JP2004063768A - Thermoelectric material and its manufacturing method - Google Patents

Thermoelectric material and its manufacturing method Download PDF

Info

Publication number
JP2004063768A
JP2004063768A JP2002219915A JP2002219915A JP2004063768A JP 2004063768 A JP2004063768 A JP 2004063768A JP 2002219915 A JP2002219915 A JP 2002219915A JP 2002219915 A JP2002219915 A JP 2002219915A JP 2004063768 A JP2004063768 A JP 2004063768A
Authority
JP
Japan
Prior art keywords
group
thermoelectric material
heat treatment
thermoelectric
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219915A
Other languages
Japanese (ja)
Inventor
Shoichi Tomiyoshi
冨吉 昇一
Osamu Yamashita
山下 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002219915A priority Critical patent/JP2004063768A/en
Publication of JP2004063768A publication Critical patent/JP2004063768A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Bi-Te-based thermoelectric material which is improved in mechanical strength or performance index to be usable as a Peltier element or a thermoelectric transfer element, and also to provide a method of manufacturing the same. <P>SOLUTION: A material which is mainly formed of Bi<SB>2</SB>Te<SB>3</SB>is melted. After growing crystals of the material, added elements segregated/deposited in crystal grain boundaries are diffused within crystal grains by a heat treatment to remarkably improve the performance index. By raising the pull-up speed, the average grain diameter of the crystals is set to at least 0.1 mm and less than 3 mm to increase the mechanical strength. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】この発明は、ペルチェ冷却素子および熱電変換素子に使用するBi−Te系熱電材料に関する。
【0002】
【従来の技術】ペルチェ冷却素子は電子冷却機、光通信機器や計測機器、培養器の温度制御等に既に使用されており、今後さらに高性能化されればフロンガスを使用しない冷蔵庫や車載用のエアコンの製品化も可能になる。また熱電変換素子は、最近の産業界において要求の高い熱エネルギーの有効活用の観点から実用化が期待されているデバイスであり、例えば、排熱を利用し電気エネルギーに変換するシステムや、屋外で簡単に電気を得るための小型携帯用発電装置、ガス機器の炎センサー等にも使用が可能である。
【0003】ペルチェ素子や熱電変換素子は、例えば、p型とn型半導体をめっきや銀ろう等により金属でpn接合して素子となした構成である。これらの素子を形成するための熱電変換材料として、高性能を有するIrSb、BiTe、PbTe等のカルコゲン系化合物のほか、熱電特性は低いが資源的に豊富なFeSi、SiGe等のケイ化物が知られている。
【0004】なお、熱電変換素子は、p型とn型の熱電変換材料の両端に温度勾配を設けて熱を電気に変換するが、逆に前記材料に電圧を印加すると電気を熱に変換する電熱変換素子、すなわちペルチェ素子として機能することがよく知られている。
【0005】従来の熱電変換素子(ペルチェ素子)は、材料に与えた温度勾配(電位差)を利用して熱起電力(温度差)を発生させており、熱電(電熱)変換素子の性能指数(ZT=S/ρκ、ここでSはゼーベック係数、ρは電気抵抗率、κは熱伝導率)は十分とは言えないものであった。
【0006】現在、ほとんどのBi−Te系の熱電材料はブリッジマン法、チョクラルスキー法、ゾーンメルト法による単結晶技術を使ってほぼ単結晶に近い結晶状態で作製するか、あるいはホットプレスによる粉末冶金法を使って多結晶体として作製されている。熱電変換素子の製造方法等に関する技術としては、例えば特開2002−33525には粉末を焼結させて熱電素子をうることが記載されており、またBiTeを主材としSe、Sbを添加することが記載されているが、それぞれBiSe、SbTe等の形で含有されるものであり、BiTeの基本構造を崩すものではない。
【0007】
【発明が解決しようとする課題】電熱あるいは熱電の変換素子の変換効率は、太陽電池(約20%)等に比べて非常に低く、現状ではわずか数%にすぎず、これがペルチェ素子の用途を狭めている原因であり、また熱電変換素子が普及しない理由でもある。
【0008】Bi−Te系熱電材料では、単結晶体は(111)の碧開面に沿ってクラックが入りやすく、また多結晶体は性能指数が低いという問題があるために、性能指数(ZT)を優先させる場合には単結晶体を、また機械的強度を優先させる場合には多結晶体が使用されていた。
【0009】性能指数と機械的強度の両者を満足させるために、Bi−Teの組成や添加物の種類、添加量等も種々検討されたが、室温での性能指数が1を大きく超えることはなかった。また性能指数を向上させるために上記の製法で作製された試料を熱処理することも行われたが、特性はほとんど向上せずに、むしろ逆に低下した。
【0010】この発明は、性能指数を向上させたBi−Te系熱電材料とその製法や機械的強度を向上させたBi−Te系熱電材料を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記の課題を解決するため本発明の熱電材料の製造方法は、BiTeを主材とする材料を溶融させ、結晶成長させた後に、真空中又は不活性ガス中で熱処理する工程を含むことを特徴とするものである。また、本発明の熱電材料の製造方法によって製造される熱電材料はそれ自体が新規なものである。平均結晶粒径が0.1mm以上3mm以下であることにより、機械的強度を向上できる。特にP型半導体である場合には、添加元素として4族元素、6族元素、7族元素の少なくとも1種を8wt.%未満含有するものであってもよく、N型半導体であるである場合には、添加元素として6族元素、7族元素、ハロゲン化物の少なくとも1種を0.25wt.%以下含有するものであってもよい。また、上記の課題を解決するため本発明の別の熱電材料は、BiTeを主材とし、添加元素として4族元素、6族元素、7族元素の少なくとも1種を8wt.%以上12wt.%以下含有するP型半導体である。なお、本発明において熱電材料とはペルチェ冷却素子および熱電変換素子に使用する材料の双方を含むものである。
【0012】
【発明の実施の形態】この発明は、rhombohedral型結晶構造を有するBiTe化合物中のBi原子の一部を5族元素で置換した化合物に、あるいはTe原子の一部を6族元素で置換した化合物に、添加元素として4族元素、6族元素や7族元素を単独もしくは複合添加したBiTe系熱電材料に関するものである。本発明者らは、Bi−Te系の熱電材料の性能指数を高く保ちながらその機械的強度を向上させることを目的に種々検討した結果、Bi−Te系化合物の極性を決める添加元素を単独又は複合添加して溶かした溶湯を、ブリッジマン装置等により、平均結晶粒径が0.1mm以上3mm以下の多結晶体になるような速い速度で結晶成長させることにより十分な強度を得ることができることを見出した。さらに、結晶成長させた後、結晶粒界に偏析・析出した添加元素を熱処理によって結晶粒内に拡散させることにより性能指数が大幅に向上することを知見した。特に、P型のBiTe系熱電材料では添加元素の添加量が多い時には、熱処理をしなくても性能指数が高くなることも知見した。本発明はこれらの知見に基づいてなされたものであり、以下、その実施の形態について詳細に説明する。
【0013】添加元素の添加量が少ないような実施の形態においては、単結晶装置を用いて平均結晶粒径の小さな多結晶体を作製した後、真空中もしくは不活性ガス雰囲気中で熱処理をすることにより、性能指数が高くしかも高い機械的強度を有するBiTe系熱電材料が得られる。また添加量が多いような実施の形態においては、熱処理をしなくても高い性能指数が得られる。
【0014】BiTe系熱電材料は、本来はP型の熱電特性を示すが、BiTeは正孔のキャリアー濃度が高すぎるので、正孔のキャリアー濃度を減らすように結晶中に入った時に電子を放出する6族のカルコゲン元素を添加して性能指数を高めている。一方N型半導体に本発明を適用する実施の形態においては、6族のカルコゲン元素、7族のハロゲン元素あるいは金属元素のハロゲン化物を添加して極性を正から負にかえると同時に、その添加量でキャリアー濃度を調整して性能指数を向上させている。
【0015】BiTe系熱電材料への添加元素や添加物の添加量は、目的とする極性とキャリアー濃度(〜1019cm−3)を有する半導体となすためには、P型では少なくとも1種を3wt.%以上添加することが望ましく、また12wt.%を越えて添加すると、逆に不純物効果によって電気抵抗率が増加する場合もあるため12wt.%以下であることが好ましく、特に好ましくは3〜8wt.%である。複合して添加する場合には、総添加量で4〜9wt.%にすることが望ましい。またN型では少なくとも1種を0.01wt.%以上の添加が必要であり、また0.10wt.%を越えて添加すると逆に不純物効果によって電気抵抗率が増加する場合もあるため0.10wt.%以下であることが好ましい。複合して添加する場合には、総添加量で0.09〜0.25wt.%にすることが望ましい。
【0016】添加元素は4族元素としては、Si、Ge、Sn、Pb、6族元素としては、S、Se、Te、7族元素としては、Br、Iが好ましく、複合添加するときにはこれら各種元素の化合物やまた主成分元素との化合物を用いても良い。
【0017】一般にペルチェ素子や熱電変換素子の使用温度域は用途によって異なるために、当然要求される温度域で高い性能指数(ZT)を示す材料が求められる。このためBiTe系熱電材料の主成分は用途に応じて適宜選択される。たとえば、低温で使用する場合にはP型であれば、BiをSbより多く含有させ、室温付近で使用する場合は逆にBiをSbより少なくする、というように選択する。
【0018】結晶成長させたインゴットの結晶粒径が3mmを超えると多結晶体の機械的強度が低下する同時に、性能指数は熱処理によってむしろ低下する傾向を示す。 逆に結晶粒径が0.1mm未満になると引き上げたインゴットの性能指数が(主に電気抵抗率の増加により)低すぎるために、熱処理しても高性能化しにくい。したがってインゴットの平均結晶粒径は0.1〜3mmが好ましい。
【0019】溶湯から多結晶体を作製する方法としては、ブリッジマン法、チョクラルスキー法、ゾーンメルト法のいずれの方法で作製しても良いが、インゴットの結晶粒径が上述のように3mm以内に入るようにするのがよい。ホットプレスによる多結晶体は、気孔率が高く相対密度が低いために、熱処理による性能指数の向上にはあまり有利ではない。
【0020】速い速度で成長させたインゴットの結晶粒界には、添加元素や添加物が多く偏析あるいは析出しており、それらは結晶粒内にはあまり分散していないが、遅い速度で成長させたインゴットの結晶組織は結晶粒径が大きくしかも添加元素や添加物が結晶粒内にもかなり分散している。添加元素が結晶粒内に均一に分散するとフォノンによる熱伝導率は低下するが、電気抵抗率は逆に増加する傾向を示す。また添加元素が偏析しているとこの逆の傾向を示す。したがって添加元素が適度な分散状態になるように制御すれば、性能指数を高めることが可能になる。
【0021】遅い速度で成長させたインゴットは熱処理によって結晶粒界に偏析した添加元素を結晶粒内に適度に分散させることができる。つまり性能指数が最も高くなる分散状態を熱処理によって造り出すことができる。最適な熱処理条件はインゴットの結晶粒径、材料の組成、添加元素によっても大きく変化するので、インゴットの作製条件に応じて適した熱処理条件を選べばよい。
【0022】インゴットの熱処理雰囲気はBiTe系化合物が酸化しないように、真空もしくは不活性ガス雰囲気が好ましい。また熱処理温度は析出物や結晶が溶け出さないように400℃以下が好ましい。
【0023】
【実施例】次に、本発明に係る熱電材料およびその製造方法の実施例について説明する。n型、p型のBiTe系熱電材料を作製するために、使用した主成分および添加元素の各種配合を表1に示す。このように元素や化合物を所定の割合で配合した後、石英管の中に真空封入して高周波溶解して(使用原料の純度99.99%以上)、材料を溶解後、ブリッジマン装置により引き上げ、引き上げられた円柱状のインゴットの中央部から測定用試料を切断加工した後、いくつかのものに対しては熱処理を行った。引上速度および熱処理条件を変えて、表2に示すように33種類の試料を作成した。これら試料の熱電特性の測定結果を表3に示す。また、試料No.4および7については機械的強度を調べるために、5x5x25mmの形状に加工してスパン15mmで抗折強度を測定した。その結果を表4に示す。
【0024】熱処理効果は添加元素の種類や添加物の添加量によって変化する。P型の材料については添加量8wt.%未満では熱処理した方が性能指数は高くなるが、添加量が8wt.%以上の場合には引き上げたままの状態の方が熱処理したものよりも高い性能指数を示す。これは添加量が多い場合には速い速度で引き上げても添加元素が結晶粒内に残存しやすいためである。
【0025】表3、表4に示すように速く引き上げて小さな粒径にした試料では機械的強度が向上していることがわかる。
【表1】

Figure 2004063768
【表2】
Figure 2004063768
【表3】
Figure 2004063768
【表4】
Figure 2004063768
【0026】
【発明の効果】以上、本発明に係る熱電材料およびその製造方法には、3mm以下の小さな平均粒径により機械的強度を向上できるという効果がある。また、真空中又は不活性ガス中で熱処理することにより、性能指数を向上できるという効果を有する。
添加元素として4族元素、6族元素、7族元素を適切に添加することにより、性能指数を向上できるという効果を有する。これらは、高強度・高性能のペルチェ素子または熱電変換素子を提供に資するものである。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Bi-Te thermoelectric material used for a Peltier cooling element and a thermoelectric conversion element.
[0002]
2. Description of the Related Art Peltier cooling elements have already been used for temperature control of electronic coolers, optical communication equipment and measuring instruments, and incubators. Commercialization of air conditioners is also possible. Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective utilization of thermal energy, which is recently required in the industry.For example, a system that converts waste heat into electric energy, It can also be used for small portable power generators for easily obtaining electricity, flame sensors for gas appliances, etc.
A Peltier element or a thermoelectric conversion element has, for example, a structure in which a p-type and an n-type semiconductor are pn-joined with metal by plating or silver brazing or the like. As thermoelectric conversion materials for forming these elements, in addition to chalcogen-based compounds such as IrSb 3 , Bi 2 Te 3 , and PbTe having high performance, FeSi 2 , SiGe, and the like, which have low thermoelectric properties but are resource-rich, are used. Silicides are known.
The thermoelectric conversion element converts heat into electricity by providing a temperature gradient at both ends of the p-type and n-type thermoelectric conversion materials, and conversely converts electricity into heat when a voltage is applied to the material. It is well known that it functions as an electrothermal conversion element, that is, a Peltier element.
[0005] A conventional thermoelectric conversion element (Peltier element) generates a thermoelectromotive force (temperature difference) using a temperature gradient (potential difference) given to a material. ZT = S 2 / ρκ, where S is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity).
At present, most Bi-Te-based thermoelectric materials are manufactured in a crystal state close to a single crystal by using a single crystal technique based on the Bridgman method, Czochralski method, or zone melt method, or by hot pressing. Manufactured as a polycrystal using powder metallurgy. As a technique relating to a method of manufacturing a thermoelectric conversion element, for example, Japanese Patent Application Laid-Open No. 2002-33525 describes that a powder is sintered to obtain a thermoelectric element, and Bi 2 Te 3 is used as a main material and Se and Sb are used. Although addition is described, it is contained in the form of Bi 2 Se 3 , Sb 2 Te 3 or the like, respectively, and does not break the basic structure of Bi 2 Te 3 .
[0007]
The conversion efficiency of an electrothermal or thermoelectric conversion element is very low as compared with a solar cell (about 20%) or the like, and is only a few% at present. This is the reason for the narrowing and the reason why the thermoelectric conversion element is not widely used.
In the case of the Bi-Te-based thermoelectric material, the single crystal has a problem that cracks easily occur along the (111) open face and the polycrystal has a problem that the performance index is low. In the case of giving priority to (1), a single crystal was used, and in the case of giving priority to mechanical strength, a polycrystal was used.
In order to satisfy both the performance index and the mechanical strength, various studies have been made on the composition of Bi-Te, types of additives, amounts of addition, and the like. However, it is unlikely that the performance index at room temperature greatly exceeds 1. Did not. In order to improve the figure of merit, the sample prepared by the above-mentioned manufacturing method was also subjected to a heat treatment. However, the characteristics hardly improved, but rather decreased.
An object of the present invention is to provide a Bi-Te-based thermoelectric material having an improved figure of merit and a Bi-Te-based thermoelectric material having an improved production method and improved mechanical strength.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the method for producing a thermoelectric material of the present invention includes a step of melting a material mainly composed of Bi 2 Te 3 , growing the crystal, and then performing a heat treatment in a vacuum or an inert gas. It is characterized by the following. Further, the thermoelectric material manufactured by the method for manufacturing a thermoelectric material of the present invention is itself a novel material. When the average crystal grain size is 0.1 mm or more and 3 mm or less, mechanical strength can be improved. In particular, in the case of a P-type semiconductor, at least one of a Group 4 element, a Group 6 element, and a Group 7 element is added as an additive element in an amount of 8 wt. %, And in the case of an N-type semiconductor, at least one of a Group 6 element, a Group 7 element, and a halide as an additive element is 0.25 wt. % Or less. Further, in order to solve the above-mentioned problem, another thermoelectric material of the present invention has Bi 2 Te 3 as a main material and at least one of a Group 4 element, a Group 6 element, and a Group 7 element as an additive element in an amount of 8 wt. % Or more and 12 wt. % Or less. In the present invention, the thermoelectric material includes both the materials used for the Peltier cooling element and the thermoelectric conversion element.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a Bi 2 Te 3 compound having a rhombohedral type crystal structure, in which a Bi atom is partially substituted with a Group 5 element, or a Te atom is partially substituted with a Group 6 element. a substituted compound, group 4 elements as an additive element, is intended to group 6 elements and group 7 elements relating independently or in combination added with Bi 2 Te 3 -based thermoelectric material. The present inventors have conducted various studies with the aim of improving the mechanical strength of a Bi-Te-based thermoelectric material while maintaining a high figure of merit. As a result, the additive element that determines the polarity of the Bi-Te-based compound is used alone or Sufficient strength can be obtained by using a Bridgman apparatus or the like to grow a molten metal mixed and added at a high rate so as to form a polycrystal having an average crystal grain size of 0.1 mm or more and 3 mm or less. Was found. Furthermore, it has been found that the performance index is greatly improved by diffusing the additional elements segregated and precipitated at the crystal grain boundaries into the crystal grains by heat treatment after crystal growth. In particular, it has also been found that in the case of a P-type Bi 2 Te 3 -based thermoelectric material, when the amount of the added element is large, the figure of merit increases even without heat treatment. The present invention has been made based on these findings, and embodiments thereof will be described below in detail.
In an embodiment in which the amount of the additional element is small, a polycrystal having a small average crystal grain size is prepared using a single crystal apparatus, and then heat treatment is performed in a vacuum or in an inert gas atmosphere. As a result, a Bi 2 Te 3 thermoelectric material having a high figure of merit and high mechanical strength can be obtained. In an embodiment in which the amount of addition is large, a high figure of merit can be obtained without heat treatment.
The Bi 2 Te 3 type thermoelectric material originally exhibits P-type thermoelectric characteristics, but Bi 2 Te 3 has too high a hole carrier concentration, so that Bi 2 Te 3 is contained in the crystal so as to reduce the hole carrier concentration. The performance index is increased by adding a group 6 chalcogen element that emits electrons when it enters. On the other hand, in an embodiment in which the present invention is applied to an N-type semiconductor, the polarity is changed from positive to negative by adding a group 6 chalcogen element, a group 7 halogen element or a halide of a metal element, and at the same time, The carrier index is adjusted to improve the figure of merit.
In order to obtain a semiconductor having a desired polarity and a carrier concentration (191019 cm−3), at least one kind of additive element or additive is added to the Bi 2 Te 3 -based thermoelectric material. 3 wt. % Or more, and 12 wt. %, The electrical resistivity may increase due to the impurity effect. %, Particularly preferably 3 to 8 wt. %. When combined and added, 4 to 9 wt. % Is desirable. In the case of N-type, at least one kind is 0.01 wt. % Or more, and 0.10 wt. %, The electrical resistivity may increase due to the impurity effect. % Is preferable. When combined and added, a total amount of 0.09 to 0.25 wt. % Is desirable.
The additive element is preferably Si, Ge, Sn, Pb as a Group 4 element, S, Se, Te as a Group 6 element, and Br or I as a Group 7 element. A compound of an element or a compound with a main component element may be used.
In general, the operating temperature range of a Peltier element or a thermoelectric conversion element varies depending on the application, and therefore, a material having a high figure of merit (ZT) in the required temperature range is naturally required. For this reason, the main component of the Bi 2 Te 3 based thermoelectric material is appropriately selected according to the application. For example, when used at a low temperature, the P type is selected to contain more Bi than Sb, and when used near room temperature, Bi is set to be less than Sb.
When the crystal grain size of the crystal-grown ingot exceeds 3 mm, the mechanical strength of the polycrystal decreases, and at the same time, the figure of merit tends to decrease due to the heat treatment. Conversely, if the crystal grain size is less than 0.1 mm, the performance index of the pulled ingot is too low (mainly due to an increase in electrical resistivity), and it is difficult to improve the performance even by heat treatment. Therefore, the average crystal grain size of the ingot is preferably 0.1 to 3 mm.
As a method for producing a polycrystal from the molten metal, any of the Bridgman method, the Czochralski method and the zone melt method may be used, but the crystal grain size of the ingot is 3 mm as described above. It is better to enter within. Polycrystals formed by hot pressing are not so advantageous in improving the figure of merit by heat treatment because of their high porosity and low relative density.
In the crystal grain boundary of the ingot grown at a high speed, many additional elements and additives are segregated or precipitated, and they are not very dispersed in the crystal grains. The crystal structure of the resulting ingot has a large crystal grain size, and the additional elements and additives are considerably dispersed in the crystal grains. When the additive element is uniformly dispersed in the crystal grains, the thermal conductivity due to phonons decreases, but the electrical resistivity tends to increase. When the added element is segregated, the opposite tendency is exhibited. Therefore, if the additive element is controlled to be in an appropriate dispersed state, it is possible to increase the figure of merit.
In the ingot grown at a low speed, the additional element segregated at the crystal grain boundaries by the heat treatment can be appropriately dispersed in the crystal grains. That is, a dispersion state having the highest figure of merit can be created by the heat treatment. Optimum heat treatment conditions vary greatly depending on the crystal grain size of the ingot, the composition of the material, and the added elements. Therefore, appropriate heat treatment conditions may be selected according to the ingot production conditions.
The heat treatment atmosphere of the ingot is preferably a vacuum or an inert gas atmosphere so that the Bi 2 Te 3 compound is not oxidized. The heat treatment temperature is preferably 400 ° C. or less so that the precipitates and crystals do not melt.
[0023]
Next, examples of the thermoelectric material and the method for producing the same according to the present invention will be described. Table 1 shows various combinations of main components and additive elements used for producing n-type and p-type Bi 2 Te 3 -based thermoelectric materials. After mixing the elements and compounds in a predetermined ratio in this way, vacuum-enclosed in a quartz tube and high-frequency melted (purity of the raw material used is 99.99% or more). After cutting the measurement sample from the center of the raised cylindrical ingot, heat treatment was performed on some of the samples. By changing the pulling speed and the heat treatment conditions, 33 types of samples were prepared as shown in Table 2. Table 3 shows the measurement results of the thermoelectric properties of these samples. Further, the sample No. Regarding 4 and 7, in order to examine the mechanical strength, the sheet was processed into a shape of 5 × 5 × 25 mm, and the bending strength was measured at a span of 15 mm. Table 4 shows the results.
The effect of the heat treatment varies depending on the type of the additive element and the amount of the additive. For P-type materials, the addition amount is 8 wt. %, The figure of merit becomes higher when heat treatment is performed, but the amount of addition is 8 wt. % Or more, the as-pulled state shows a higher figure of merit than the heat-treated one. This is because when the amount of addition is large, the added element is likely to remain in the crystal grains even if the element is pulled up at a high speed.
As shown in Tables 3 and 4, it can be seen that the mechanical strength is improved in the samples which are quickly pulled up to have a small particle size.
[Table 1]
Figure 2004063768
[Table 2]
Figure 2004063768
[Table 3]
Figure 2004063768
[Table 4]
Figure 2004063768
[0026]
As described above, the thermoelectric material and the method for producing the same according to the present invention have an effect that the mechanical strength can be improved by a small average particle size of 3 mm or less. In addition, there is an effect that the performance index can be improved by performing the heat treatment in a vacuum or in an inert gas.
By properly adding a Group 4 element, a Group 6 element, or a Group 7 element as an additive element, there is an effect that the performance index can be improved. These contribute to providing a high-strength, high-performance Peltier element or thermoelectric conversion element.

Claims (6)

BiTeを主材とし、溶融後に結晶成長させて得た熱電材料であって、均結晶粒径が0.1mm以上3mm以下であることを特徴とする熱電材料。What is claimed is: 1. A thermoelectric material comprising Bi 2 Te 3 as a main material and obtained by crystal growth after melting, wherein the uniform crystal grain size is 0.1 mm or more and 3 mm or less. 結晶成長させた後に、真空中又は不活性ガス中で熱処理されたことを特徴とする請求項1に記載の熱電材料。The thermoelectric material according to claim 1, wherein after the crystal is grown, the heat treatment is performed in a vacuum or an inert gas. 添加元素として4族元素、6族元素、7族元素の少なくとも1種を8wt.%未満含有するP型半導体である請求項2に記載の熱電材料。At least one of a Group 4 element, a Group 6 element, and a Group 7 element is added as an additive element in an amount of 8 wt. The thermoelectric material according to claim 2, which is a P-type semiconductor containing less than 10%. 添加元素として6族元素、7族元素、ハロゲン化物の少なくとも1種を0.25wt.%以下含有するN型半導体である請求項2に記載の熱電材料。At least one of a Group 6 element, a Group 7 element, and a halide as an additive element is 0.25 wt. 3. The thermoelectric material according to claim 2, wherein the thermoelectric material is an N-type semiconductor containing not more than 0.1%. BiTeを主材とし、溶融後に結晶成長させて得た熱電材料であって、添加元素として4族元素、6族元素、7族元素の少なくとも1種を8−12wt.%含有するP型半導体である熱電材料。A thermoelectric material containing Bi 2 Te 3 as a main material and obtained by crystal growth after melting, and at least one of a Group 4 element, a Group 6 element, and a Group 7 element as an additive element in an amount of 8 to 12 wt. % Of a thermoelectric material which is a P-type semiconductor. BiTeを主材とする材料を溶融させ、結晶成長させた後に、真空中又は不活性ガス中で熱処理する工程を含むことを特徴とする熱電材料の製造方法。A method for producing a thermoelectric material, comprising a step of melting a material mainly composed of Bi 2 Te 3 , growing a crystal, and then performing a heat treatment in a vacuum or an inert gas.
JP2002219915A 2002-07-29 2002-07-29 Thermoelectric material and its manufacturing method Pending JP2004063768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219915A JP2004063768A (en) 2002-07-29 2002-07-29 Thermoelectric material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219915A JP2004063768A (en) 2002-07-29 2002-07-29 Thermoelectric material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004063768A true JP2004063768A (en) 2004-02-26

Family

ID=31940701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219915A Pending JP2004063768A (en) 2002-07-29 2002-07-29 Thermoelectric material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004063768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053842A3 (en) * 2008-11-06 2010-08-12 Carrier Corporation Polarization aligned and polarization graded thermoelectric materials and method of forming thereof
US7875790B2 (en) 2005-08-25 2011-01-25 Yamaha Corporation Method of preparing a thermoelectric material, method of forming a thermoelectric device, and method of fabricating a thermoelectric module
JP2011146644A (en) * 2010-01-18 2011-07-28 Toyota Motor Corp Nanocomposite thermoelectric conversion material and method of manufacturing the same
JP2016529188A (en) * 2013-06-25 2016-09-23 ジミン チェン、 Method for manufacturing n-type semiconductor element for cooling or heating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875790B2 (en) 2005-08-25 2011-01-25 Yamaha Corporation Method of preparing a thermoelectric material, method of forming a thermoelectric device, and method of fabricating a thermoelectric module
WO2010053842A3 (en) * 2008-11-06 2010-08-12 Carrier Corporation Polarization aligned and polarization graded thermoelectric materials and method of forming thereof
US8415761B2 (en) 2008-11-06 2013-04-09 Carrier Corporation Polarization aligned and polarization graded thermoelectric materials and method of forming thereof
JP2011146644A (en) * 2010-01-18 2011-07-28 Toyota Motor Corp Nanocomposite thermoelectric conversion material and method of manufacturing the same
US8765003B2 (en) 2010-01-18 2014-07-01 Toyota Jidosha Kabushiki Kaisha Nanocomposite thermoelectric conversion material and process for producing same
JP2016529188A (en) * 2013-06-25 2016-09-23 ジミン チェン、 Method for manufacturing n-type semiconductor element for cooling or heating device
US10100437B2 (en) 2013-06-25 2018-10-16 Zhiming Chen Method for manufacturing N-type semiconductor element for cooling or heating device

Similar Documents

Publication Publication Date Title
CN109616568B (en) N-type antimony trimagneside alloy thermoelectric material with high mobility and preparation method thereof
CN1196208C (en) Silicon based conductive material and process for production thereof
CN108238796B (en) Copper seleno solid solution thermoelectric material and preparation method thereof
JP2005072391A (en) N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
Yamashita et al. High performance n-type bismuth telluride with highly stable thermoelectric figure of merit
KR101995917B1 (en) Power factor enhanced thermoelectric material and method of producing same
CN110257667B (en) N-type antimony trimagneside alloy thermoelectric material and preparation thereof
CN106711317B (en) A kind of sulfur family leaded object thermoelectric material and preparation method thereof
CN109509829A (en) With high performance diamond shape telluride germaniumbased compound thermoelectric material of high mobility and preparation method thereof
CN106986315B (en) A kind of p-type bismuth telluride thermoelectric material and preparation method suitable for low-temperature electricity-generating
CN107408618A (en) Compound semiconductor thermoelectric material and its manufacture method
KR101736974B1 (en) Thermoelectric materials and method for manufacturing the same
US20030168094A1 (en) Thermoelectric material and process for manufacturing the same
US4491679A (en) Thermoelectric materials and devices made therewith
CN108735887B (en) Antimony-doped high-performance GeTe-PbTe solid solution thermoelectric material and preparation method thereof
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP2007165463A (en) Thermoelectric converting element and power generating module
JP2004063768A (en) Thermoelectric material and its manufacturing method
KR101959448B1 (en) Thermoelectric materials, thermoelectric device and method for manufacturing the same
JP3546675B2 (en) Thermoelectric material and method for producing thermoelectric material
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JPH0856020A (en) Thermoelectric material and thermionic element
JP2013161989A (en) Method for manufacturing crystal composition including bi2te3 crystal and 3d transition metal
JP3975676B2 (en) SiGe polycrystal
US3310493A (en) Halogen doped bi2te3-bi2se3-as2se3 thermoelectric composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070524