JP2004060953A - Ejector cycle - Google Patents

Ejector cycle Download PDF

Info

Publication number
JP2004060953A
JP2004060953A JP2002217926A JP2002217926A JP2004060953A JP 2004060953 A JP2004060953 A JP 2004060953A JP 2002217926 A JP2002217926 A JP 2002217926A JP 2002217926 A JP2002217926 A JP 2002217926A JP 2004060953 A JP2004060953 A JP 2004060953A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
evaporator
compressor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217926A
Other languages
Japanese (ja)
Inventor
Masayuki Takeuchi
竹内 雅之
Yoshitaka Tomatsu
戸松 義貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002217926A priority Critical patent/JP2004060953A/en
Publication of JP2004060953A publication Critical patent/JP2004060953A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To readily detect shortage in the amount of refrigerant in an ejector cycle. <P>SOLUTION: The degree of superheat in the refrigerant at a refrigerant outlet side in an evaporator 30 is detected according to the temperature difference between refrigerant temperature sensors 71, 72. When the degree of superheat in the refrigerant is equal to or more than a specific value, it is regarded that the amount of refrigerant is less than a prescribed value, thus more readily detecting shortage in the amount of refrigerant as compared with a case where shortage in the refrigerant is judged according to the temperature of a discharge medium. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機のうち、冷媒を減圧膨張させながら膨張エネルギーを圧力エネルギーに変換して圧縮機の吸入圧を上昇させるエジェクタを有するエジェクタサイクルに関するもので、空調装置に適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
エジェクタとは、JIS Z 8126 番号2.1.2.3等に記載されているように、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであり、このエジェクタを利用したエジェクタサイクルでは、エジェクタ内のノズルにて、高圧冷媒を減圧膨脹させて高速の冷媒流(駆動流)を生成し、この駆動流にて蒸発器内の冷媒を吸引して気液分離器と蒸発器との間で冷媒を循環させる。
【0003】
ところで、膨張弁等の減圧手段により等エンタルピ的に冷媒を減圧する蒸気圧縮式冷凍機(以下、膨張弁サイクルと呼ぶ。)では、図14に示すように、膨張弁70を流出した冷媒が蒸発器に流れ込むのに対して、エジェクタサイクルでは、図15に示すように、エジェクタ40を流出した冷媒は気液分離器50に流入し、気液分離器50にて分離された液相冷媒が蒸発器50に供給され、気液分離器50にて分離された気相冷媒が圧縮機10に吸入される。
【0004】
つまり、膨張弁サイクルでは、冷媒が圧縮機10→放熱器20→膨張弁70→蒸発器30→圧縮機10の順に循環する1つの冷媒流れとなるのに対して、エジェクタサイクルでは、圧縮機10→放熱器20→エジェクタ40→気液分離器50→圧縮機10の順に循環する冷媒流れと、気液分離器50→蒸発器30→エジェクタ40→気液分離器の順に循環する冷媒流れとが存在することとなる。
【0005】
このため、膨張弁サイクルにおいては、配管に亀裂が発生する等して冷凍機内の冷媒が不足すると、圧縮機に吸入される冷媒の過熱度が上昇するため、この吸入冷媒温度の上昇に連動して吐出冷媒温度、つまり高圧側冷媒の温度が上昇する。そこで、膨脹弁サイクルでは、吐出冷媒温度を検出し、この検出した冷媒温度が所定温度を超えたときに冷媒が不足しているものともみなして圧縮機を停止させていた。
【0006】
しかし、エジェクタサイクルでは、圧縮機は気液分離器から冷媒を吸引するので、図16に示すように、冷媒量が不足して蒸発器にて十分な吸熱能力(冷凍能力)が発揮されない状態にあっても、気液分離器に冷媒が残存している間は、吐出冷媒温度が上昇しない。したがって、冷媒量が不足して蒸発器にて十分な吸熱能力(冷凍能力)が発揮されない状態にあっても、気液分離器に冷媒が残存している間は、冷媒量不足を検出することができない。
【0007】
本発明は、上記点に鑑み、第1には、従来と異なる新規なエジェクタサイクルを提供し、第2には、冷媒量不足を早期に検出することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)での吸熱量に関するパラメータを検出し、蒸発器(30)での吸熱量が所定量以上であるか否かを判定し、蒸発器(30)での吸熱量が所定量未満であるときには、冷媒量が規定値未満となったものとみなす冷媒不足判定手段とを備えることを特徴とする。
【0009】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0010】
請求項2に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)の冷媒出口側における冷媒の過熱度が所定値を以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段とを備えることを特徴とする。
【0011】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0012】
請求項3に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)の冷媒入口側における冷媒温度、及び蒸発器(30)の冷媒出口側における冷媒温度を検出し、これら検出冷媒温度の温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とする。
【0013】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0014】
請求項4に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)の冷媒出口側における冷媒温度、及び蒸発器(30)内の冷媒圧力を検出し、冷媒温度と冷媒圧力における飽和ガス温度との温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とする。
【0015】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0016】
請求項5に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)の冷媒入口側における冷媒温度、及び蒸発器(30)内を流れる冷媒と熱交換を終えた流体の流体温度を検出し、冷媒温度と流体温度との温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とする。
【0017】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0018】
請求項6に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)内を流れる冷媒と熱交換を終えた流体の流体温度、及び蒸発器(30)内の冷媒圧力を検出し、冷媒温度と冷媒圧力における飽和ガス温度との温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とする。
【0019】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0020】
請求項7に記載の発明では、冷媒を吸入圧縮する圧縮機(10)と、圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、低圧冷媒を蒸発させて吸熱する蒸発器(30)と、高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を蒸発器(30)に供給し、気相冷媒を圧縮機(10)に供給する気液分離器(50)と、蒸発器(30)での吸熱量に関するパラメータを検出し、蒸発器(30)での吸熱量が所定量以上であるか否かを判定し、蒸発器(30)での吸熱量が所定量未満であるときには、冷媒量が規定値未満となったものとみなす冷媒不足判定手段とを備えることを特徴とする。
【0021】
これにより、吐出冷媒温度にて冷媒不足を判定する場合に比べて冷媒量不足を早期に検出することができるとともに、従来と異なる新規なエジェクタサイクルを得ることができる。
【0022】
請求項8に記載の発明では、冷媒不足判定手段は、冷媒量が規定値未満となったか否を判定するしきい値を、放熱器(20)が設置された箇所の雰囲気温度の上昇に応じて大きくすることを特徴とする。
【0023】
これにより、冷媒不足が発生したものと誤検出してしまうことを未然に防止できる。
【0024】
請求項9に記載の発明では、冷媒不足判定手段は、冷媒量が規定値未満となったものとみなすことできる状態が、所定時間以上継続したときに冷媒量が規定値未満となったものとみなし、冷媒量が規定値未満となったものとみなすことできる状態が、所定時間以上継続しなかったときは冷媒量が規定値以上であるとみなすことを特徴とする。
【0025】
これにより、冷媒不足が発生したものと誤検出してしまうことを未然に防止できる。
【0026】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0027】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係るエジェクタサイクルを車両用空調装置に適用したものであり、図1はフロン(134a)又は二酸化炭素を冷媒とするエジェクタサイクル1の模式図であり、図2はエジェクタ40の模式図であり、図3はエジェクタサイクルの全体のマクロ的作動を示すp−h線図である。
【0028】
圧縮機10は電磁クラッチを介して走行用エンジンから動力を得て冷媒を吸入圧縮する周知の可変容量型の圧縮機であり、放熱器20は圧縮機10から吐出した冷媒と室外空気とを熱交換して冷媒を冷却する高圧側熱交換器である。
【0029】
また、蒸発器30は室内に吹き出す空気と液相冷媒とを熱交換させて液相冷媒を蒸発させることにより冷媒を蒸発させて室内に吹き出す空気を冷却する低圧側熱交換器である。
【0030】
また、エジェクタ40は冷媒を減圧膨張させて蒸発器30にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるものである。
【0031】
そして、エジェクタ40は、図2に示すように、流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を等エントロピ的に減圧膨張させるノズル41、ノズル41から噴射する高い速度の冷媒流により蒸発器30にて蒸発した気相冷媒を吸引しながら、ノズル41から噴射する冷媒流とを混合する混合部42、及びノズル41から噴射する冷媒と蒸発器30から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ43等からなるものである。
【0032】
このとき、混合部42においては、駆動流の運動量と吸引流の運動量との和が保存されるように駆動流と吸引流とが混合するので、混合部42においても冷媒の圧力が(静圧)が上昇する。
【0033】
一方、ディフューザ43においては、通路断面積を徐々に拡大することにより、冷媒の速度エネルギ(動圧)を圧力エネルギ(静圧)に変換するので、エジェクタ40においては、混合部42及びディフューザ43の両者にて冷媒圧力を昇圧する。そこで、以下、混合部42とディフューザ43とを総称して昇圧部と呼ぶ。
【0034】
因みに、本実施形態では、ノズル41から噴出する冷媒の速度を音速以上まで加速するために、通路途中に通路面積が最も縮小した喉部41aを有するラバールノズル(流体工学(東京大学出版会)参照)を採用しているが、勿論、先細ノズルを採用してもよいことは言うまでもない。
【0035】
また、図1中、気液分離器50はエジェクタ40から流出した冷媒が流入するとともに、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離手段であり、気液分離器50の気相冷媒流出口は圧縮機10の吸引側に接続され、液相冷媒流出口は蒸発器30側の流入側に接続される。
【0036】
絞り60は気液分離器50から流出した液相冷媒を減圧する減圧手段であり、入口冷媒温度センサ71は蒸発器30の冷媒入口側における冷媒温度を検出する冷媒温度検出手段であり、出口冷媒温度センサ72は蒸発器30の冷媒出口側における冷媒温度を検出する冷媒温度検出手段である。
【0037】
そして、両温度センサ71、72の検出温度は電子制御装置(ECU)70に入力されており、ECU70は両温度センサ71、72の検出温度の温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなして圧縮機10の吐出容量を最小とした状態で電磁クラッチを遮断する。
【0038】
なお、本実施形態では、図3に示すように、圧縮機10にてノズル41に流入する高圧の冷媒を冷媒の臨界圧力以上まで昇圧している。因みに、図3の●で示される符号は、図1に示す●で示される符号位置における冷媒の状態を示すものである。
【0039】
次に、エジェクタサイクルの概略作動を述べる。
【0040】
1.冷媒が規定値のとき(温度センサ71、72の検出温度の温度差の絶対値が所定値未満のとき)
圧縮機10から吐出した冷媒を放熱器20側に循環させる。これにより、放熱器20にて冷却された冷媒は、エジェクタ40のノズル41にて等エントロピ的に減圧膨張して、音速以上の速度で混合部42内に流入する。
【0041】
そして、混合部42に流入した高速冷媒の巻き込み作用に伴うポンプ作用により、蒸発器30内で蒸発した冷媒が混合部42内に吸引されるため、低圧側の冷媒が気液分離器50→絞り60→蒸発器30→エジェクタ40(昇圧部)→気液分離器50の順に循環する。
【0042】
一方、蒸発器30から吸引された冷媒(吸引流)とノズル41から吹き出す冷媒(駆動流)とは、混合部42にて混合しながらディフューザ43にてその動圧が静圧に変換されて気液分離器50に戻る。
【0043】
2.冷媒量が規定値未満とき(温度センサ71、72の検出温度の温度差の絶対値が所定値以上のとき)
圧縮機10の吐出容量を最小とした状態で電磁クラッチを遮断することにより、圧縮機10(エジェクタサイクル1)を停止させるとともに、ブザーや警告灯等の警告手段により「冷媒が不足している」旨の警告を乗員に対して発する。
【0044】
次に、本実施形態の作用効果を述べる。
【0045】
図4はエジェクタサイクルにおける冷媒量と吐出冷媒温度及び蒸発器30の冷媒出口側における冷媒過熱度との関係を示す試験結果に基づく特性図であり、図5は膨脹弁サイクルにおける冷媒量と吐出冷媒温度との関係を示す試験結果に基づく特性図であり、図6はエジェクタサイクルにおける蒸発器30の吸熱能力(冷房能力)と蒸発器30の冷媒出口側における冷媒過熱度との関係を示す試験結果に基づく特性図である。
【0046】
図4、5からも明らかなように、膨脹弁サイクルでは、冷媒量が既定値未満となると、吐出冷媒温度及び蒸発器30の冷媒出口側における冷媒過熱度(以下、冷媒過熱度と略す。)の両者が、冷媒不足発生とほぼ同時に上昇するのに対して、エジェクタサイクルでは、冷媒量が既定値未満となると、冷媒過熱度は冷媒不足発生とほぼ同時に上昇するものの、吐出冷媒温度は冷媒不足が十分に進行した後、上昇し始める。
【0047】
また、冷媒過熱度が大きくなって冷媒量が規定値未満となると、図6に示すように、蒸発器30の吸熱能力(冷房能力)が大きく低下する。
【0048】
したがって、冷媒量が規定値未満となった否かを判定するにあたっては、冷媒の過熱度が所定値を以上となったときに、又は蒸発器30の吸熱能力(冷房能力)が所定量未満となったときに冷媒量が規定値未満となったものとみなすことが望ましい。
【0049】
ところで、蒸発器30に流入する冷媒は飽和液状態であるので、仮に冷媒不足が発生していないならば、蒸発器30内の温度は、蒸発器30の冷媒入口側の冷媒温度のままで一定となる。したがって、蒸発器30の冷媒入口側における冷媒温度と蒸発器30の冷媒出口側における冷媒温度との温度差の絶対値は、冷媒過熱度と略一致する。
【0050】
したがって、本実施形態のごとく、蒸発器30の冷媒入口側における冷媒温度、及び蒸発器30の冷媒出口側における冷媒温度を検出し、これら検出冷媒温度の温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満になったものと判定すれば、冷媒量不足を早期に検出することができる。
【0051】
また、冷媒量不足を早期に検出することができるので、蒸発器30の吸熱能力(冷房能力)を早期に検出することがきる。
【0052】
また、冷媒不足が発生すると、冷媒と共に圧縮機10に戻ってくる冷凍機油量が減少するので、圧縮機10内において潤滑不足が発生するおそれがあるが、本実施形態では、冷媒量不足を早期に検出することができるので、潤滑油不足及び圧縮機10の焼き付きを未然に防止することができる。
【0053】
(第2実施形態)
第1実施形態では、蒸発器30の冷媒入口側と冷媒出口側との冷媒温度差に基づいて冷媒過熱度を検出したが、本実施形態は、図7に示すように、蒸発器30の冷媒出口側における圧力を圧力センサ73で検出し、蒸発器30の冷媒出口側における冷媒温度(出口冷媒温度センサ72の検出温度)と圧力センサ73が検出した冷媒圧力における飽和ガス温度との温度差の絶対値が所定値以上となったときに、冷媒過熱度が所定値以上となって冷媒量が規定値未満となったものとみなすものである。
【0054】
これにより、冷媒不足を検出するためのセンサ72、73を一体化又は同一箇所に設置することができるので、エジェクタサイクルの部品点数の低減又は組み立て工数の低減を図ることができる。
【0055】
なお、仮に冷媒不足が発生していないならば、蒸発器30内の温度は、蒸発器30の冷媒入口側の冷媒温度のままで一定となるので、圧力センサ73が検出した冷媒圧力における飽和ガス温度は、蒸発器30の冷媒入口側における冷媒温度と一致する。
【0056】
因みに、蒸発器30内の圧力は、冷媒量の如何にかかわらず、冷媒入口側から出口側に掛けて略一定であるので、冷媒圧力を蒸発器30の冷媒入口側又は蒸発器30内で検出しても本実施形態を実施することができる。
【0057】
(第3実施形態)
第1実施形態では、蒸発器30の冷媒入口側と冷媒出口側との冷媒温度差に基づいて冷媒過熱度を検出したが、本実施形態は、図8に示すように、蒸発器30内を流れる冷媒と熱交換を終えた流体の流体温度、つまり蒸発器30を通過した直後の空気の温度を検出するエバ後センサ74の検出温度を蒸発器30の冷媒出口側の冷媒温度とみなして、冷媒過熱度を検出するものである。
【0058】
具体的には、エバ後センサ74の検出温度と入口冷媒温度センサ71の検出温度との温度差の絶対値が所定値以上となったときに、冷媒過熱度が所定値以上となって冷媒量が規定値未満となったものとみなすものである。
【0059】
これにより、空調装置用に設置された既存のエバ後センサ74を有効利用することができるので、エジェクタサイクルの部品点数の低減又は組み立て工数の低減を図ることができる。
【0060】
(第4実施形態)
本実施形態は、第3実施形態の変形例であり、具体的には、図9に示すように、入口冷媒温度センサ71に代えて圧力センサ73にて蒸発器30内の圧力を検出し、圧力センサ73が検出した冷媒圧力における飽和ガス温度と入口冷媒温度センサ71の検出温度との温度差の絶対値が所定値以上となったときに、冷媒過熱度が所定値以上となって冷媒量が規定値未満となったものとみなすものである。
【0061】
(第5実施形態)
上述の実施形態では、冷媒過熱度に基づいて冷媒不足を判定したが、本実施形態は、図6に示すように、蒸発器30の吸熱能力(冷房能力)と冷媒過熱度とが相関関係を有することから、蒸発器30での吸熱量に関するパラメータを検出し、蒸発器30での吸熱量が所定量以上であるか否かを判定し、蒸発器30での吸熱量が所定量未満であるときには、冷媒量が規定値未満となったものとみなすものである。
【0062】
具体的には、図10に示すように、蒸発器(30)内を流れる冷媒と熱交換する前の流体の流体温度、つまり蒸発器30に流入する空気の温度を検出するエバ前センサ74の検出温度とエバ後センサ74の検出温度との温度差の絶対値が所定値以上となったときに、図11に示すように、冷媒量が規定値未満となったものとみなすものである。
【0063】
なお、エバ前センサ74として、既存の空調センサである内気温度センサ及び外気温度センサを用いてもよい。つまり、内気循環モード時は、内気温度センサの検出温度を蒸発器30に流入する空気の温度とみなし、外気循環モード時は、外気温度センサの検出温度を蒸発器30に流入する空気の温度とみなすものである。
【0064】
(第6実施形態)
本実施形態は、図12に示すように、冷媒量が規定値未満となったか否を判定するしきい値を、放熱器20が設置された箇所の雰囲気温度、つまり外気温度の上昇に応じて大きくするものである。
【0065】
これにより、空調負荷(熱負荷)が大きく変動して冷媒過熱度又はエバ前センサ74の検出温度とエバ後センサ74の検出温度との温度差の絶対値が大きく変動した際に、冷媒不足が発生したものと誤検出してしまうことを未然に防止できる。
【0066】
なお、冷媒量が規定値未満となったか否を判定するしきい値とは、第1〜4実施形態では所定の冷媒過熱度であり、第5実施形態では所定の吸熱量(冷房能力)である。
【0067】
(第7実施形態)
本実施形態は、図13に示すように、冷媒量が規定値未満となったものとみなすことできる状態が、所定時間以上継続したときに冷媒量が規定値未満となったものとみなし、冷媒量が規定値未満となったものとみなすことできる状態が、所定時間以上継続しなかったときは冷媒量が規定値以上であるとみなすものである。
【0068】
ここで、冷媒量が規定値未満となったものとみなすことできる状態とは、第1〜4実施形態では所定の冷媒過熱度が所定値以上となった状態であり、第5実施形態では所定の吸熱量(冷房能力)が所定量未満となった状態である。
【0069】
これにより、クールダウン(急速冷房時)等の空調負荷(熱負荷)が大きく変動して冷媒過熱度又はエバ前センサ74の検出温度とエバ後センサ74の検出温度との温度差の絶対値が大きく変動した際に、冷媒不足が発生したものと誤検出してしまうことを未然に防止できる。
【0070】
(その他の実施形態)
上述の実施形態では、車両用空調装置に本発明を適用したが、本発明はこれに限定されるものではなく、例えば据え置き型の空調装置やヒートポンプ式の給湯器又は冷蔵庫等にも適用することができる。
【0071】
また、上述の実施形態では、高圧側の冷媒圧力を臨界圧力以上まで上昇させたが、本発明はこれに限定されるものでない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るエジェクタサイクルの模式図である。
【図2】本発明の第1実施形態に係るエジェクタの模式図である。
【図3】エジェクタサイクルの全体のマクロ的作動を示すp−h線図である。
【図4】エジェクタサイクルにおける冷媒量と吐出冷媒温度及び蒸発器30の冷媒出口側における冷媒過熱度との関係を示す試験結果に基づく特性図である。
【図5】膨脹弁サイクルにおける冷媒量と吐出冷媒温度との関係を示す試験結果に基づく特性図である。
【図6】エジェクタサイクルにおける蒸発器30の吸熱能力(冷房能力)と蒸発器30の冷媒出口側における冷媒過熱度との関係を示す試験結果に基づく特性図である。
【図7】本発明の第2実施形態に係るエジェクタサイクルの模式図である。
【図8】本発明の第3実施形態に係るエジェクタサイクルの模式図である。
【図9】本発明の第4実施形態に係るエジェクタサイクルの模式図である。
【図10】本発明の第5実施形態に係るエジェクタサイクルの模式図である。
【図11】吸入温度と温度差との関係を示すグラフである。
【図12】外気温度と冷媒過熱度との関係を示す図である。
【図13】起動開始からの時間と冷媒過熱度との関係を示す図である。
【図14】従来の技術に係る膨脹弁サイクルの模式図である。
【図15】従来の技術に係るエジェクタサイクルの模式図である。
【図16】問題点を説明するための図である。
【符号の説明】
10…圧縮機、20…放熱器、30…蒸発器、40…エジェクタ、
50…気液分離器、60…絞り、70…電子制御装置、
71、72…冷媒温度センサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an ejector cycle having an ejector that converts expansion energy into pressure energy while decompressing and expanding a refrigerant to increase the suction pressure of the compressor, among vapor compression refrigerators that move heat on a low temperature side to a high temperature side. This is effective when applied to an air conditioner.
[0002]
Problems to be solved by the prior art and the invention
The ejector is a momentum transport type pump that performs fluid transport by the entrainment of a high-speed ejected working fluid, as described in JIS Z 8126 No. 2.1.2.3, and uses this ejector. In the ejector cycle, the high-pressure refrigerant is decompressed and expanded at a nozzle in the ejector to generate a high-speed refrigerant flow (drive flow), and the drive flow sucks the refrigerant in the evaporator and evaporates with the gas-liquid separator. The refrigerant is circulated to and from the vessel.
[0003]
By the way, in a vapor compression refrigerator (hereinafter, referred to as an expansion valve cycle) in which the refrigerant is isenthalpically depressurized by a decompression means such as an expansion valve, the refrigerant flowing out of the expansion valve 70 evaporates as shown in FIG. On the other hand, in the ejector cycle, as shown in FIG. 15, the refrigerant flowing out of the ejector 40 flows into the gas-liquid separator 50, and the liquid-phase refrigerant separated in the gas-liquid separator 50 evaporates. The gas-phase refrigerant supplied to the compressor 50 and separated by the gas-liquid separator 50 is sucked into the compressor 10.
[0004]
That is, in the expansion valve cycle, the refrigerant flows as one refrigerant circulating in the order of the compressor 10, the radiator 20, the expansion valve 70, the evaporator 30, and the compressor 10, whereas in the ejector cycle, the refrigerant flows in the compressor 10 → The refrigerant flow circulating in the order of the radiator 20 → the ejector 40 → the gas-liquid separator 50 → the compressor 10 and the refrigerant flow circulating in the order of the gas-liquid separator 50 → the evaporator 30 → the ejector 40 → the gas-liquid separator Will exist.
[0005]
For this reason, in the expansion valve cycle, if the refrigerant in the refrigerator runs short due to cracks in the piping or the like, the degree of superheat of the refrigerant sucked into the compressor increases, and the temperature rises in conjunction with the increase in the temperature of the suction refrigerant. As a result, the temperature of the discharged refrigerant, that is, the temperature of the high-pressure side refrigerant increases. Therefore, in the expansion valve cycle, the temperature of the discharged refrigerant is detected, and when the detected refrigerant temperature exceeds a predetermined temperature, it is considered that the refrigerant is insufficient, and the compressor is stopped.
[0006]
However, in the ejector cycle, since the compressor sucks the refrigerant from the gas-liquid separator, as shown in FIG. 16, the amount of the refrigerant is insufficient and the evaporator cannot exhibit a sufficient heat absorbing capacity (refrigeration capacity). Even if there is, the temperature of the discharged refrigerant does not increase while the refrigerant remains in the gas-liquid separator. Therefore, even if the amount of the refrigerant is insufficient and the heat absorption capacity (refrigeration capacity) is not sufficiently exhibited in the evaporator, it is necessary to detect the lack of the refrigerant while the refrigerant remains in the gas-liquid separator. Can not.
[0007]
SUMMARY OF THE INVENTION In view of the above points, the present invention firstly provides a new ejector cycle different from the conventional one, and secondly, aims to detect the shortage of the refrigerant amount at an early stage.
[0008]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, a compressor (10) for sucking and compressing a refrigerant and a radiator (20) for cooling a high-pressure refrigerant discharged from the compressor (10) are provided. ), An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat, and a compressor (10) for sucking the vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy. An ejector (40) for increasing the suction pressure of the air, a refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the liquid-phase refrigerant is supplied to an evaporator (30), and the gas-phase refrigerant is supplied to a compressor (10). A parameter relating to the amount of heat absorbed in the supplied gas-liquid separator (50) and the evaporator (30) is detected, and it is determined whether or not the amount of heat absorbed in the evaporator (30) is equal to or more than a predetermined amount. When the amount of heat absorbed in (30) is less than a predetermined amount Characterized by comprising a refrigerant shortage determination means deemed to refrigerant quantity is less than the specified value.
[0009]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0010]
According to the second aspect of the present invention, a compressor (10) for sucking and compressing the refrigerant, a radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10), and an evaporator for evaporating the low-pressure refrigerant and absorbing heat. An ejector (40) for suctioning a vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10); A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); When the degree of superheat of the refrigerant at the refrigerant outlet side of the vessel (30) is equal to or more than a predetermined value, the refrigerant amount is determined to be less than a specified value.
[0011]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0012]
According to the third aspect of the present invention, a compressor (10) for sucking and compressing the refrigerant, a radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10), and an evaporator for evaporating the low-pressure refrigerant and absorbing heat. An ejector (40) for suctioning a vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10); A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); The refrigerant temperature at the refrigerant inlet side of the evaporator (30) and the refrigerant temperature at the refrigerant outlet side of the evaporator (30) are detected, and when the absolute value of the temperature difference between the detected refrigerant temperatures becomes a predetermined value or more, the refrigerant If the amount is less than the specified value Characterized in that it comprises a refrigerant shortage determining means Nasu.
[0013]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0014]
According to the fourth aspect of the present invention, a compressor (10) for sucking and compressing the refrigerant, a radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10), and an evaporator for evaporating the low-pressure refrigerant and absorbing heat. An ejector (40) for suctioning a vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10); A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); Detecting the refrigerant temperature at the refrigerant outlet side of the evaporator (30) and the refrigerant pressure in the evaporator (30), and when the absolute value of the temperature difference between the refrigerant temperature and the saturated gas temperature at the refrigerant pressure is equal to or more than a predetermined value. In the meantime, the refrigerant amount was less than the specified value Characterized in that it comprises a refrigerant shortage determination unit regarded as.
[0015]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0016]
In the invention described in claim 5, a compressor (10) for sucking and compressing the refrigerant, a radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10), and an evaporator for evaporating the low-pressure refrigerant to absorb heat. An ejector (40) for suctioning a vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10); A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); The temperature of the refrigerant at the refrigerant inlet side of the heat exchanger (30) and the temperature of the fluid that has undergone heat exchange with the refrigerant flowing through the evaporator (30) are detected, and the absolute value of the temperature difference between the refrigerant temperature and the fluid temperature is determined. When the refrigerant quantity exceeds the specified value, Characterized in that it comprises a refrigerant shortage determination means deemed to have become fully.
[0017]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0018]
In the invention described in claim 6, a compressor (10) for sucking and compressing the refrigerant, a radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10), and an evaporator for evaporating the low-pressure refrigerant to absorb heat. An ejector (40) for suctioning a vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10); A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); The temperature of the fluid that has completed heat exchange with the refrigerant flowing in the evaporator (30) and the refrigerant pressure in the evaporator (30) are detected, and the absolute value of the temperature difference between the refrigerant temperature and the saturated gas temperature at the refrigerant pressure is determined. When the temperature exceeds a predetermined value, the refrigerant amount is regulated. Characterized in that it comprises a refrigerant shortage determination means deemed to have become less than the value.
[0019]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0020]
In the invention described in claim 7, a compressor (10) for sucking and compressing the refrigerant, a radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10), and an evaporator for evaporating the low-pressure refrigerant and absorbing heat. An ejector (40) for suctioning a vapor-phase refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10); A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); A parameter relating to the amount of heat absorbed in the evaporator (30) is detected, and it is determined whether or not the amount of heat absorbed in the evaporator (30) is equal to or more than a predetermined amount. In some cases, it is assumed that the refrigerant amount has become less than the specified value. Characterized in that it comprises a refrigerant shortage determining means Nasu.
[0021]
As a result, a shortage of the refrigerant amount can be detected earlier than in the case where the refrigerant shortage is determined based on the discharged refrigerant temperature, and a new ejector cycle different from the conventional one can be obtained.
[0022]
In the invention described in claim 8, the refrigerant shortage determining means sets a threshold value for determining whether the refrigerant amount has become less than a specified value in accordance with an increase in the ambient temperature of the place where the radiator (20) is installed. It is characterized by making it larger.
[0023]
Thereby, it can be prevented from being erroneously detected that a refrigerant shortage has occurred.
[0024]
In the invention according to claim 9, the refrigerant shortage determination means determines that the state in which the refrigerant amount can be regarded as being less than the prescribed value is such that the refrigerant amount has become less than the prescribed value when the predetermined amount of time has elapsed. If the state in which the amount of refrigerant can be regarded as being less than the specified value does not continue for a predetermined time or more, the amount of refrigerant is regarded as being equal to or more than the specified value.
[0025]
Thereby, it can be prevented from being erroneously detected that a refrigerant shortage has occurred.
[0026]
Incidentally, the reference numerals in parentheses of the respective means are examples showing the correspondence with specific means described in the embodiments described later.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the ejector cycle according to the present invention is applied to an air conditioner for a vehicle. FIG. 1 is a schematic view of an ejector cycle 1 using Freon (134a) or carbon dioxide as a refrigerant, and FIG. 2 is an ejector cycle. 40 is a schematic diagram, and FIG. 3 is a ph diagram showing the entire macro operation of the ejector cycle.
[0028]
The compressor 10 is a well-known variable displacement type compressor that draws power from a traveling engine via an electromagnetic clutch to suck and compress refrigerant, and a radiator 20 heats the refrigerant discharged from the compressor 10 and outdoor air. This is a high-pressure side heat exchanger that exchanges and cools the refrigerant.
[0029]
The evaporator 30 is a low-pressure heat exchanger that exchanges heat between the air blown into the room and the liquid-phase refrigerant to evaporate the liquid-phase refrigerant, thereby evaporating the refrigerant and cooling the air blown into the room.
[0030]
In addition, the ejector 40 decompresses and expands the refrigerant to suck the vapor-phase refrigerant evaporated in the evaporator 30, and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10.
[0031]
Then, as shown in FIG. 2, the ejector 40 converts the pressure energy of the inflowing high-pressure refrigerant into velocity energy and decompresses and expands the refrigerant in a isentropic manner. While sucking the gas-phase refrigerant evaporated in the evaporator 30, the mixing unit 42 that mixes with the refrigerant flow injected from the nozzle 41, and while mixing the refrigerant injected from the nozzle 41 and the refrigerant sucked from the evaporator 30, It comprises a diffuser 43 and the like for converting velocity energy into pressure energy to increase the pressure of the refrigerant.
[0032]
At this time, in the mixing section 42, the driving flow and the suction flow are mixed so that the sum of the momentum of the driving flow and the momentum of the suction flow is preserved. ) Rises.
[0033]
On the other hand, in the diffuser 43, the velocity energy (dynamic pressure) of the refrigerant is converted into pressure energy (static pressure) by gradually increasing the cross-sectional area of the passage, so that in the ejector 40, the mixing section 42 and the diffuser 43 Both increase the refrigerant pressure. Therefore, hereinafter, the mixing unit 42 and the diffuser 43 are collectively referred to as a boosting unit.
[0034]
Incidentally, in the present embodiment, in order to accelerate the speed of the refrigerant ejected from the nozzle 41 to the speed of sound or more, a Laval nozzle having a throat portion 41a having the smallest passage area in the middle of the passage (see Fluid Engineering (Tokyo University Press)) However, it goes without saying that a tapered nozzle may be employed.
[0035]
In FIG. 1, the gas-liquid separator 50 is a gas-liquid separation unit that stores therein the refrigerant that flows out of the ejector 40 and separates the refrigerant that has flowed into a gas-phase refrigerant and a liquid-phase refrigerant. The gas-phase refrigerant outlet of the gas-liquid separator 50 is connected to the suction side of the compressor 10, and the liquid-phase refrigerant outlet is connected to the inlet side of the evaporator 30.
[0036]
The throttle 60 is a depressurizing means for decompressing the liquid-phase refrigerant flowing out of the gas-liquid separator 50, and the inlet refrigerant temperature sensor 71 is a refrigerant temperature detecting means for detecting the refrigerant temperature at the refrigerant inlet side of the evaporator 30; The temperature sensor 72 is a refrigerant temperature detecting unit that detects a refrigerant temperature at a refrigerant outlet side of the evaporator 30.
[0037]
The detected temperatures of the two temperature sensors 71 and 72 are input to an electronic control unit (ECU) 70, and the ECU 70 determines when the absolute value of the temperature difference between the detected temperatures of the two temperature sensors 71 and 72 is equal to or greater than a predetermined value. Then, the electromagnetic clutch is disengaged while the discharge capacity of the compressor 10 is minimized, assuming that the refrigerant amount has become less than the specified value.
[0038]
In the present embodiment, as shown in FIG. 3, the high-pressure refrigerant flowing into the nozzle 41 in the compressor 10 is pressurized to a pressure higher than the critical pressure of the refrigerant. Incidentally, the symbol indicated by ● in FIG. 3 indicates the state of the refrigerant at the symbol position indicated by ● in FIG.
[0039]
Next, the general operation of the ejector cycle will be described.
[0040]
1. When the refrigerant is at a specified value (when the absolute value of the temperature difference between the detected temperatures of the temperature sensors 71 and 72 is less than a predetermined value)
The refrigerant discharged from the compressor 10 is circulated to the radiator 20 side. Thus, the refrigerant cooled by the radiator 20 isentropically decompressed and expanded at the nozzle 41 of the ejector 40 and flows into the mixing section 42 at a speed higher than the speed of sound.
[0041]
Then, the refrigerant evaporated in the evaporator 30 is sucked into the mixing section 42 by the pumping action accompanying the entraining action of the high-speed refrigerant flowing into the mixing section 42, so that the low-pressure side refrigerant is removed from the gas-liquid separator 50 → throttle. The circulation is performed in the order of 60 → evaporator 30 → ejector 40 (pressure booster) → gas-liquid separator 50.
[0042]
On the other hand, while the refrigerant sucked from the evaporator 30 (suction flow) and the refrigerant blown out from the nozzle 41 (drive flow) are mixed in the mixing section 42, the dynamic pressure thereof is converted to static pressure in the diffuser 43, and Return to the liquid separator 50.
[0043]
2. When the refrigerant amount is less than the specified value (when the absolute value of the temperature difference between the detected temperatures of the temperature sensors 71 and 72 is equal to or more than a predetermined value)
The compressor 10 (the ejector cycle 1) is stopped by shutting off the electromagnetic clutch in a state where the discharge capacity of the compressor 10 is minimized, and a warning means such as a buzzer or a warning light indicates that "the refrigerant is insufficient". A warning to the effect is issued to the crew.
[0044]
Next, the operation and effect of the present embodiment will be described.
[0045]
FIG. 4 is a characteristic diagram based on test results showing the relationship between the amount of refrigerant and the discharged refrigerant temperature in the ejector cycle and the degree of superheat of the refrigerant at the refrigerant outlet side of the evaporator 30, and FIG. FIG. 6 is a characteristic diagram based on test results showing a relationship with temperature, and FIG. 6 is a test result showing a relationship between a heat absorption capacity (cooling capacity) of the evaporator 30 and a degree of superheat of the refrigerant at a refrigerant outlet side of the evaporator 30 in an ejector cycle. FIG. 4 is a characteristic diagram based on FIG.
[0046]
As is clear from FIGS. 4 and 5, in the expansion valve cycle, when the amount of refrigerant is less than a predetermined value, the temperature of the discharged refrigerant and the degree of superheat of the refrigerant at the refrigerant outlet side of the evaporator 30 (hereinafter, abbreviated as refrigerant superheat). In the ejector cycle, when the refrigerant amount becomes less than the predetermined value, the degree of superheat of the refrigerant increases almost simultaneously with the occurrence of the refrigerant shortage, but the discharge refrigerant temperature increases. After it has progressed enough, it begins to rise.
[0047]
Further, when the degree of superheat of the refrigerant increases and the refrigerant amount becomes less than the specified value, as shown in FIG. 6, the heat absorbing ability (cooling ability) of the evaporator 30 is greatly reduced.
[0048]
Therefore, when judging whether or not the refrigerant amount has become less than the specified value, the superheat degree of the refrigerant becomes equal to or more than the predetermined value, or the heat absorption capacity (cooling capacity) of the evaporator 30 is set to be less than the predetermined value. It is desirable to consider that the amount of refrigerant has become less than the specified value when this happens.
[0049]
By the way, since the refrigerant flowing into the evaporator 30 is in a saturated liquid state, if there is no shortage of the refrigerant, the temperature in the evaporator 30 is constant at the refrigerant temperature on the refrigerant inlet side of the evaporator 30. It becomes. Therefore, the absolute value of the temperature difference between the refrigerant temperature at the refrigerant inlet side of the evaporator 30 and the refrigerant temperature at the refrigerant outlet side of the evaporator 30 substantially matches the degree of superheat of the refrigerant.
[0050]
Therefore, as in the present embodiment, the refrigerant temperature at the refrigerant inlet side of the evaporator 30 and the refrigerant temperature at the refrigerant outlet side of the evaporator 30 are detected, and the absolute value of the difference between the detected refrigerant temperatures becomes equal to or greater than a predetermined value. When it is determined that the refrigerant amount has become less than the specified value, the shortage of the refrigerant amount can be detected at an early stage.
[0051]
In addition, since the shortage of the refrigerant amount can be detected at an early stage, the heat absorption capacity (cooling ability) of the evaporator 30 can be detected at an early stage.
[0052]
In addition, when the shortage of the refrigerant occurs, the amount of the refrigerating machine oil returning to the compressor 10 together with the refrigerant decreases, so that there is a possibility that the lubrication in the compressor 10 may be insufficient. Therefore, it is possible to prevent shortage of lubricating oil and seizure of the compressor 10 beforehand.
[0053]
(2nd Embodiment)
In the first embodiment, the refrigerant superheat degree is detected based on the refrigerant temperature difference between the refrigerant inlet side and the refrigerant outlet side of the evaporator 30. However, in the present embodiment, as shown in FIG. The pressure at the outlet side is detected by the pressure sensor 73, and the temperature difference between the refrigerant temperature at the refrigerant outlet side of the evaporator 30 (the temperature detected by the outlet refrigerant temperature sensor 72) and the saturated gas temperature at the refrigerant pressure detected by the pressure sensor 73. When the absolute value is equal to or more than a predetermined value, it is considered that the refrigerant superheat degree is equal to or more than the predetermined value and the refrigerant amount is less than a specified value.
[0054]
Accordingly, the sensors 72 and 73 for detecting the shortage of the refrigerant can be integrated or installed at the same location, so that the number of parts of the ejector cycle or the number of assembly steps can be reduced.
[0055]
If the refrigerant shortage does not occur, the temperature inside the evaporator 30 remains constant while maintaining the refrigerant temperature on the refrigerant inlet side of the evaporator 30, so that the saturated gas at the refrigerant pressure detected by the pressure sensor 73 is The temperature matches the refrigerant temperature on the refrigerant inlet side of the evaporator 30.
[0056]
Incidentally, since the pressure in the evaporator 30 is substantially constant from the refrigerant inlet side to the outlet side regardless of the amount of the refrigerant, the refrigerant pressure is detected in the refrigerant inlet side of the evaporator 30 or in the evaporator 30. This embodiment can also be implemented.
[0057]
(Third embodiment)
In the first embodiment, the degree of superheat of the refrigerant is detected based on the refrigerant temperature difference between the refrigerant inlet side and the refrigerant outlet side of the evaporator 30, but in the present embodiment, as shown in FIG. The temperature of the flowing refrigerant and the temperature of the fluid that has completed heat exchange, that is, the temperature detected by the post-evaporation sensor 74 that detects the temperature of the air immediately after passing through the evaporator 30, is regarded as the refrigerant temperature on the refrigerant outlet side of the evaporator 30, This is to detect the degree of superheat of the refrigerant.
[0058]
Specifically, when the absolute value of the temperature difference between the temperature detected by the post-evaporation sensor 74 and the temperature detected by the inlet refrigerant temperature sensor 71 becomes equal to or more than a predetermined value, the refrigerant superheat degree becomes equal to or more than a predetermined value, and the amount of refrigerant increases. Is less than the specified value.
[0059]
As a result, the existing post-evaporation sensor 74 installed for the air conditioner can be effectively used, so that the number of parts of the ejector cycle or the number of assembly steps can be reduced.
[0060]
(Fourth embodiment)
This embodiment is a modification of the third embodiment. Specifically, as shown in FIG. 9, the pressure inside the evaporator 30 is detected by a pressure sensor 73 instead of the inlet refrigerant temperature sensor 71, When the absolute value of the temperature difference between the saturated gas temperature at the refrigerant pressure detected by the pressure sensor 73 and the temperature detected by the inlet refrigerant temperature sensor 71 becomes a predetermined value or more, the refrigerant superheat degree becomes a predetermined value or more and the refrigerant amount becomes Is less than the specified value.
[0061]
(Fifth embodiment)
In the above embodiment, the refrigerant shortage is determined based on the refrigerant superheat degree. However, in the present embodiment, as shown in FIG. 6, the heat absorption capacity (cooling capacity) of the evaporator 30 and the refrigerant superheat degree have a correlation. Accordingly, a parameter relating to the amount of heat absorbed by the evaporator 30 is detected, and it is determined whether the amount of heat absorbed by the evaporator 30 is equal to or more than a predetermined amount, and the amount of heat absorbed by the evaporator 30 is less than the predetermined amount. Sometimes, it is considered that the refrigerant amount has become less than the specified value.
[0062]
Specifically, as shown in FIG. 10, the pre-evaporation sensor 74 detects the fluid temperature of the fluid before heat exchange with the refrigerant flowing in the evaporator (30), that is, the temperature of the air flowing into the evaporator 30. When the absolute value of the temperature difference between the detected temperature and the temperature detected by the post-evaporation sensor 74 is equal to or greater than a predetermined value, it is assumed that the refrigerant amount has become less than the specified value, as shown in FIG.
[0063]
As the pre-evacuation sensor 74, an existing air-conditioning sensor such as an inside air temperature sensor and an outside air temperature sensor may be used. In other words, in the inside air circulation mode, the temperature detected by the inside air temperature sensor is regarded as the temperature of the air flowing into the evaporator 30, and in the outside air circulation mode, the temperature detected by the outside air temperature sensor is determined by the temperature of the air flowing into the evaporator 30. It is something to consider.
[0064]
(Sixth embodiment)
In the present embodiment, as shown in FIG. 12, the threshold value for determining whether or not the refrigerant amount has become less than the specified value is determined in accordance with the rise in the ambient temperature of the place where the radiator 20 is installed, that is, the rise in the outside air temperature. Is to make it bigger.
[0065]
With this, when the air conditioning load (heat load) greatly fluctuates and the degree of superheat of the refrigerant or the absolute value of the temperature difference between the temperature detected by the pre-evacuation sensor 74 and the temperature detected by the post-evaporation sensor 74 fluctuates, the shortage of the refrigerant occurs. It can be prevented from being erroneously detected as having occurred.
[0066]
Note that the threshold value for determining whether the refrigerant amount is less than the specified value is a predetermined refrigerant superheat degree in the first to fourth embodiments, and a predetermined heat absorption amount (cooling capacity) in the fifth embodiment. is there.
[0067]
(Seventh embodiment)
In the present embodiment, as shown in FIG. 13, the state in which the amount of refrigerant can be considered to have become less than the specified value is regarded as having become less than the specified value when the amount of refrigerant has continued for more than a predetermined time, When the state in which the amount can be regarded as being less than the prescribed value has not been continued for a predetermined time or more, the refrigerant amount is regarded as being more than the prescribed value.
[0068]
Here, the state in which the refrigerant amount can be considered to be less than the specified value is a state in which the predetermined degree of superheat of the refrigerant is equal to or more than the predetermined value in the first to fourth embodiments, and is a predetermined state in the fifth embodiment. Is a state in which the amount of heat absorbed (cooling capacity) is less than a predetermined amount.
[0069]
As a result, the air-conditioning load (heat load) such as cool-down (during rapid cooling) fluctuates greatly, and the absolute value of the refrigerant superheat or the temperature difference between the detected temperature of the pre-evacuation sensor 74 and the detected temperature of the post-evacuation sensor 74 is reduced. In the case of a large fluctuation, it can be prevented from being erroneously detected that the refrigerant shortage has occurred.
[0070]
(Other embodiments)
In the above embodiment, the present invention is applied to the vehicle air conditioner. However, the present invention is not limited to this. For example, the present invention may be applied to a stationary air conditioner, a heat pump water heater, a refrigerator, or the like. Can be.
[0071]
Further, in the above-described embodiment, the refrigerant pressure on the high pressure side is increased to the critical pressure or higher, but the present invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an ejector cycle according to a first embodiment of the present invention.
FIG. 2 is a schematic view of an ejector according to the first embodiment of the present invention.
FIG. 3 is a ph diagram showing the entire macro operation of the ejector cycle.
FIG. 4 is a characteristic diagram based on test results showing a relationship between a refrigerant amount, a discharged refrigerant temperature, and a degree of superheat of a refrigerant at a refrigerant outlet side of an evaporator 30 in an ejector cycle.
FIG. 5 is a characteristic diagram based on test results showing a relationship between a refrigerant amount and a discharged refrigerant temperature in an expansion valve cycle.
FIG. 6 is a characteristic diagram based on test results showing the relationship between the heat absorption capacity (cooling capacity) of the evaporator 30 and the degree of superheat of the refrigerant at the refrigerant outlet side of the evaporator 30 in the ejector cycle.
FIG. 7 is a schematic view of an ejector cycle according to a second embodiment of the present invention.
FIG. 8 is a schematic view of an ejector cycle according to a third embodiment of the present invention.
FIG. 9 is a schematic view of an ejector cycle according to a fourth embodiment of the present invention.
FIG. 10 is a schematic view of an ejector cycle according to a fifth embodiment of the present invention.
FIG. 11 is a graph showing a relationship between a suction temperature and a temperature difference.
FIG. 12 is a diagram showing the relationship between the outside air temperature and the degree of superheat of the refrigerant.
FIG. 13 is a diagram showing the relationship between the time from the start of startup and the degree of superheat of the refrigerant.
FIG. 14 is a schematic view of an expansion valve cycle according to the related art.
FIG. 15 is a schematic view of an ejector cycle according to a conventional technique.
FIG. 16 is a diagram for explaining a problem.
[Explanation of symbols]
10 compressor, 20 radiator, 30 evaporator, 40 ejector,
50: gas-liquid separator, 60: throttle, 70: electronic control unit,
71, 72 ... refrigerant temperature sensors.

Claims (9)

冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)での吸熱量に関するパラメータを検出し、前記蒸発器(30)での吸熱量が所定量以上であるか否かを判定し、前記蒸発器(30)での吸熱量が所定量未満であるときには、冷媒量が規定値未満となったものとみなす冷媒不足判定手段とを備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
A parameter relating to the amount of heat absorbed in the evaporator (30) is detected, and it is determined whether or not the amount of heat absorbed in the evaporator (30) is equal to or more than a predetermined amount. An ejector cycle comprising: a refrigerant shortage determination unit that determines that the refrigerant amount is less than a predetermined value when the refrigerant amount is less than a predetermined amount.
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)の冷媒出口側における冷媒の過熱度が所定値を以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段とを備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
When the degree of superheat of the refrigerant on the refrigerant outlet side of the evaporator (30) is equal to or more than a predetermined value, the refrigerant amount is determined to be less than a specified value. Ejector cycle.
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)の冷媒入口側における冷媒温度、及び前記蒸発器(30)の冷媒出口側における冷媒温度を検出し、これら検出冷媒温度の温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
When a refrigerant temperature at a refrigerant inlet side of the evaporator (30) and a refrigerant temperature at a refrigerant outlet side of the evaporator (30) are detected, and when an absolute value of a temperature difference between the detected refrigerant temperatures becomes a predetermined value or more. An ejector cycle, further comprising a refrigerant shortage determination unit that determines that the refrigerant amount has become less than a prescribed value.
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)の冷媒出口側における冷媒温度、及び前記蒸発器(30)内の冷媒圧力を検出し、前記冷媒温度と前記冷媒圧力における飽和ガス温度との温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
A refrigerant temperature at a refrigerant outlet side of the evaporator (30) and a refrigerant pressure in the evaporator (30) are detected, and an absolute value of a temperature difference between the refrigerant temperature and a saturated gas temperature at the refrigerant pressure is a predetermined value. An ejector cycle comprising a refrigerant shortage judging means for judging that the refrigerant amount has become less than a specified value when the above is reached.
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)の冷媒入口側における冷媒温度、及び前記蒸発器(30)内を流れる冷媒と熱交換を終えた流体の流体温度を検出し、前記冷媒温度と前記流体温度との温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
A refrigerant temperature at a refrigerant inlet side of the evaporator (30) and a fluid temperature of a fluid having undergone heat exchange with the refrigerant flowing through the evaporator (30) are detected, and a temperature difference between the refrigerant temperature and the fluid temperature is detected. An ejector cycle comprising: a refrigerant shortage determination unit that determines that the refrigerant amount has become less than a prescribed value when an absolute value of the refrigerant amount becomes a predetermined value or more.
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)内を流れる冷媒と熱交換を終えた流体の流体温度、及び前記蒸発器(30)内の冷媒圧力を検出し、前記冷媒温度と前記冷媒圧力における飽和ガス温度との温度差の絶対値が所定値以上となったときに、冷媒量が規定値未満となったものとみなす冷媒不足判定手段を備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
The temperature of the fluid that has completed heat exchange with the refrigerant flowing in the evaporator (30) and the refrigerant pressure in the evaporator (30) are detected, and the temperature between the refrigerant temperature and the saturated gas temperature at the refrigerant pressure is detected. An ejector cycle, comprising: refrigerant shortage determination means for determining that the refrigerant amount has become less than a prescribed value when the absolute value of the difference becomes equal to or greater than a predetermined value.
冷媒を吸入圧縮する圧縮機(10)と、
前記圧縮機(10)から吐出した高圧冷媒を冷却する放熱器(20)と、
低圧冷媒を蒸発させて吸熱する蒸発器(30)と、
高圧冷媒を減圧膨張させることにより蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
冷媒を気相冷媒と液相冷媒とに分離するとともに、液相冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記蒸発器(30)での吸熱量に関するパラメータを検出し、前記蒸発器(30)での吸熱量が所定量以上であるか否かを判定し、前記蒸発器(30)での吸熱量が所定量未満であるときには、冷媒量が規定値未満となったものとみなす冷媒不足判定手段とを備えることを特徴とするエジェクタサイクル。
A compressor (10) for sucking and compressing the refrigerant;
A radiator (20) for cooling the high-pressure refrigerant discharged from the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant and absorbing heat,
An ejector (40) for suctioning the vaporized refrigerant evaporated by decompressing and expanding the high-pressure refrigerant and converting expansion energy into pressure energy to increase the suction pressure of the compressor (10);
A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplying the liquid-phase refrigerant to the evaporator (30), and supplying the gas-phase refrigerant to the compressor (10); ,
A parameter relating to the amount of heat absorbed in the evaporator (30) is detected, and it is determined whether or not the amount of heat absorbed in the evaporator (30) is equal to or more than a predetermined amount. An ejector cycle comprising: a refrigerant shortage determination unit that determines that the refrigerant amount is less than a predetermined value when the refrigerant amount is less than a predetermined amount.
前記冷媒不足判定手段は、冷媒量が規定値未満となったか否を判定するしきい値を、前記放熱器(20)が設置された箇所の雰囲気温度の上昇に応じて大きくすることを特徴とする請求項1ないし7のいずれか1つに記載のエジェクタサイクル。The refrigerant shortage judging means increases a threshold value for judging whether or not the amount of refrigerant has become less than a prescribed value in accordance with an increase in an ambient temperature at a place where the radiator (20) is installed. The ejector cycle according to any one of claims 1 to 7, wherein 前記冷媒不足判定手段は、冷媒量が規定値未満となったものとみなすことできる状態が、所定時間以上継続したときに冷媒量が規定値未満となったものとみなし、冷媒量が規定値未満となったものとみなすことできる状態が、所定時間以上継続しなかったときは冷媒量が規定値以上であるとみなすことを特徴とする請求項1ないし8のいずれか1つに記載のエジェクタサイクル。The refrigerant shortage determination means, when the state in which the amount of refrigerant can be considered to be less than the prescribed value is considered to be less than the prescribed value when the amount of refrigerant has continued for a predetermined time or more, and the refrigerant amount is less than the prescribed value. The ejector cycle according to any one of claims 1 to 8, wherein when the state that can be regarded as having not been reached has not continued for a predetermined time or more, the refrigerant amount is considered to be a specified value or more. .
JP2002217926A 2002-07-26 2002-07-26 Ejector cycle Pending JP2004060953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217926A JP2004060953A (en) 2002-07-26 2002-07-26 Ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217926A JP2004060953A (en) 2002-07-26 2002-07-26 Ejector cycle

Publications (1)

Publication Number Publication Date
JP2004060953A true JP2004060953A (en) 2004-02-26

Family

ID=31939252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217926A Pending JP2004060953A (en) 2002-07-26 2002-07-26 Ejector cycle

Country Status (1)

Country Link
JP (1) JP2004060953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076509A1 (en) * 2013-11-20 2015-05-28 Lg Electronics Inc. Air conditioner and method of controlling the same
JP2016079915A (en) * 2014-10-17 2016-05-16 浜名湖電装株式会社 Fuel evaporative gas purge system
CN113029626A (en) * 2021-03-29 2021-06-25 重庆长安汽车股份有限公司 Test method for pure electric vehicle air conditioner refrigeration performance rack
CN117308420A (en) * 2023-11-29 2023-12-29 中国航空工业集团公司金城南京机电液压工程研究中心 Aircraft thermal management system and control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076509A1 (en) * 2013-11-20 2015-05-28 Lg Electronics Inc. Air conditioner and method of controlling the same
EP3071894A4 (en) * 2013-11-20 2017-07-26 LG Electronics Inc. Air conditioner and method of controlling the same
US10436460B2 (en) 2013-11-20 2019-10-08 Lg Electronics Inc. Air conditioner having engine and generator
JP2016079915A (en) * 2014-10-17 2016-05-16 浜名湖電装株式会社 Fuel evaporative gas purge system
CN113029626A (en) * 2021-03-29 2021-06-25 重庆长安汽车股份有限公司 Test method for pure electric vehicle air conditioner refrigeration performance rack
CN113029626B (en) * 2021-03-29 2022-07-08 重庆长安汽车股份有限公司 Test method for pure electric vehicle air conditioner refrigeration performance rack
CN117308420A (en) * 2023-11-29 2023-12-29 中国航空工业集团公司金城南京机电液压工程研究中心 Aircraft thermal management system and control method
CN117308420B (en) * 2023-11-29 2024-01-23 中国航空工业集团公司金城南京机电液压工程研究中心 Aircraft thermal management system and control method

Similar Documents

Publication Publication Date Title
JP4023415B2 (en) Vapor compression refrigerator
KR100884804B1 (en) Refrigerant cycle device
US7059150B2 (en) Vapor-compression refrigerant cycle system with ejector
US6857286B2 (en) Vapor-compression refrigerant cycle system
US7870758B2 (en) Ejector cycle
US20040007013A1 (en) Ejector with throttle controllable nozzle and ejector cycle using the same
US20040007014A1 (en) Ejector cycle
JP2000046420A (en) Refrigeration cycle
US6925835B2 (en) Ejector cycle
JP2005009775A (en) Vapor compression refrigerator
JP5625610B2 (en) TECHNICAL FIELD The present invention relates to an ejector refrigeration cycle including an ejector.
JP2004116938A (en) Ejector cycle
JP4577365B2 (en) Cycle using ejector
JP2004037057A (en) Ejector cycle
JP2005037056A (en) Ejector cycle
JP2004036943A (en) Vapor compression type refrigerator
JP2004060953A (en) Ejector cycle
JP4048853B2 (en) Ejector cycle
US20040206111A1 (en) Ejector for vapor-compression refrigerant cycle
JP2003262413A (en) Ejector cycle
JP2006192949A (en) Refrigerator having stand-by function
JP2003343932A (en) Ejector cycle
JP2004340136A (en) Ejector
US20030209031A1 (en) Vapor compression refrigeration system having ejector
JP2008075926A (en) Ejector type refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225