JP2004061839A - Electrophoretic light adjusting device and its driving method - Google Patents

Electrophoretic light adjusting device and its driving method Download PDF

Info

Publication number
JP2004061839A
JP2004061839A JP2002219758A JP2002219758A JP2004061839A JP 2004061839 A JP2004061839 A JP 2004061839A JP 2002219758 A JP2002219758 A JP 2002219758A JP 2002219758 A JP2002219758 A JP 2002219758A JP 2004061839 A JP2004061839 A JP 2004061839A
Authority
JP
Japan
Prior art keywords
electrode
substrate
electrophoretic
push
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002219758A
Other languages
Japanese (ja)
Inventor
Yoshinori Uno
宇野 喜徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002219758A priority Critical patent/JP2004061839A/en
Publication of JP2004061839A publication Critical patent/JP2004061839A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Diaphragms For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the stability of transmittance in a translucent state in a light quantity adjusting apparatus for an imaging apparatus using an electrophoretic device. <P>SOLUTION: A driving electrode for the electrophoretic particles formed on a transparent substrate is provided with a push electrode different from the driving electrode so as to eliminate charged particles nearby. Thus, the light transmitting state of the device is made according to the electrode pattern and voltage, whereby the fixed transmittance is accurately obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はレンズの光軸上に備え、光量に応じ透過率が自動的に変化する光量調整素子とその駆動方法、駆動装置およびこれを用いた装置に関するものである。
【0002】
【従来の技術】
透過率の異なるフィルタを選択的に光軸上に出し入れして、自動的に光量調整を行うビデオ、カメラ用交換レンズの光量調整装置が特開平05−040293に開示されている。係る発明は、透過率の異なる複数のフィルタを保持したフィルタ保持体を鏡筒内に設け、この鏡筒を組み付けたカメラ本体からの情報により前記フィルタ保持体を駆動して適正な光量がえられるように光軸上のフィルタを選択交換する駆動源とを備え、前記カメラ本体の電源が投入されて撮影待機状態になるときは前記フィルタ本体を駆動して光量調整動作を行い、前記カメラ本体が録画状態になったときは光量調整動作を規制する構成とした光量調整装置である。
【0003】
【発明が解決しようとする課題】
特開平05−040293で開示された光量調整装置は
・複数のフィルタとアクチュエーターを保持することから小型化が困難である。
・フィルタによる透過率が不連続に変化するため、動画などの撮影中の切替が困難である。もしくは切り替えた場合に不自然な画像となる懸念がある。
といった問題点を抱えている。
【0004】
【課題を解決するための手段】
本発明者は、以上述べたように問題点を解析し、上記の問題は透過光量を無段階で変化できるかつ所望の透過率を形成する素子を1つ備えることで改善できることを見出した。
【0005】
そこで、本発明の目的は、上記の従来技術の問題点を改善し、不透明帯電泳動粒子を電気信号で移動させて透過光量状態を変化させる電気泳動光量調整素子およびその駆動方法を提案する。特に、半透光状態における透過率の安定性を向上する電気泳動光量調整素子を提供する。
【0006】
そこで、本発明においては以下に記載する新規な素子とその駆動方法、駆動装置およびこれを用いた装置を提案する。
【0007】
本発明の第1の特徴は、
実質的に透明な第一基板と、該第一基板に間隙支持体を介して対向して配置された実質的に透明な第二基板と、前記両基板の少なくとも一方の対向面側に形成された複数の電極と、前記両基板間に充填された透明絶縁性液体と複数の不透明帯電泳動粒子からなる電気泳動液とを含む電気泳動光量調整素子であって、
前記電極のうち3以上の電極で一電極群を形成し、少なくとも1つ以上の電極群を備えたことを特徴とする電気泳動光量調整素子において、少なくとも1つ以上のプッシュ電極を備えることを特長にした電気泳動光量調整素子である。
【0008】
ここで言うプッシュ電極とは、帯電泳動粒子の駆動電極の1つであり、粒子を搬送する駆動電極とは別に設けられている電極である。主に帯電泳動粒子の極性と反対極性の電圧を印加し、粒子を反発させて遠ざける働きを持つ電極である。
【0009】
よって所望の透過率を安定して再現するために、所望の透過率を成すのに必要な領域に固定的に配置される電極を言う。
【0010】
よって形状に関して制限は無く所定の面積を覆えばよく、配置に関して規則性などは要求されない。
【0011】
またその駆動方法は、遮光状態〔低透過率状態〕において、不透明帯電泳動粒子を排除する駆動電圧を印加し、対応した領域を透過状態にするための極性を与える。
【0012】
【発明の実施の形態】
以下、本発明の実施態様について順に説明する。
【0013】
図1に本発明の代表的な断面構成図を、図4に本発明の代表的な平面図を示す。第一基板1上には第1駆動電極7と第3駆動電極9が配置されており、絶縁部3を挟んでプッシュ電極13が配置された上にさらに絶縁部3が配置されている。
【0014】
同様に第二基板2上には第2駆動電極8と第4駆動電極10が配置されており、絶縁部3を挟んでプッシュ電極13が配置された上に絶縁部3が配置されている。そして第一基板1の上に間隙支持体4を挟んで第二基板2を配置している。
【0015】
第一基板1と第二基板2と間隙支持体4によって作られる空間には透明な絶縁性液体6が充填され、その絶縁性液体6中に不透明帯電泳動粒子5が分散されている。第1駆動電極7、第2駆動電極8、第3駆動電極9、第4駆動電極10の平面構成は環状であり、それを同心円状に配置している。
【0016】
プッシュ電極13は、前記第一基板、第二基板上に配置してある。
【0017】
図中にそれぞれ4本ずつ配置された第1駆動電極7、第2駆動電極8、第3駆動電極9、第4駆動電極10はそれぞれ電気的に接続されている。プッシュ電極13も同様に電気的に接続されており、駆動電極とは独立に電圧を印加できる構成となっている。
【0018】
プッシュ電極13の配置は第一基板1と第二基板2の対抗面側ならどこにあっても良い。また駆動電極が配置された層よりも基板側でもよいし、絶縁性液体6側でも同じ層でも良い。また、駆動電極が配置されてない基板上に配置しても良い。つまり、実効的な発生電界により不透明帯電泳動粒子5が泳動する構成なら、形状および構成は特に限定しない。プッシュ電極13の形状が環状であることは好ましい構成の1つであるが、形状は特に限定しない。円形でもよいし、短冊状でも良い。
【0019】
このプッシュ電極の働きについて説明する。本発明の帯電泳動粒子による光量調整素子については、粒子を移動させて透過率を調整している。そこである所定の決まった透過率を与えることが困難な時がある。このような場合に、素子中に本発明のプッシュ電極を配置することによって、その面積に応じた領域を光透過性の状態にすることができる。
【0020】
つまり半透光状態において、プッシュ電極13に不透明帯電泳動粒子5を排除する極性の電圧を印加し、プッシュ電極13に相当する素子領域を透光状態とすることで、その面積に応じた所望の透過率を安定して形成できるようになる。
【0021】
プッシュ電極13の材料は特に限定しなしが、透明な導電材料を用いるのは好ましい構成である。
【0022】
プッシュ電極13の領域に接する領域に遮光部11を設ける構成は良い構成の一つである。電気泳動光量調整素子が遮光部11を備える場合、遮光部11に相当する領域に不透明帯電泳動粒子5を移動させて透光状態を成し、開口部12に相当する領域全体に不透明帯電泳動粒子5を移動させる、もしくは開口部12に相当する領域の一部に、不透明帯電粒子5を集中的に分布させて残る開口部12の一部を透光領域として、素子全体を半透光状態とすることができる。
【0023】
プッシュ電極13の領域に接して遮光部11を配置することで、特に低い透過率の安定性を向上させることができる。遮光部11の構成は特に限定しない。第一基板1と第二基板2の両方、もしくはどちらか一方に不透明な領域を備えた基板を使用しても良いし、第一基板1と第二基板2の両方もしくはどちらか一方を不透明に着色しても良い。または不透明な領域を備えた基板、もしくは不透明な基板に、所定の面積の穴をあけたものを合わせて備えても良い。
【0024】
遮光部11の領域はプッシュ電極13に相当する領域を含んでも良い。プッシュ電極13によりプッシュ電極13に相当する領域の不透明帯電泳動粒子5を排除する場合、プッシュ電極13の領域およびその周辺の領域の不透明帯電泳動粒子5が排除される場合がある。そのため透過率の所望値によっては、遮光部がプッシュ電極13の領域を含んだ構成でも良く、一定量の素子領域を精度良く透光状態にできる構成であれば形状を問わない。
【0025】
第一基板1、第二基板2の両方にプッシュ電極13を備える構成は良い構成の一つである。その場合、それぞれ相対応する領域に配置する構成はさらに良い構成の一つである。また、特定の駆動電極に対応する領域にプッシュ電極13を配置するのは良い構成の一つである。不透明帯電泳動粒子13を搬送する際にはその駆動電極と同電位にして駆動し、プッシュ電極13の特徴的な機能を果たす場合のみ駆動電極とは異なる電位を印加すればよい。特定の駆動電極に対応する領域にプッシュ電極13を配置した場合、その領域に該当した駆動電極は無くても良い。
【0026】
また本発明の電気泳動光量調整素子は、レンズと撮像素子などの光学部品の光軸上に配置すればその配置方法について特に限定しない。この一例を図7に示すが、本発明の電気泳動光量調整素子75をレンズ装置74の絞り位置に対応した場所に配置した例(図7−a)、もしくはレンズ74の前面に配置する構成(図7−b)は好ましい構成例である。
【0027】
レンズ装置を構成するレンズの枚数は特に限定しない。複数枚で構成しても良いし、1枚でもよい。少なくとも撮像素子に入射する光量を変化させることが出来て、かつ結像面で所望の像が得られればよく、どの位置に配置してもよい。これによってよって結像面に撮像素子76を配置することによって、入射光の光量を調節することが可能になる。
【0028】
【実施例】
以下、実施例に従って本発明を説明する。
【0029】
(実施例1)
本実施例では、図1に示す断面構成で、図4に示す平面構成で、図6に示すような遮光層11を設けた素子を作製し駆動を行った。
【0030】
作製した素子の大きさは直径1mm、厚さ0.53mmである。まず、第一基板1として厚さ0.2mmのガラスにITOを成膜し、フォトリソグラフィー及びエッチングにより図に示す形状に駆動電極をパターニングした。続いて、絶縁部3としてSiOを製膜し、その上にITOを低温成膜し、フォトリソグラフィー及びエッチングにより図に示す形状にプッシュ電極13をパターニングした。また、同様に絶縁部3としてSiOを製膜した。第二基板2も第一基板1と同様の方法で作製した。第一基板1上に間隙支持体4を形成した。間隙支持体4は、光感光性エポキシ樹脂を塗布した後、露光及びウエット現像を行うことによって形成し、30μmの高さとした。形成された空間内に絶縁性液体6及び不透明帯電泳動粒子5を充填した。
【0031】
絶縁性液体6としては、イソパラフィンを使用した。不透明帯電泳動粒子5としては、ポリスチレンとカーボンの混合物で、平均粒径2μm位のものを使用した。イソパラフィン中での不透明帯電泳動粒子5は正帯電極性を示した。次に、第2基板2を位置合わせを行ないながら第1基板1上に置き、素子周辺部を接着剤により張り合わせた。この上に遮光層として不透明な基板に直径0.7mmの穴をあけたものを位置合わせを行ないながら第2基板2上に置いた。
【0032】
これに不図示の駆動装置を接続して駆動を行った。
【0033】
まず、素子中の不透明帯電泳動粒子5を素子周辺に搬送させ透光状態とした。駆動電圧は同様に10Vである。その後、素子周辺に分布していた不透明帯電泳動粒子5を素子全体に分散させた後、駆動電極にあたえる電圧を0Vにし、プッシュ電極に+10V電圧を印加したところ、図6に示すように開口部12中央に不透明帯電泳動粒子5が分布し、開口部12周辺が透光状態となり良好な半透光状態を示した。
【0034】
(実施例2)
本実施例では、図3に示す断面構成で、図5に示す平面構成で、図6に示すような遮光層を設けた素子を作製し駆動を行った。
【0035】
作製した素子の大きさは直径1mm、厚さ0.53mmである。まず、第一基板1として厚さ0.2mmのガラスにITOを成膜し、フォトリソグラフィー及びエッチングにより図に示す形状に駆動電極をパターニングした。続いて、絶縁部3としてSiOを製膜し、その上にITOを低温成膜し、フォトリソグラフィー及びエッチングによりプッシュ電極を図に示す形状にプッシュ電極13をパターニングした。また、同様に絶縁部3としてSiOを製膜した。
【0036】
この上に、間隙支持体4を形成した。間隙支持体4は、光感光性エポキシ樹脂を塗布した後、露光及びウエット現像を行うことによって形成し、30μmの高さとした。形成された空間内に絶縁性液体6及び不透明帯電泳動粒子5を充填した。絶縁性液体6としては、イソパラフィンを使用した。不透明帯電泳動粒子5としては、ポリスチレンとカーボンの混合物で、平均粒径2μm位のものを使用した。
【0037】
イソパラフィン中での不透明帯電泳動粒子5は正帯電極性を示した。次に、第二基板2として厚さ0.2mmのガラスを位置合わせを行ないながら第一基板1上に置き、素子周辺部を接着剤により張り合わせた。その上に遮光部として直径0.7mmの透明な穴とその周辺が不透明な基板を位置合わせを行いながら配置した。
【0038】
これに不図示の駆動装置を接続して駆動を行った。まず、素子中の不透明帯電泳動粒子5を素子周辺に搬送させ透光状態とした。駆動電圧は同様に10Vである。その後、素子周辺に分布していた不透明帯電泳動粒子5を素子全体に分散させた後、駆動電極へ電圧0Vを、プッシュ電極には+10Vの電圧を印加したところ、図6に示すように開口部中央に不透明帯電泳動粒子5が分布し、開口部周辺が透光状態となり、良好な半透光状態を示した。
【0039】
【発明の効果】
以上、詳細に述べたように、本発明によって次のような効果が得られた。
【0040】
第一に、1つの素子で透過率が変化する電気泳動光量調整素子を提供した。これによりこれまで小型化が困難であったレンズ装置、撮像モジュール、撮像装置を大幅に小型化できた。またプッシュ電極のパターン形状や印加する電圧によって、所定の透過率を安定に得ることができる。
【0041】
第二に、無段階で透過率を変化できることから動画の撮影中にも透過率を変えることができ、より良好な動画像の撮影が可能となった。
【図面の簡単な説明】
【図1】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図2】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図3】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図4】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図5】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図6】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図7】本発明の電気泳動光量調整素子を配置した撮像装置の一例を示す図である。
【符号の説明】
1 第一基板
2 第二基板
3 絶縁部
4 間隙支持体
5 不透明帯電泳動粒子
6 絶縁性液体
7 第1駆動電極
8 第2駆動電極
9 第3駆動電極
10 第4駆動電極
11 遮光部
12 開口部
13 プッシュ電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light amount adjusting element provided on the optical axis of a lens and having a transmittance that automatically changes according to the light amount, a driving method thereof, a driving device, and a device using the same.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 05-040293 discloses an apparatus for adjusting the light amount of a video / camera interchangeable lens which automatically adjusts the light amount by selectively inserting and removing filters having different transmittances on the optical axis. According to the invention, a filter holder holding a plurality of filters having different transmittances is provided in a lens barrel, and the filter holder is driven by information from a camera body to which the lens barrel is assembled, so that an appropriate amount of light can be obtained. A drive source for selectively exchanging filters on the optical axis as described above, and when the camera body is turned on and enters a shooting standby state, the filter body is driven to perform a light amount adjustment operation, and the camera body is This is a light amount adjusting device configured to regulate the light amount adjusting operation when a recording state is set.
[0003]
[Problems to be solved by the invention]
The light amount adjusting device disclosed in Japanese Patent Laid-Open No. 05-040293 has difficulty in downsizing because it holds a plurality of filters and actuators.
-Since the transmittance of the filter changes discontinuously, it is difficult to switch during shooting of a moving image or the like. Alternatively, there is a concern that an unnatural image will occur when switching is performed.
There is a problem such as.
[0004]
[Means for Solving the Problems]
The present inventor has analyzed the problems as described above, and has found that the above problems can be improved by providing one element capable of continuously changing the amount of transmitted light and forming a desired transmittance.
[0005]
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to propose an electrophoretic light quantity adjusting element that changes the state of transmitted light quantity by moving opaque charged electrophoretic particles by an electric signal and a driving method thereof. In particular, the present invention provides an electrophoretic light amount adjusting element that improves the stability of transmittance in a semi-transparent state.
[0006]
Therefore, the present invention proposes a novel element described below, a driving method thereof, a driving apparatus, and an apparatus using the same.
[0007]
The first feature of the present invention is that
A substantially transparent first substrate, a substantially transparent second substrate disposed opposite to the first substrate via a gap support, and formed on at least one of the opposing surfaces of the two substrates; A plurality of electrodes, an electrophoretic light amount adjustment element including an electrophoretic liquid comprising a plurality of opaque charged electrophoretic particles and a transparent insulating liquid filled between the two substrates,
An electrophoretic light quantity adjusting element, wherein one electrode group is formed by three or more electrodes among the electrodes, and at least one electrode group is provided, wherein at least one or more push electrodes are provided. This is an electrophoretic light amount adjusting element.
[0008]
The push electrode referred to here is one of the drive electrodes for the charged electrophoretic particles, and is an electrode provided separately from the drive electrode for transporting the particles. The electrode mainly has a function of applying a voltage having a polarity opposite to the polarity of the charged electrophoretic particles to repel the particles and move them away.
[0009]
Therefore, in order to stably reproduce a desired transmittance, it refers to an electrode that is fixedly arranged in a region necessary for achieving a desired transmittance.
[0010]
Therefore, there is no limitation on the shape, and it suffices to cover a predetermined area, and regularity is not required for arrangement.
[0011]
In the driving method, in a light-shielded state (low transmittance state), a driving voltage for eliminating opaque charged electrophoretic particles is applied, and a polarity for setting a corresponding region to a transparent state is given.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in order.
[0013]
FIG. 1 is a typical sectional view of the present invention, and FIG. 4 is a typical plan view of the present invention. The first drive electrode 7 and the third drive electrode 9 are arranged on the first substrate 1, and the push electrode 13 is arranged with the insulator 3 interposed therebetween, and the insulator 3 is further arranged.
[0014]
Similarly, a second drive electrode 8 and a fourth drive electrode 10 are arranged on the second substrate 2, and a push electrode 13 is arranged with the insulator 3 interposed therebetween, and the insulator 3 is arranged. Then, the second substrate 2 is arranged on the first substrate 1 with the gap support 4 interposed therebetween.
[0015]
The space formed by the first substrate 1, the second substrate 2, and the gap support 4 is filled with a transparent insulating liquid 6, and the opaque charged electrophoretic particles 5 are dispersed in the insulating liquid 6. The planar configuration of the first drive electrode 7, the second drive electrode 8, the third drive electrode 9, and the fourth drive electrode 10 is annular, and they are arranged concentrically.
[0016]
The push electrode 13 is disposed on the first substrate and the second substrate.
[0017]
The first drive electrode 7, the second drive electrode 8, the third drive electrode 9, and the fourth drive electrode 10, each of which is arranged four in the figure, are electrically connected. The push electrode 13 is also electrically connected in the same manner, and has a configuration in which a voltage can be applied independently of the drive electrode.
[0018]
The arrangement of the push electrodes 13 may be anywhere on the opposing surfaces of the first substrate 1 and the second substrate 2. The substrate may be located on the substrate side with respect to the layer on which the drive electrodes are arranged, or the insulating liquid 6 may be located on the same layer. Further, the driving electrodes may be disposed on a substrate on which the driving electrodes are not disposed. In other words, the shape and configuration are not particularly limited as long as the opaque charged electrophoretic particles 5 migrate by an effective generated electric field. It is one of the preferable configurations that the shape of the push electrode 13 is annular, but the shape is not particularly limited. It may be circular or strip-shaped.
[0019]
The function of the push electrode will be described. In the light amount adjusting element using the charged electrophoretic particles of the present invention, the transmittance is adjusted by moving the particles. Therefore, it is sometimes difficult to provide a certain fixed transmittance. In such a case, by disposing the push electrode of the present invention in the element, a region corresponding to the area can be made to be in a light-transmitting state.
[0020]
In other words, in the semi-transparent state, a voltage having a polarity that excludes the opaque charged electrophoretic particles 5 is applied to the push electrode 13, and the element region corresponding to the push electrode 13 is made to be in the translucent state, so that a desired area corresponding to the area is obtained. The transmittance can be formed stably.
[0021]
The material of the push electrode 13 is not particularly limited, but it is preferable to use a transparent conductive material.
[0022]
A configuration in which the light shielding portion 11 is provided in a region in contact with the region of the push electrode 13 is one of good configurations. When the electrophoretic light amount adjusting element includes the light-shielding portion 11, the opaque charged electrophoretic particles 5 are moved to a region corresponding to the light-shielded portion 11 to form a light-transmitting state, and the entire area corresponding to the opening 12 is opaque. 5 is moved, or the opaque charged particles 5 are intensively distributed in a part of the area corresponding to the opening 12, and the part of the opening 12 remaining as a light-transmitting area is used as a light-transmitting area so that the entire device is in a semi-transparent state. can do.
[0023]
By arranging the light-shielding portion 11 in contact with the region of the push electrode 13, it is possible to improve the stability of a particularly low transmittance. The configuration of the light shielding unit 11 is not particularly limited. A substrate having an opaque region on both or either the first substrate 1 or the second substrate 2 may be used, or both or one of the first substrate 1 and the second substrate 2 may be opaque. It may be colored. Alternatively, a substrate having an opaque region or an opaque substrate provided with a hole having a predetermined area may be provided.
[0024]
The region of the light shielding portion 11 may include a region corresponding to the push electrode 13. When the opaque charged electrophoretic particles 5 in the area corresponding to the push electrode 13 are excluded by the push electrode 13, the opaque charged electrophoretic particles 5 in the area of the push electrode 13 and the peripheral area may be excluded. Therefore, depending on the desired value of the transmittance, the light shielding portion may include a region of the push electrode 13, and any shape may be used as long as a certain amount of the element region can be accurately transmissive.
[0025]
A configuration in which the push electrodes 13 are provided on both the first substrate 1 and the second substrate 2 is one of good configurations. In such a case, a configuration in which the components are arranged in the corresponding areas is one of better configurations. It is also a good configuration to arrange the push electrode 13 in a region corresponding to a specific drive electrode. When the opaque charged electrophoretic particles 13 are transported, they are driven at the same potential as the drive electrode, and a potential different from that of the drive electrode may be applied only when the characteristic function of the push electrode 13 is performed. When the push electrode 13 is arranged in a region corresponding to a specific drive electrode, the drive electrode corresponding to that region may not be provided.
[0026]
The method of arranging the electrophoretic light amount adjusting element of the present invention is not particularly limited as long as it is arranged on the optical axis of an optical component such as a lens and an image sensor. An example of this is shown in FIG. 7, in which the electrophoretic light amount adjusting element 75 of the present invention is arranged at a position corresponding to the aperture position of the lens device 74 (FIG. 7-a), or is arranged on the front surface of the lens 74 (FIG. 7A). FIG. 7B shows a preferred configuration example.
[0027]
The number of lenses constituting the lens device is not particularly limited. It may be composed of a plurality of sheets or one sheet. It suffices if at least the amount of light incident on the image sensor can be changed and a desired image can be obtained on the image forming surface, and it may be arranged at any position. Thus, by arranging the image sensor 76 on the image forming surface, it becomes possible to adjust the amount of incident light.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0029]
(Example 1)
In this example, an element having the cross-sectional configuration shown in FIG. 1 and the planar configuration shown in FIG. 4 and provided with the light-shielding layer 11 as shown in FIG. 6 was manufactured and driven.
[0030]
The size of the manufactured element is 1 mm in diameter and 0.53 mm in thickness. First, an ITO film was formed on glass having a thickness of 0.2 mm as the first substrate 1, and drive electrodes were patterned by photolithography and etching into the shapes shown in the figure. Subsequently, SiO 2 was formed as the insulating portion 3, ITO was formed thereon at a low temperature, and the push electrode 13 was patterned into the shape shown in the figure by photolithography and etching. Similarly, a film of SiO 2 was formed as the insulating portion 3. The second substrate 2 was also manufactured in the same manner as the first substrate 1. The gap support 4 was formed on the first substrate 1. The gap support 4 was formed by applying a photosensitive epoxy resin, and then performing exposure and wet development to have a height of 30 μm. The formed space was filled with the insulating liquid 6 and the opaque charged electrophoretic particles 5.
[0031]
As the insulating liquid 6, isoparaffin was used. As the opaque electrophoretic particles 5, a mixture of polystyrene and carbon having an average particle size of about 2 μm was used. The opaque charged electrophoretic particles 5 in isoparaffin showed a positively charged polarity. Next, the second substrate 2 was placed on the first substrate 1 while performing alignment, and the peripheral portion of the element was bonded with an adhesive. An opaque substrate having a hole with a diameter of 0.7 mm as a light-shielding layer was placed on the second substrate 2 while performing alignment.
[0032]
A drive device (not shown) was connected to this for driving.
[0033]
First, the opaque charged electrophoretic particles 5 in the device were conveyed to the periphery of the device to be in a light transmitting state. The drive voltage is likewise 10V. After that, the opaque charged electrophoretic particles 5 distributed around the element were dispersed throughout the element, and the voltage applied to the drive electrode was set to 0 V, and a voltage of +10 V was applied to the push electrode. As shown in FIG. The opaque charged electrophoretic particles 5 were distributed in the center of 12 and the periphery of the opening 12 was in a light-transmitting state, indicating a favorable semi-light-transmitting state.
[0034]
(Example 2)
In this example, an element having the cross-sectional configuration shown in FIG. 3 and the planar configuration shown in FIG. 5 and provided with a light-shielding layer as shown in FIG. 6 was manufactured and driven.
[0035]
The size of the manufactured element is 1 mm in diameter and 0.53 mm in thickness. First, an ITO film was formed on glass having a thickness of 0.2 mm as the first substrate 1, and the drive electrodes were patterned into the shape shown in the figure by photolithography and etching. Subsequently, SiO 2 was formed as the insulating portion 3, ITO was formed thereon at a low temperature, and the push electrode 13 was patterned into the shape shown in the figure by photolithography and etching. Similarly, a film of SiO 2 was formed as the insulating portion 3.
[0036]
The gap support 4 was formed thereon. The gap support 4 was formed by applying a photosensitive epoxy resin, and then performing exposure and wet development to have a height of 30 μm. The formed space was filled with the insulating liquid 6 and the opaque charged electrophoretic particles 5. As the insulating liquid 6, isoparaffin was used. As the opaque electrophoretic particles 5, a mixture of polystyrene and carbon having an average particle size of about 2 μm was used.
[0037]
The opaque charged electrophoretic particles 5 in isoparaffin showed a positively charged polarity. Next, a glass having a thickness of 0.2 mm as the second substrate 2 was placed on the first substrate 1 while performing alignment, and the peripheral portion of the element was bonded with an adhesive. A transparent hole having a diameter of 0.7 mm and a substrate whose periphery is opaque as a light-shielding portion are arranged thereon while performing alignment.
[0038]
A drive device (not shown) was connected to this for driving. First, the opaque charged electrophoretic particles 5 in the device were conveyed to the periphery of the device to be in a light transmitting state. The drive voltage is likewise 10V. Thereafter, the opaque charged electrophoretic particles 5 distributed around the element were dispersed throughout the element, and then a voltage of 0 V was applied to the drive electrode and a voltage of +10 V was applied to the push electrode. As shown in FIG. The opaque charged electrophoretic particles 5 were distributed in the center, and the periphery of the opening was in a light-transmitting state, indicating a favorable semi-light-transmitting state.
[0039]
【The invention's effect】
As described above, the following effects were obtained by the present invention.
[0040]
First, an electrophoretic light amount adjusting element in which the transmittance changes with one element was provided. As a result, the lens device, the imaging module, and the imaging device, which were difficult to miniaturize, can be significantly reduced in size. Further, a predetermined transmittance can be stably obtained by the pattern shape of the push electrode and the applied voltage.
[0041]
Second, since the transmittance can be changed in a stepless manner, the transmittance can be changed even during the shooting of a moving image, and a better moving image can be shot.
[Brief description of the drawings]
FIG. 1 shows an example of a typical cross-sectional view of an electrophoretic light quantity adjusting element of the present invention.
FIG. 2 shows an example of a typical cross-sectional view of the electrophoretic light amount adjusting element of the present invention.
FIG. 3 shows an example of a typical cross-sectional view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 4 shows an example of a typical plan view of the electrophoretic light amount adjusting element of the present invention.
FIG. 5 shows an example of a typical plan view of the electrophoretic light amount adjusting element of the present invention.
FIG. 6 shows an example of a typical plan view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 7 is a diagram illustrating an example of an imaging apparatus in which the electrophoretic light amount adjusting element of the present invention is arranged.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 2nd board | substrate 3 Insulating part 4 Gap support 5 Opaque charged electrophoretic particle 6 Insulating liquid 7 First driving electrode 8 Second driving electrode 9 Third driving electrode 10 Fourth driving electrode 11 Light shielding part 12 Opening 13 Push electrode

Claims (5)

実質的に透明な第一基板と、該第一基板に間隙支持体を介して対向して配置された実質的に透明な第二基板と、前記両基板の少なくとも一方の対向面側に形成された複数の電極と、前記両基板間に充填された透明絶縁性液体と複数の不透明帯電泳動粒子からなる電気泳動液とを含む電気泳動光量調整素子であって、
前記電極のうち3以上の電極で一電極群を形成し、少なくとも1つ以上の電極群を備えたことを特徴とする電気泳動光量調整素子において、
少なくとも1つ以上の駆動電極とは電気的に独立なプッシュ電極を備えることを特徴とする電気泳動光量調整素子。
A substantially transparent first substrate, a substantially transparent second substrate disposed opposite to the first substrate via a gap support, and formed on at least one of the opposing surfaces of the two substrates; A plurality of electrodes, an electrophoretic light amount adjustment element including an electrophoretic liquid comprising a plurality of opaque charged electrophoretic particles and a transparent insulating liquid filled between the two substrates,
An electrophoretic light amount adjusting element, wherein one electrode group is formed by three or more electrodes among the electrodes, and at least one electrode group is provided.
An electrophoretic light quantity adjusting element comprising a push electrode electrically independent of at least one or more drive electrodes.
前記プッシュ電極が環状であることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting device according to claim 1, wherein the push electrode is annular. 前記プッシュ電極より外周部分に遮光部を設けることを特徴とする請求項2記載の電気泳動光量調整素子。3. The electrophoretic light amount adjusting device according to claim 2, wherein a light shielding portion is provided on an outer peripheral portion of the push electrode. 第一基板及び第二基板の対向面側の相対応する場所にプッシュ電極を設けることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light amount adjusting device according to claim 1, wherein a push electrode is provided at a position corresponding to the opposing surface of the first substrate and the second substrate. 特定の駆動電極群に含まれる駆動電極に対応する場所にプッシュ電極を設けることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting device according to claim 1, wherein a push electrode is provided at a position corresponding to a drive electrode included in a specific drive electrode group.
JP2002219758A 2002-07-29 2002-07-29 Electrophoretic light adjusting device and its driving method Withdrawn JP2004061839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219758A JP2004061839A (en) 2002-07-29 2002-07-29 Electrophoretic light adjusting device and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219758A JP2004061839A (en) 2002-07-29 2002-07-29 Electrophoretic light adjusting device and its driving method

Publications (1)

Publication Number Publication Date
JP2004061839A true JP2004061839A (en) 2004-02-26

Family

ID=31940581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219758A Withdrawn JP2004061839A (en) 2002-07-29 2002-07-29 Electrophoretic light adjusting device and its driving method

Country Status (1)

Country Link
JP (1) JP2004061839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667497B1 (en) 2005-04-28 2007-01-10 엘지전자 주식회사 Electrical Paper Display Having The Third Electrode and Manufacturing Method Thereof
KR20110083971A (en) * 2010-01-15 2011-07-21 삼성전자주식회사 Electrophoretic display panel, method of manufacturing the same and electrophoretic display apparatus having the same
WO2021027375A1 (en) * 2019-08-15 2021-02-18 华为技术有限公司 Image capturing module, and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667497B1 (en) 2005-04-28 2007-01-10 엘지전자 주식회사 Electrical Paper Display Having The Third Electrode and Manufacturing Method Thereof
KR20110083971A (en) * 2010-01-15 2011-07-21 삼성전자주식회사 Electrophoretic display panel, method of manufacturing the same and electrophoretic display apparatus having the same
KR101662135B1 (en) 2010-01-15 2016-10-05 삼성디스플레이 주식회사 Electrophoretic display panel, method of manufacturing the same and electrophoretic display apparatus having the same
WO2021027375A1 (en) * 2019-08-15 2021-02-18 华为技术有限公司 Image capturing module, and electronic apparatus

Similar Documents

Publication Publication Date Title
US8061910B2 (en) Micro shutter having iris function, method for manufacturing the same, and micro camera module having the same
KR960015003A (en) Video device
JP4338434B2 (en) Transmission type two-dimensional light modulation element and exposure apparatus using the same
US20080080847A1 (en) Lens module and camera module using the lens module
TW201300911A (en) Three-dimensional image capturing device
JP2008216626A (en) Variable focal lens
JP4164308B2 (en) Light amount adjusting element and imaging apparatus using the same
KR100925614B1 (en) Liquid crystal lens having a aspherical optical properties
JP2004061833A (en) Electrophoretic light quantity control element, its driving method and device using the element
JP2004061839A (en) Electrophoretic light adjusting device and its driving method
JP2004061831A (en) Electrophoretic light quantity adjusting element
JP4989949B2 (en) Liquid crystal optical element and liquid crystal optical module
JP4033148B2 (en) Lens barrel and imaging device
TW201209513A (en) Aperture and camera module using same
JP2004061840A (en) Electrophoretic light adjusting device, its driving method and apparatus using same
JP2004012906A (en) Light control element, its driving method and image pickup device using the light control element
KR102526061B1 (en) Apparatus for electrically adjusting quantity of light, camera module including the apparatus, and the mobile device including the module
JP2007041273A (en) Electrophoretic light quantity adjusting element and imaging device using the same
JPH02226102A (en) Optical lens
WO2021066489A1 (en) Liquid lens and liquid lens assembly
JP2002139747A (en) Picture display device
JPH0216065A (en) Liquid crystal optical shutter
JP2004061832A (en) Light adjusting device, its driving method and apparatus using same
KR101574149B1 (en) Shutter pixel shutter structure inclduing the shutter pixel and exposure apparatus including the shutter structure
KR101747718B1 (en) electrically driven liquid crystal lens and Method for Manufacturing the Same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004