JP2004060350A - Heat storage board - Google Patents

Heat storage board Download PDF

Info

Publication number
JP2004060350A
JP2004060350A JP2002222241A JP2002222241A JP2004060350A JP 2004060350 A JP2004060350 A JP 2004060350A JP 2002222241 A JP2002222241 A JP 2002222241A JP 2002222241 A JP2002222241 A JP 2002222241A JP 2004060350 A JP2004060350 A JP 2004060350A
Authority
JP
Japan
Prior art keywords
heat storage
board
heat
microcapsules
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222241A
Other languages
Japanese (ja)
Inventor
Mamoru Ishiguro
石黒 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2002222241A priority Critical patent/JP2004060350A/en
Publication of JP2004060350A publication Critical patent/JP2004060350A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Laminated Bodies (AREA)
  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage board gradually dissipating heat accumulated by an air cooler/heater or natural energy in advance and keeping a comfortable room temperature for a long time even if a large change is brought in the outside air temperature and dispersing no hazardous chemical substance such as formaldehyde and further, having a fire resistance by which flame does not spread even when radiating flame. <P>SOLUTION: At least one side face of a board that a microcapsule internally wrapping a heat storage material is fixedly molded flat is coated with a gas impermeable film. It is preferable that the gas impermeable film is a metallic film in order to increase the fire resistant property. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建築物、とりわけ住宅やビルの床材、壁材、天井材として用いることにより冷暖房のためのエネルギーが著しく節約でき、しかも安全性と快適性に優れた室内環境が得られる蓄熱性ボードに関するものであり、更に詳しくは室内の冷暖房による熱を、壁や床材として配置し発明による蓄熱性ボードに蓄熱させることにより外気の温度変化に対して高い温度緩衝性を示し、尚且つシックハウス症候群を引き起こすことが懸念されるガスの発生のない蓄熱性ボードに関するものである。
【0002】
【従来の技術】
近年、地球温暖化抑制が世界的に重要視されるようになり、その対策として化石燃料を燃焼させた際に多量に発生する二酸化炭素の削減化策が大きな問題となっている。特に建物の居住環境や作業環境を維持するために消費するエネルギーは膨大な量となり、その削減や有効利用等の省エネルギー対策が不可欠である。通常、外気温の変動に対し室内の温度を快適な範囲の温度域に維持するために、建物自体の機密性を高めたり、壁や天井、床などの建物の中に断熱材を配する対策が広く一般に用いられており、室内と室外の熱移動を極力抑える対策がとられている。
【0003】
これに対し、太陽熱や冷暖房などのエネルギーを水や建物の躯体の一部に顕熱として蓄えたり、潜熱材を用いた建材や蓄熱技術が提案されている。具体的な例として、特開昭57−202493号公報では球状蓄熱材を建築壁内に配した蓄熱体、特開昭58−2379号公報においては無機系の蓄熱材を合成樹脂製チューブに充填したものを内接した蓄断熱材、特開昭62−117931号公報には蓄熱材を植設した複合板、特公平2−29824号公報には断熱材と潜熱蓄熱材との組み合わせが提案されているが、一般にこれらの潜熱蓄熱材の熱伝導性が悪いため蓄放熱特性が低下し、効率よく潜熱を使い切らない場合が多かった。その対策として、特公平6−33633号公報では複数の潜熱蓄熱材をカプセル化して基材中に分散し、放熱面温度をほぼ一定に保つことができる蓄熱建材が紹介されている。
【0004】
これに対し、本発明者は蓄熱材を内包するマイクロカプセルを固着成型せしめたボードやシート状支持体に塗工または含浸を施した蓄熱性を有するシート及びボードの提案を行ってきたが、マイクロカプセル化を行うに際、種々の化学薬品を使用するため建材として使用されてから後も微量ずつではあるがこれらの薬品が気化して徐々に室内空間中に拡散される恐れがあった。特に最近は木質建材を作製する際に用いられる接着剤中のホルムアルデヒドがシックハウス症候群の原因物質の一つとして大きく取上げられており、他にも規制対象として検討されている化合物としてクロルピリホス、トルエン、キシレン等が挙げられる。これらの化合物の放散を抑制するために各種捕捉材、処理剤の使用及び加熱処理などを施すことによりかなりの低減効果は見られるが、完全に除去するまでに至っていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明の第一の課題は、潜熱蓄熱材を内包するマイクロカプセルを配した蓄熱性ボードから発するホルムアルデヒドなどの有害化学物質の放散のない蓄熱性ボードを得ること、第二の課題は火炎を放射しても燃え広がらない耐火性のある蓄熱性ボードを提供することにある。
【0006】
【課題を解決するための手段】
本発明の課題は、蓄熱材を内包するマイクロカプセルを平板状に固着成型せしめたボードの少なくとも一方の面をガス不透過性及び不燃性のフィルムで被覆することにより達成される。
【0007】
【発明の実施の形態】
本発明の蓄熱性ボードは、蓄熱材を内包するマイクロカプセルを平板状に固着成型せしめたボード(以降、「基材となるボード」と称す。)にガス不透過性フィルムを貼り合わせることにより得られる。基材となるボードは、マイクロカプセルを単独で固着成型せしめても良いが、建材として必要な強度を得るためにはマイクロカプセル以外に適当な固形媒体を用い、その表面または内部に均一にマイクロカプセルが塗工または含浸または分散された形態の方が好ましい。基材となるボードの中に占めるマイクロカプセルの重量比率が高くなれば蓄熱性能は増すが強度低下を起こすため目的に応じた比率を設定する必要がある。
【0008】
基材となるボードの蓄熱量は、建物を構成する素材や環境、広さ及び地域によって異なるが、夏場日中の屋内の温度上昇及び冬場暖房用具を使用しなくても明らかな温度上昇または低下を抑えるためには、基材となるボード1m当たり60〜840kJ/mの範囲にすることが好ましい。この範囲を下回る融解熱量であれば明らかな抑制効果は確認できず、これ以上の融解熱量であれば一日の寒暖の周期の中では使い得ない量の融解熱量であったり、基材となるボードとしての強度不足や基材となるボード自体が厚くなり過ぎ施工が困難となるため好ましくない。
【0009】
本発明の基材となるボードの製法は、マイクロカプセルを固着成型し建材として使用できる強度を有する手法が選ばれるが、具体的には適当な固形媒体とマイクロカプセルを混合して熱、圧等を適宜加えて成型すればよい。好ましい固形媒体としては、セルロース繊維、合成樹脂類が好ましい素材として選ばれる。固形媒体としてセルロース繊維を使用する場合の製法は、パルプや故紙等の植物を原料としたセルロース繊維を離解用のミキサーや分散機などを用いてよく解きほぐした後所定量のマイクロカプセルを添加しよく混合し、抄紙法または結着剤を添加し熱圧着法でボード状に加工すれば得ることができる。また、マイクロカプセルを粉末化した後、乾式で繊維や結着剤樹脂と絡ませてボード化することも可能である。
【0010】
他の好ましい固形媒体として合成樹脂類が挙げられる。本発明で用いられる合成樹脂類としては、ナイロン6、ナイロン66、ナイロン610等のポリアミド繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維、ポリエチレン、ゴム、ポリプロピレン等のポリオレフィン繊維、アクリル繊維、ポリパラフェニレン繊維、ビニロン繊維、ポリウレタン繊維、ポリ塩化ビニル繊維、アセテート繊維、キュプラ繊維、レーヨン繊維等が挙げられる。これらの合成樹脂は繊維状のものであれば上記セルロース繊維と同様に繊維中にマイクロカプセルを抄き込んでも良いし、合成樹脂を加熱して溶融状態にした後マイクロカプセル固形物あるいは粉末を練り込むことも可能である。
【0011】
上記手法以外の基材となるボードの製法として、セメント、石膏、酸化マグネシウム等の水硬性の鉱物化合物と混練りした後養生させてボード状に成型しても良い。また、紙、布地、不織布等に塗工または含浸した後、水分を除去してシート状に加工したもの、あるいはそのシートを複数枚重ね合わせて平板状に重ね合わせて得たボードでも良い。
【0012】
本発明に於いて用いられるガス不透過性フィルムは対象となる放散ガスを通過し難い材料が用いられ、具体的にはポリエチレンやポリプロピレン、ナイロン、ポリアミド、ポリ塩化ビニリデン、ポリビニルアルコール等のガス不透過性の一般的な合成樹脂フィルムを用いることも可能であるが、耐火性を高め延焼性を抑えるためには不燃性の性質を併せ持つ金属フィルムが最も適している。具体的には、アルミニウム、銀、銅等の箔や蒸着したフィルムが好ましい材料として挙げられる。
【0013】
ガス不透過性フィルムを基材となるボードに貼り付ける手法として、基材となるボード面に熱可塑性樹脂粒子を蒔き、その上からガス不透過性フィルムを熱融着させる方法や、ホットメルト樹脂シートを間に挟んで貼り合わせたりホットメルトスプレーガンで接着剤を吹き付ける方法、更には両面テープや、ガス不透過フィルムに接着層を下引きしたもので貼り合わせる等の手法を用いることができる。基材となるボードは袋状に加工されたガス不透過性フィルムの中に充填されボード全体が完全に被覆されていることが最も好ましいが、室内側に向けて少なくとも一面が被覆されているだけでもよい。
【0014】
一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(同62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(同62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(同62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法を用いることができる。
【0015】
カプセル膜材としては、界面重合法、インサイチュー法、ラジカル重合法等の手法で得られる、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、物理的、化学的に安定で、脂肪族系炭化水素化合物でも良好な品質のマイクロカプセルが得られるインサイチュー法による尿素ホルマリン樹脂、メラミンホルマリン樹脂皮膜を用いたマイクロカプセルが好ましい。
【0016】
本発明で用いられる蓄熱材の相変化点、即ち融点は生活温度域において快適と感じられる下限と、床暖房などの蓄熱温度域を含めた温度域に設定することが好ましく、5〜50℃の範囲に設定されることが好ましい。具体的には、炭素数が約14〜30程度のn−パラフィン類や、無機系共晶物及び無機系水和物、パルミチン酸、ミリスチン酸等の脂肪酸類、ベンゼン、p−キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル等のエステル化合物、ステアリルアルコール等のアルコール類等の化合物が挙げられ、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。また、融点の異なる2種以上のマイクロカプセルを混合して用いることも可能である。
【0017】
本発明に係るマイクロカプセルの粒子経は、塗工又は含浸する過程で物理的圧力による破壊を防止するために10μm以下、特に好ましくは5μm以下が好ましい。マイクロカプセルの粒子径は、乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(攪拌回転数、時間等)等を適宜調節して所望の粒子径に設定する。この粒子径以上になるとマイクロカプセルが外圧で容易に壊れやすくなったり、蓄熱材の比重が分散媒のそれと大きく差がある場合など、浮遊したり沈降したりし易くなるので好ましくない。マイクロカプセルとともに必要であれば、バインダー、緩衝剤、分散剤、消泡剤、染料、顔料などの着色剤、難燃剤、香料などが添加される。
【0018】
本発明の蓄熱性ボードは、ガラスウール、中空粒子、ウレタンフォーム、発泡性樹脂などの断熱材と組み合わせて用いることにより断熱性と蓄熱性の相乗効果が得られるため好ましい態様である。本発明の蓄熱性ボードは上記の如く室温付近に融点を有する蓄熱材を内包したマイクロカプセルを用いることにより耐火性のある住宅用建材として利用できるが、同時に耐水性、耐薬品性も有するため防寒具、マットレス、布団、座布団、カーペット、農業用保温用ボード、凍結防止カバー等様々な用途にも利用可能である。
【0019】
【実施例】
以下に本発明の実施例を示す。実施例中の部数は固形質量部を表す。また、融点及び融解熱量は示差熱熱量計(米国パーキンエルマー社製、DSC−7型)を用いて測定した。
【0020】
実施例1
蓄熱材マイクロカプセルの製法
メラミン粉末12部に37%ホルムアルデヒド水溶液15.4部と水40部を加え、pHを8に調整した後、約70℃まで加熱してメラミン−ホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10%スチレン−無水マレイン酸共重合体のナトリウム塩水溶液100部中に、蓄熱材として、n−オクタデカン(融点26〜28℃)80部を激しく撹拌しながら添加し、粒子径が3.0μmになるまで乳化を行った。
【0021】
得られた乳化液に、上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し70℃で2時間撹拌を施した後、pHを9まで上げて水を添加して乾燥固形分濃度40%の蓄熱材マイクロカプセル分散液を得た。このマイクロカプセル分散液100部に市販のポルトランドセメント40部、故紙細粉3部、及び水30部を添加し、よく混練りした後木枠に厚さが10mmになるように流し込み、40℃相対湿度90%雰囲気中で24時間養生させて基材となるボードを得た。更にこのボードの両面にホットメルトスプレーガンを用いエチレン酢酸ビニル樹脂を霧状にして吹き付けて、その上から厚み0.1mmのアルミ箔を貼り付けて蓄熱性ボードを得た。
【0022】
実施例2
実施例1で蓄熱材として用いたn−オクタデカンの代わりに、n−ヘキサデカン(融点16〜18℃)を用いて同様にして蓄熱材マイクロカプセル分散液を得た後、市販のスプレードライヤーで噴霧乾燥を行い、粒径15μmの粉末を得た。
この粉体100部とエチレン酢酸ビニル樹脂の粉末20部を良く乾式で混合した後、130℃、50kg/m2  の条件で熱圧着し厚さ7mmの基材となるボードを得た。このボードの両面に実施例1と同様にして厚さ0.2mmのポリ塩化ビニリデン樹脂フィルムを均一に貼り付けて蓄熱性ボードを得た。
【0023】
上記実施例で得られた蓄熱性ボードを用い、ホルムアルデヒドガス放散性と耐火性の評価を行った。ホルムアルデヒド放散性は、日本工業規格、パーティクルボード、A5908の中のホルムアルデヒド放出量試験に従って測定した。耐火性はボード面に対し45゜の方向からガスバーナーの炎を5分間照射した後の状態や延焼性を判断した。試料として、実施例1と2の蓄熱性ボードに加え、実施例1でアルミ箔を用いないものを比較例1、実施例2においてポリ塩化ビニリデン樹脂フィルムを用いないものを比較例2として比較に用いた。その結果を表1に示す。
【0024】
【表1】

Figure 2004060350
【0025】
【発明の効果】
実施例の結果からも明らかなように、本発明で示される蓄熱性ボードは蓄熱性を有すると共に、ボード層に含まれているガス成分の放散を効果的に抑えることができるため、壁材や床、天井材として用いた場合でもシックハウス症候群の心配のない快適な室内環境が得られる。また、金属製のフィルムでボード表面を覆うことにより万が一火災が生じても火が着いたり延焼したりすることもなく、更に耐水性、耐薬品性にも優れた蓄熱性ボードが得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used as a floor material, a wall material, and a ceiling material of a building, especially a house or a building, thereby remarkably saving energy for cooling and heating, and furthermore, a heat storage property that provides an indoor environment excellent in safety and comfort. More specifically, the present invention relates to a board, and more specifically, shows a high temperature buffering property against a temperature change of the outside air by arranging heat by indoor cooling and heating as a wall or a floor material and storing the heat in a heat storage board according to the invention. The present invention relates to a heat storage board that does not generate gas that may cause a syndrome.
[0002]
[Prior art]
In recent years, suppression of global warming has been regarded as important worldwide, and as a countermeasure, a measure to reduce a large amount of carbon dioxide generated when fossil fuels are burnt has been a serious problem. In particular, the amount of energy consumed to maintain the living environment and working environment of a building is enormous, and energy saving measures such as reduction and effective use are indispensable. In general, measures to increase the confidentiality of the building itself and to arrange heat insulating materials in the building, such as walls, ceilings, and floors, in order to maintain the indoor temperature within a comfortable temperature range against fluctuations in the outside temperature Is widely and generally used, and measures have been taken to minimize heat transfer between indoor and outdoor areas.
[0003]
On the other hand, there has been proposed a building material using a latent heat material or a heat storage technology in which energy such as solar heat or cooling / heating is stored as sensible heat in water or a part of a building frame. As a specific example, Japanese Patent Application Laid-Open No. 57-202493 discloses a heat storage element in which a spherical heat storage material is disposed inside a building wall, and Japanese Patent Application Laid-Open No. 58-2379 discloses a method in which a synthetic resin tube is filled with an inorganic heat storage material. JP-A-62-117931 proposes a composite board in which a heat storage material is implanted, and JP-B-2-29824 proposes a combination of a heat insulation material and a latent heat storage material. However, in general, the thermal conductivity of these latent heat storage materials is poor, so that the heat storage / radiation characteristics are deteriorated, and in many cases, the latent heat is not efficiently used up. As a countermeasure, Japanese Patent Publication No. Hei 6-33633 discloses a heat storage building material capable of encapsulating a plurality of latent heat storage materials and dispersing them in a base material so that the temperature of the heat radiating surface can be kept almost constant.
[0004]
On the other hand, the present inventor has proposed a sheet and a board having heat storage properties obtained by applying or impregnating a board or a sheet-like support on which a microcapsule containing a heat storage material is fixedly molded, At the time of encapsulation, since various chemicals are used as building materials, there is a risk that these chemicals are vaporized and gradually diffused into the indoor space after each use, though in small amounts. In particular, recently, formaldehyde in adhesives used for making wood building materials has been widely taken up as one of the causative substances of sick house syndrome, and chlorpyrifos, toluene, and xylene have been studied as other regulated substances. And the like. The use of various scavengers, treating agents, and heat treatment to suppress the emission of these compounds can provide a considerable reduction effect, but at present it has not been completely removed.
[0005]
[Problems to be solved by the invention]
A first object of the present invention is to obtain a heat storage board free of emission of harmful chemical substances such as formaldehyde emitted from a heat storage board provided with microcapsules containing a latent heat storage material, and a second object is to radiate a flame. It is an object of the present invention to provide a fire-resistant heat storage board that does not spread even when it is fired.
[0006]
[Means for Solving the Problems]
The object of the present invention is achieved by covering at least one surface of a board in which microcapsules containing a heat storage material are fixedly formed into a flat plate with a gas-impermeable and nonflammable film.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat storage board of the present invention is obtained by laminating a gas-impermeable film to a board (hereinafter, referred to as “base board”) in which microcapsules containing a heat storage material are fixedly formed into a flat plate shape (hereinafter, referred to as “base board”). Can be The board used as the base material may be formed by fixing the microcapsules alone, but in order to obtain the necessary strength as a building material, use an appropriate solid medium in addition to the microcapsules, and uniformly apply the microcapsules on the surface or inside. Is more preferably in the form of being coated, impregnated or dispersed. When the weight ratio of the microcapsules in the board serving as the base material increases, the heat storage performance increases, but the strength decreases. Therefore, it is necessary to set the ratio according to the purpose.
[0008]
The amount of heat stored in the board as the base material varies depending on the material, environment, size, and area of the building, but the temperature rises indoors during summer days and the apparent temperature rise or fall without the use of heating equipment in winter. In order to suppress this, it is preferable to set the range of 60 to 840 kJ / m 2 per 1 m 2 of the board as the base material. If the heat of fusion is less than this range, no obvious suppression effect can be confirmed, and if the heat of fusion is more than this, the heat of fusion cannot be used in a cycle of cooling and warming in a day, or it becomes a base material. It is not preferable because the strength of the board is insufficient and the board itself serving as the base material becomes too thick, which makes the construction difficult.
[0009]
As a method for producing a board as a substrate of the present invention, a method having a strength capable of being used as a building material by firmly molding a microcapsule is selected. Specifically, an appropriate solid medium and a microcapsule are mixed and heat, pressure, etc. May be added and molded. As preferred solid media, cellulose fibers and synthetic resins are selected as preferred materials. When using cellulose fibers as a solid medium, the production method is to disintegrate the cellulose fibers from plants such as pulp or waste paper using a mixer or disperser for disintegration and then add a predetermined amount of microcapsules. It can be obtained by mixing, adding a papermaking method or adding a binder, and processing it into a board by a thermocompression bonding method. Further, after the microcapsules are powdered, the microcapsules can be entangled with a fiber or a binder resin in a dry manner to form a board.
[0010]
Other preferred solid media include synthetic resins. Examples of the synthetic resins used in the present invention include polyamide fibers such as nylon 6, nylon 66, and nylon 610; polyester fibers such as polyethylene terephthalate and polybutylene terephthalate; polyolefin fibers such as polyethylene, rubber and polypropylene; acrylic fibers; Examples include phenylene fiber, vinylon fiber, polyurethane fiber, polyvinyl chloride fiber, acetate fiber, cupra fiber, rayon fiber and the like. As long as these synthetic resins are fibrous, microcapsules may be introduced into the fibers as in the case of the above-mentioned cellulose fibers, or the solids or powder of the microcapsules may be kneaded after heating the synthetic resin to a molten state. It is also possible to insert.
[0011]
As a method of manufacturing a board as a base material other than the above method, a board may be formed by kneading with a hydraulic mineral compound such as cement, gypsum, and magnesium oxide, and then curing the mixture. Further, it may be a sheet obtained by coating or impregnating paper, fabric, non-woven fabric, etc., and then removing water to form a sheet, or a board obtained by stacking a plurality of such sheets and stacking them in a flat shape.
[0012]
The gas-impermeable film used in the present invention is made of a material that does not easily pass the target gas, and specifically, gas-impermeable films such as polyethylene, polypropylene, nylon, polyamide, polyvinylidene chloride, and polyvinyl alcohol. Although it is possible to use a general synthetic resin film having a non-flammable property, a metal film having a nonflammable property is most suitable for improving fire resistance and suppressing fire spread. Specifically, foils such as aluminum, silver, and copper and vapor-deposited films are preferable materials.
[0013]
As a method of attaching the gas-impermeable film to the substrate board, a method of sowing thermoplastic resin particles on the board surface of the substrate and thermally fusing the gas-impermeable film thereon, or a method of hot-melt resin It is possible to use a method of laminating the sheets between them, spraying an adhesive with a hot-melt spray gun, and laminating with a double-sided tape or a gas-impermeable film with an adhesive layer drawn down. Most preferably, the board serving as the base material is filled in a bag-shaped gas-impermeable film and the entire board is completely covered, but only at least one surface is covered toward the room side May be.
[0014]
In general, as a method of microencapsulating a heat storage material, a method of encapsulation by a composite emulsion method (Japanese Patent Application Laid-Open No. 62-1452) and a method of spraying a thermoplastic resin onto the surface of heat storage material particles (Japanese Patent Application Laid-Open No. 62-45680). ), A method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Application Laid-Open No. 62-149334), a method of polymerizing and coating a monomer on the surface of the heat storage material particles (Japanese Patent Application No. 62-225241), A method described in, for example, a method for producing a polyamide-coated microcapsule by a polycondensation reaction (JP-A-2-258052) can be used.
[0015]
Examples of the capsule membrane material include polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, aminoplast resin, and gelatin and carboxymethylcellulose or gum arabic obtained by techniques such as interfacial polymerization, in situ, and radical polymerization. Synthetic or natural resin using coacervation method is used, but urea formalin by in-situ method, which is physically and chemically stable and can obtain good quality microcapsules even with aliphatic hydrocarbon compounds Microcapsules using a resin or melamine formalin resin film are preferred.
[0016]
The phase change point of the heat storage material used in the present invention, that is, the melting point, is preferably set to a lower limit where comfort is felt in the living temperature range and a temperature range including a heat storage temperature range such as floor heating, and 5 to 50 ° C. It is preferable to set the range. Specifically, n-paraffins having about 14 to 30 carbon atoms, inorganic eutectics and inorganic hydrates, fatty acids such as palmitic acid and myristic acid, and aromatic compounds such as benzene and p-xylene. Examples include aromatic hydrocarbon compounds, ester compounds such as isopropyl palmitate and butyl stearate, and compounds such as alcohols such as stearyl alcohol. Chemically and physically stable and inexpensive compounds are used. These may be used as a mixture, and if necessary, a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like can be added. It is also possible to use a mixture of two or more kinds of microcapsules having different melting points.
[0017]
The particle size of the microcapsules according to the present invention is preferably 10 μm or less, particularly preferably 5 μm or less, in order to prevent destruction due to physical pressure during coating or impregnation. The particle size of the microcapsules depends on the type and concentration of the emulsifier, the temperature of the emulsified liquid during emulsification, the emulsification ratio (volume ratio of the aqueous phase and the oil phase), and the operating conditions of the atomizing device called an emulsifier, disperser, etc. (Agitation speed, time, etc.) are appropriately adjusted to set a desired particle size. If the particle size is larger than this, the microcapsules are easily broken due to external pressure, or the microcapsules easily float or settle when the specific gravity of the heat storage material is significantly different from that of the dispersion medium, which is not preferable. If necessary together with the microcapsules, a binder, a buffer, a dispersant, an antifoaming agent, a coloring agent such as a dye or a pigment, a flame retardant, a fragrance and the like are added.
[0018]
The heat storage board of the present invention is a preferred embodiment because a synergistic effect of heat insulation and heat storage can be obtained by using the heat storage board in combination with a heat insulating material such as glass wool, hollow particles, urethane foam, or foamable resin. The heat storage board of the present invention can be used as a fire-resistant housing building material by using microcapsules containing a heat storage material having a melting point near room temperature as described above, but at the same time, has water resistance and chemical resistance, so it is cold-proof. It can be used for various purposes such as tools, mattresses, futons, cushions, carpets, agricultural heat insulation boards, antifreeze covers, and the like.
[0019]
【Example】
Examples of the present invention will be described below. The number of parts in the examples represents solid parts by mass. The melting point and the heat of fusion were measured using a differential calorimeter (DSC-7, manufactured by PerkinElmer, USA).
[0020]
Example 1
Manufacturing method of heat storage material microcapsules 15.4 parts of 37% aqueous formaldehyde solution and 40 parts of water were added to 12 parts of melamine powder, the pH was adjusted to 8, and the mixture was heated to about 70 ° C. to obtain an aqueous melamine-formaldehyde precondensate solution. Was. 80 parts of n-octadecane (melting point: 26 to 28 ° C.) as a heat storage material was added to 100 parts of a 10% aqueous solution of a sodium salt of a 10% styrene-maleic anhydride copolymer adjusted to a pH of 4.5 while stirring vigorously. The emulsification was performed until the particle diameter became 3.0 μm.
[0021]
To the obtained emulsion, the whole amount of the melamine-formaldehyde precondensate aqueous solution was added, and the mixture was stirred at 70 ° C. for 2 hours. Then, the pH was raised to 9 and water was added to the heat storage material having a dry solid content of 40%. A microcapsule dispersion was obtained. 40 parts of commercially available Portland cement, 3 parts of waste paper fines, and 30 parts of water were added to 100 parts of the microcapsule dispersion liquid, kneaded well, and then poured into a wooden frame so as to have a thickness of 10 mm. The board was cured in an atmosphere of 90% humidity for 24 hours to obtain a board as a base material. Further, an ethylene vinyl acetate resin was sprayed on both sides of the board using a hot melt spray gun in a mist state, and an aluminum foil having a thickness of 0.1 mm was stuck thereon, thereby obtaining a heat storage board.
[0022]
Example 2
In place of n-octadecane used as the heat storage material in Example 1, n-hexadecane (melting point: 16 to 18 ° C.) was used to obtain a heat storage material microcapsule dispersion in the same manner, and then spray-dried with a commercially available spray dryer. Was carried out to obtain a powder having a particle size of 15 μm.
After 100 parts of this powder and 20 parts of ethylene vinyl acetate resin powder were thoroughly mixed in a dry manner, they were thermocompression-bonded at 130 ° C. and 50 kg / m 2 to obtain a board as a base material having a thickness of 7 mm. In the same manner as in Example 1, a polyvinylidene chloride resin film having a thickness of 0.2 mm was uniformly adhered to both surfaces of the board to obtain a heat storage board.
[0023]
Using the heat storage board obtained in the above example, formaldehyde gas emission and fire resistance were evaluated. The formaldehyde emission was measured according to the formaldehyde emission test in Japanese Industrial Standards, Particleboard, A5908. The fire resistance was determined by irradiating the board surface with a gas burner flame from a direction of 45 ° for 5 minutes and the fire spreadability. As a sample, in addition to the heat storage boards of Examples 1 and 2, the one in which no aluminum foil was used in Example 1 was used as Comparative Example 1, and the one in which no polyvinylidene chloride resin film was used in Example 2 was used as Comparative Example 2. Using. Table 1 shows the results.
[0024]
[Table 1]
Figure 2004060350
[0025]
【The invention's effect】
As is clear from the results of the examples, the heat storage board shown in the present invention has heat storage properties and can effectively suppress the emission of gas components contained in the board layer. Even when used as a floor or ceiling material, a comfortable indoor environment without sick house syndrome can be obtained. In addition, by covering the board surface with a metal film, even if a fire should occur, the heat storage board with excellent water resistance and chemical resistance can be obtained without igniting or spreading fire.

Claims (2)

蓄熱材を内包するマイクロカプセルを平板状に固着成型せしめたボードの少なくとも一方の面をガス不透過性フィルムで被覆した蓄熱性ボード。A heat storage board in which at least one surface of a board in which microcapsules containing a heat storage material are fixedly formed in a plate shape is covered with a gas impermeable film. ガス不透過性フィルムが金属フィルムである請求項1記載の蓄熱性ボード。The heat storage board according to claim 1, wherein the gas impermeable film is a metal film.
JP2002222241A 2002-07-31 2002-07-31 Heat storage board Pending JP2004060350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222241A JP2004060350A (en) 2002-07-31 2002-07-31 Heat storage board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222241A JP2004060350A (en) 2002-07-31 2002-07-31 Heat storage board

Publications (1)

Publication Number Publication Date
JP2004060350A true JP2004060350A (en) 2004-02-26

Family

ID=31942307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222241A Pending JP2004060350A (en) 2002-07-31 2002-07-31 Heat storage board

Country Status (1)

Country Link
JP (1) JP2004060350A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196465A (en) * 2006-01-25 2007-08-09 Asahi Kasei Construction Materials Co Ltd Non-flammable heat storage panel
JP2013193430A (en) * 2012-03-22 2013-09-30 F Consultant:Kk Laminate
JP2017081177A (en) * 2017-02-08 2017-05-18 永大産業株式会社 Manufacturing method of woody board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196465A (en) * 2006-01-25 2007-08-09 Asahi Kasei Construction Materials Co Ltd Non-flammable heat storage panel
JP2013193430A (en) * 2012-03-22 2013-09-30 F Consultant:Kk Laminate
JP2017081177A (en) * 2017-02-08 2017-05-18 永大産業株式会社 Manufacturing method of woody board

Similar Documents

Publication Publication Date Title
US20040234738A1 (en) Use of microcapsules in gypsum plasterboards
TW200301731A (en) Thermal barriers with reversible enhanced thermal properties
JP2004027219A (en) Use of expandable flameproofing coating material for fireproof finish processing of article and fireproof finish processed article
AU2017257395B2 (en) Insulation material arrangement
JP2009138339A (en) Concrete curing sheet and concrete curing method
JP2007196465A (en) Non-flammable heat storage panel
JP2006225986A (en) Plaster board
JP2003306672A (en) Heat storage sheet and method of utilizing the same
EP1490642B1 (en) Wall lining
JP2005320527A (en) Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same
EP2063040A2 (en) Incombustible insulation material
JP2004060350A (en) Heat storage board
JP2003260705A (en) Heat accumulation type fiberboard and utilization method therefor
JP5086600B2 (en) Thermal storage material composition, thermal storage body and thermal storage laminate
JP2008170098A (en) Floor heating structure
JP2020153647A (en) Total heat exchange element
KR101707825B1 (en) Manufacturing method of functional latent heat wall panel using phase change material
JP2004301397A (en) Heat storage board
US20060272281A1 (en) Wall lining
JP2003261716A (en) Rubber material with heat storage effect and method of utilizing the same
JP2003155789A (en) Heat accumulating board
JP2004316245A (en) Heat storage resin board and its utilization method
JP2001173118A (en) Heat storage building material
JP2004324246A (en) Thermal storage building material and method of using the same
JP2003034993A (en) Building skeleton structure