en) Particle adhesion prevention method and substrate transport method
JPH06103683B2 (en) Electrostatic adsorption method
JPH10150100A (en) Electrostatic chuck, method and system for processing sample using it
TWI612611B (en) Sample detachment method and plasma processing device
KR0161058B1 (en) Surface removal method and mechanism for effecting the method
JPH09120988A (en) Plasma processing method
JP3671379B2 (en) Plasma processing apparatus having mechanism for removing electrostatically attracted substrate and method for removing electrostatically attracted substrate
JP2004055748A (en) Particle-removing device
JP4387642B2 (en) Residual charge removal method and residual charge removal apparatus
JP2004304123A (en) Treatment apparatus and method
JPH1027780A (en) Plasma treating method
JP2002367967A (en) Method and apparatus for treating plasma
JP4634581B2 (en) Sputtering method, surface treatment method, sputtering apparatus and surface treatment apparatus
JP6142305B2 (en) Electrostatic adsorption method and electrostatic adsorption device
JP2007258636A (en) Dry-etching method and its device
KR100421171B1 (en) Method for removing particulate contaminant on the surface of substrate and Apparatus for removing thereof
JPH04100257A (en) Treater provided with electrostatic suction mechanism and removal of residual charge in the electrostatic suction mechanism
JP2005051098A (en) Device and method for plasma treating
JP2009141014A (en) Plasma processing apparatus and processing method
JP3027781B2 (en) Plasma processing method
JPH11145266A (en) Apparatus and method of electrostatic chucking, and apparatus and method of transferring substrate using the same
JP3170849B2 (en) Dry etching method
JP2948053B2 (en) Plasma processing method
JPH0878512A (en) Method and apparatus for electrostatic attraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090827

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Ref document number: 4387642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term