JP2004059981A - Vacuum vapor deposition method - Google Patents

Vacuum vapor deposition method Download PDF

Info

Publication number
JP2004059981A
JP2004059981A JP2002218624A JP2002218624A JP2004059981A JP 2004059981 A JP2004059981 A JP 2004059981A JP 2002218624 A JP2002218624 A JP 2002218624A JP 2002218624 A JP2002218624 A JP 2002218624A JP 2004059981 A JP2004059981 A JP 2004059981A
Authority
JP
Japan
Prior art keywords
opening
vapor deposition
cylindrical body
deposited
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002218624A
Other languages
Japanese (ja)
Other versions
JP4174257B2 (en
Inventor
Taisuke Nishimori
西森 泰輔
Yasuo Kishi
岸 泰生
Yukihiro Kondo
近藤 行廣
Junji Kido
城戸 淳二
Yuji Yanagi
柳 雄二
Eiichi Matsumoto
松本 栄一
Shuji Maki
牧 修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Canon Tokki Corp
Original Assignee
Tokki Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokki Corp, Matsushita Electric Works Ltd filed Critical Tokki Corp
Priority to JP2002218624A priority Critical patent/JP4174257B2/en
Priority to TW091125316A priority patent/TWI264473B/en
Priority to AT02777982T priority patent/ATE555228T1/en
Priority to ES02777982T priority patent/ES2391051T3/en
Priority to EP02777982A priority patent/EP1457582B1/en
Priority to US10/493,587 priority patent/US20050005857A1/en
Priority to KR1020047005798A priority patent/KR100958682B1/en
Priority to PCT/JP2002/011193 priority patent/WO2003035925A1/en
Priority to CNB028212215A priority patent/CN1302149C/en
Publication of JP2004059981A publication Critical patent/JP2004059981A/en
Priority to US12/032,832 priority patent/US20080156267A1/en
Application granted granted Critical
Publication of JP4174257B2 publication Critical patent/JP4174257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum vapor deposition method for performing vapor deposition with uniform film thickness on a work for vapor deposition of a large area. <P>SOLUTION: A material 2 for vapor deposition and a work 3 for vapor deposition are disposed in a vacuum chamber 1, a cylindrical body 4 with an inner surface thereof heated at a temperature to evaporate the material 2 for vapor deposition is disposed between the material 2 and the work 3, the material 2 is heated to evaporate, and the evaporated substance is allowed to reach a surface of the work 3 through an aperture 5 of the cylindrical body 4 to perform vapor deposition of the material 2 on a surface of the work 3. The aperture 5 of the cylindrical body 4 is of rectangular shape having a long side 5a and a short side 5b. The work having one side shorter than the long side 5a of the aperture 5 and longer than the short side 5b is moved parallel to the short side 5b of the aperture 5 of the cylindrical body 4 across the aperture 5 to perform vapor deposition on a surface of the work 3 facing the aperture 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、真空雰囲気で蒸着材料を蒸発させると共に被蒸着体に蒸発物質を蒸着させるようにした真空蒸着方法に関するものである。
【0002】
【従来の技術】
真空蒸着装置は、真空チャンバー内に蒸着材料と被蒸着体とを配置し、真空チャンバー内を減圧した状態で、蒸着材料を加熱して蒸発させ、この蒸発させた物質を被蒸着体の表面に堆積させることによって蒸着を行なうようにしたものである。そして蒸発源の蒸着材料から蒸発した物質は蒸発源から法線方向に直進的に放出されるが、放出空間は真空に保たれているため蒸発物質は直進し、蒸発源と対向して配置される被蒸着体の表面に付着して蒸着される。
【0003】
しかしこのように蒸発物質は蒸発源から法線方向に直進的に放出されるので、被蒸着体へ向かって進行しない蒸発物質が多く、このように被蒸着体へ向かって進行しない蒸発物質は被蒸着体の表面に付着しないものであり、蒸着の歩留まりが低くなると共に被蒸着体の表面への蒸着速度が遅くなるという問題がある。そこで、特開平4−45259号公報や特開平9−272703号公報などに開示されているように、真空チャンバー内に配置した蒸発源の蒸着材料と被蒸着体が対向する空間を筒状体で囲むと共に筒状体を蒸着材料が再蒸発される温度で加熱し、蒸発源から蒸発した物質を筒状体内を通して被蒸着体の表面に蒸着させるようにした真空蒸着装置が提案されている。
【0004】
図6はその一例を示すものであり、真空チャンバー1内に上下に開口する筒状体4が配設してあり、筒状体4にはヒーター16が巻いてあって筒状体4を加熱できるようにしてある。この筒状体4の下端の開口部17に面して蒸着材料2が配置してあり、ヒーター18で加熱して蒸着材料2を蒸発させることができるようにしてある。筒状体4の上端の開口部5の上方には被蒸着体3が配置してあり、この開口部5はシャッター19によって開閉できるようにしてある。
【0005】
このものにあって、真空チャンバー1内を減圧すると共に蒸着材料2を加熱して蒸発させ、そしてシャッター19を開くと、蒸着材料2から蒸発した物質が筒状体4内を飛翔して通過し、筒状体4の上端の開口部5を通って被蒸着体3の表面に付着し、被蒸着体3に蒸着材料2の蒸発物質を堆積させて蒸着を行なうことができるものである。そしてこのものでは、蒸着材料2と被蒸着体3が対向する空間が筒状体4で囲まれているので、蒸着材料2から発生する蒸発物質を筒状体4内に囲った状態で、この蒸発物質を筒状体4の内面で反射させながら被蒸着体3の方向へ進ませることができ、蒸着材料2から発生する蒸発物質の多くを被蒸着体3の表面に到達させることができるものであり、被蒸着体3に付着せずに逃げる量を少なくして歩留まり高く蒸着を行なうことができるものである。また筒状体4はヒーター16で加熱されており、蒸発物質が筒状体4の内面に付着しても再加熱されて再蒸発し、この再蒸発した物質は被蒸着体3に到達して蒸着層を形成するものであり、筒状体4に蒸発物質が堆積して歩留まりが低下することを防ぐことができるものである。
【0006】
【発明が解決しようとする課題】
上記のように、筒状体4の基部内に配置した蒸着材料2を蒸発させると共に蒸発物質を筒状体4内を飛翔させ、筒状体4の上端の開口部5に対面させて配置した被蒸着体3に、飛翔させた蒸発物質を開口部5を通して付着させることよって、蒸着を行なうことができる。そしてこのものにあって、被蒸着体3の表面の全面に蒸着を行なう場合、筒状体4の開口部5のエリア内に入るように被蒸着体3を配置する必要がある。従って、筒状体4の開口部5の大きさは被蒸着体3の面積よりも大きく形成する必要があり、例えば被蒸着体3が一辺200mm以上の大きさの板材である場合、筒状体4の開口部5はこれ以上に大きく形成しなければならない。
【0007】
ここで、筒状体4の基部内に配置した蒸着材料2から蒸発した蒸発物質は筒状体4内を飛翔して開口部5に至るが、開口部5を通過する蒸発物質の濃度の分布は均一ではなく、開口部5の中央部、特に蒸着材料2が配置された箇所に対応する部分で蒸発物質の濃度は高くなり、開口部5の周辺部では蒸発物質の濃度は低くなる。そして筒状体4の開口部5の面積が小さいときは、中央部と周辺部での蒸発物質の濃度の分布の不均一はさほど大きくならず、特に問題になることはないが、開口部5が一辺200mm以上のように大きな面積になると、開口部5の中央部を通過する蒸発物質と周辺部を通過する蒸発物質の濃度の差が大きく発生し、この結果、被蒸着体3に蒸着される蒸着膜の膜厚が、中央部では厚く、周辺部では薄くなるというように、蒸着膜厚が不均一になるという問題が生じるものであった。
【0008】
本発明は上記の点に鑑みてなされたものであり、大きな面積の被蒸着体に均一な膜厚で蒸着を行なうことができる真空蒸着方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の請求項1に係る真空蒸着方法は、真空チャンバー1内に蒸着材料2及び被蒸着体3を配置すると共に蒸着材料2と被蒸着体3との間に蒸着材料2が蒸発される温度で内面が加熱された筒状体4を配置し、蒸着材料2を加熱して蒸発させ、蒸発させた物質を筒状体4内から筒状体4の開口部5を通して被蒸着体3の表面に到達させることによって、被蒸着体3の表面に蒸着材料2を蒸着するにあたって、筒状体4の開口部5を長辺5aと短辺5bからなる矩形に形成し、一辺の長さが開口部5の長辺5aより短く且つ短辺5bの長さより長い大きさの被蒸着体3を、筒状体4の開口部5の短辺5bと平行に移動させて開口部5を横切らせることによって、被蒸着体3の開口部5に対向させた側の表面に蒸着を行なうことを特徴とするものである。
【0010】
また請求項2の発明は、請求項1において、被蒸着体3は一辺が200mm以上の略正方形の板材であることを特徴とするものである。
【0011】
また請求項3の発明は、請求項1又は2において、筒状体4の蒸着材料2がセットされる基部の寸法よりも、筒状体4の先端の開口部5の短辺5bの寸法を小さくすることによって、開口部5の面積を筒状体4の基部の面積よりも小さく形成したことを特徴とするものである。
【0012】
また請求項4の発明は、請求項1乃至3のいずれかにおいて、蒸着材料2と開口部5との間において、筒状体4内に蒸着材料2が蒸発した物質の開口部5側への移動を制御する制御部材8を設けたことを特徴とするものである。
【0013】
また請求項5の発明は、請求項4において、制御部材8として、蒸着材料2に近い側に配置され、蒸着材料2から蒸発した物質が通過する通孔9を設けた孔開き板10と、開口部5に近い側に配置され、開口部5の長辺5a側の各内面に対向して張り出して設けられる一対の障害板11,11とを用い、各障害板11,11の対向する先端間の間隙12の幅が開口部5の長辺5aの中央部ほど幅狭になると共に端部ほど幅広になるように形成したことを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0015】
図1は本発明の実施の形態の一例を示すものであり、真空チャンバー1の側面にはゲートバルブ22を介して真空ポンプ23が接続してある。真空チャンバー1内には筒状体4が配置してある。筒状体4は上面が開口部5となった四角筒形状に形成されるものであり、その外周にはシーズヒーターなどのヒーター21を巻いて、筒状体4を加熱することができるようにしてある。筒状体4の底面の中央部には坩堝24がはめ込んで取り付けてあり、坩堝24に蒸着材料2が充填してある。坩堝24には蒸着材料2を加熱するヒーター25が内蔵してあり、この加熱温度は熱電対などで形成される温度センサー26で検知することができるようにしてある。また筒状体4の側壁には側面開口部27が形成してあり、この側面開口部27内に面するように膜厚計28が取り付けてある。膜厚計28は水晶振動子膜厚計などで形成されるものであり、表面に蒸着して付着される膜の膜厚を自動計測することができるものである。
【0016】
ここで、四角筒状に形成される筒状体4にあって、その上端の開口部5は長辺5aと短辺5bを有する矩形(長方形)に形成してある。ガラス基板などで形成される被蒸着体3は一般に略正方形であり、開口部5の長辺5aは被蒸着体3の一辺より長く形成され、開口部5の短辺5bは被蒸着体3の一辺より短い寸法に形成されるものである。開口部5の短辺5bは長辺5aの1/2〜1/4程度であるのが好ましい。被蒸着体3として一辺が200mm以上(好ましくは300mm以上、上限は特にないが実用上は1m)である面積が大きいものを用いる場合でも、開口部5の面積は被蒸着体3の1/2〜1/4程度に形成することができるものである。
【0017】
また、筒状体4の上方には被蒸着体3を水平に送る搬送手段が設けてある。搬送手段は例えば図2に示すように、水平に配置される一対の搬送レール30及び搬送治具31で形成されるものであり、各搬送レール30は図2(b)((a)を上から見た図)に示すように筒状体4の一方の側方から筒状体4の近縁を横切って筒状体4の他方の側方へ至るように配設してあり、この一対の搬送レール30,30間に架け渡して搬送治具31が設けてある。搬送治具31は搬送レール30,30の間の位置において蒸着用開口部32を設けて枠状に形成されるものであり、筒状体4の一方の側方から筒状体4の開口部5の上方を横切って筒状体4の他方の側方へ至る範囲で、搬送レール30を移動するようにしてある。ガラス板などで形成される被蒸着体3は、下面を蒸着用開口部32に臨ませた状態でこの搬送治具31の上に図2(a)のように載置してセットされるものであり、搬送治具31を筒状体4の側方位置から筒状体4の開口部5の直上位置に移動させたときに、蒸着を行なうことができるようにしてある。
【0018】
しかして、上記のように形成される真空蒸着装置を用いて、ガラス基板などの被蒸着体3に蒸着材料2を蒸着するにあたっては、まず、真空ポンプ23を作動させて真空チャンバー1内を真空状態に減圧すると共にヒーター21を発熱させて筒状体4を加熱しておく。筒状体4の加熱温度は、蒸着材料2の蒸発物質が筒状体4の内面に付着しても再度蒸発し、筒状体4の内面に堆積しない温度に設定されるものである。またヒーター25を加熱して坩堝24内の蒸着材料2を蒸発させ、蒸発物質を筒状体4内に飛翔させる。
【0019】
そして、図2(a)のように被蒸着体3を搬送治具31の上に載置し、搬送軸具31を搬送レール30に沿って移動させることによって、図1(a)(b)の実線位置から鎖線位置へと、被蒸着体3を筒状体4の一方の側方位置から筒状体4の開口部5の直上位置に移動させ、さらに開口部5の直上を通過させて被蒸着体3を筒状体4の他方の側方位置に移動させる。このように開口部5の直上位置を横切って被蒸着体3を通過させる際に、蒸着材料2からの蒸発物質が開口部5を通して被蒸着体3の開口部5に対向する下面に付着し、蒸着材料2を被蒸着体3の下面に堆積させて蒸着させることができるものである。被蒸着体3を筒状体4の開口部5を横切らせて蒸着を行なうにあたって、開口部5を横切らせて通過させる回数に応じて蒸着の膜厚を調整することができるものであり、被蒸着体3を一方向へ搬送して開口部5を横切らせる他に、往復方向へ搬送したり、複数回往復方向へ搬送して開口部5を横切らせることもできる。
【0020】
このとき、被蒸着体3は筒状体4の開口部5の長辺5aの範囲内の位置を、開口部5の短辺5bと平行な方向に移動させて、開口部5の直上を横切って通過するようにしてあり、被蒸着体3は下面の全面が開口部5の直上を横切ることになるので、被蒸着体3の下面の全面に蒸着材料2を蒸着させることができるものである。ここで、被蒸着体3が一辺200mm以上の大きな面積を有するものでも、筒状体4の開口部5を上記のように長辺5aと短辺5bからなる矩形に形成することによって、開口部5の面積を小さいものに形成することができるものであり、筒状体4の基部内の蒸着材料2が蒸発した蒸発物質が開口部5を通過する際の中央部と周辺部との濃度の差は小さい。従って被蒸着体3の全面に対して均一な濃度で蒸発物質は蒸着されるものであり、均一な膜厚で蒸着を行なうことができるものである。
【0021】
図3は本発明の他の実施の形態を示すものである。図1の実施の形態では、筒状体4を基部から上端の開口部5に至るまで同じ内径のストレート形状に形成したが、図2の実施の形態では、筒状体4の蒸着材料2がセットされる基部の寸法よりも、筒状体4の上端の開口部5の短辺5bの寸法を小さくして、開口部5の面積が筒状体4の基部の面積よりも小さくなるように形成してある。開口部5の短辺5bの寸法Wは筒状体4の基部の幅寸法Wの1/2〜1/4程度で、蒸発物質が飛翔する流れの抵抗に影響を与えないくらいが好ましい。開口部5の長辺5aの寸法は筒状体4の基部の寸法と同じであり、従って、筒状体4の上部は長辺5aの側の面が内側へ向けて斜め上方へ傾斜するように内径を絞った形状に形成されるものである。その他の構成は図1や図2のものと同じである。
【0022】
図3のものでは、このように筒状体4の上端の開口部5の短辺5bの寸法を筒状体4の基部の寸法より小さくすることによって、開口部5の開口面積をより小さくすることができるものである。従って、加熱された筒状体4では、開口部5を通して筒状体4の内壁から輻射熱が上方へ放散されているが、開口部5の開口面積をより小さくすることによって、この輻射熱の放散を低減することができるものであり、被蒸着体3が輻射熱で加熱されることを低減し、被蒸着体3の温度が蒸着材料の蒸発温度や分解温度にまで加熱されて、蒸着効率が低下することを防ぐことができるものである。
【0023】
図4は本発明の他の実施の形態を示すものであり、筒状体4の底部にセットした蒸着材料2と筒状体4の上端の開口部5との間において、筒状体4内に蒸着材料2が蒸発した物質が開口部5側へと飛翔して移動する際の、飛翔経路を制御する制御部材8が設けてある。この制御部材8としては、蒸着材料2の直ぐ上に配置される孔開き板10と、開口部5の直ぐ下に配置される障害板11とを用いるものである。
【0024】
孔開き板10は図5(a)に示すように、中央部よりも周辺部のほうに多く分布するように多数の通孔9を設けて形成してあり、筒状体4の下端部内を上下に仕切るように筒状体4の内面に取り付けてある。また障害板11は図5(b)のように、開口部5の長辺5a側の各内面に対向して張り出して一対設けられるものであり、障害板11,11の対向する先端間に間隙12が形成してある。そして各障害板11の先端縁を中央部程張り出すように形成することによって、障害板11,11の先端間の間隙12の幅が開口部5の長辺5aに沿った中央部ほど幅狭になると共に端部ほど幅広になるように形成してある。その他の構成は図1乃至3のものと同じである。
【0025】
この図4のものにあって、蒸着材料2は筒状体4の底部の中央部にセットされているので、蒸着材料2が蒸発した蒸発物質は筒状体4の底部の中央部を蒸発源として飛翔するが、蒸発材料2の直上に設けた孔開き板10に遮られ、孔開き板10に多数設けられた各通孔9を通過して、孔開き板10の上側に飛翔する。ここで、通孔9は中央部よりも周辺部のほうに多く分布するように形成してあるので、坩堝24から蒸発物質が直線的に放出されてそのまま被蒸着体3に向かうことを抑制することができるものである。さらにこの飛翔した蒸発物質は障害板11に遮られ、障害板11間の間隙12を通過して上方へ飛翔するが、間隙12は開口部5の長辺5aに沿った中央部ほど幅狭で且つ端部ほど幅広に形成されているので、端部のほうへ広げられながら間隙12を通過する。このようにして、蒸発物質の濃度が開口部5の中央部が高く周辺部で低くならないようにして、開口部5を通過する蒸発物質の濃度を開口部5の全面において均一にすることができるものであり、被蒸着体3への蒸着の膜厚を一層均一化することができるものである。
【0026】
【発明の効果】
上記のように本発明の請求項1に係る真空蒸着方法は、真空チャンバー内に蒸着材料及び被蒸着体を配置すると共に蒸着材料と被蒸着体との間に蒸着材料が蒸発される温度で内面が加熱された筒状体を配置し、蒸着材料を加熱して蒸発させ、蒸発させた物質を筒状体内から筒状体の開口部を通して被蒸着体の表面に到達させることによって、被蒸着体の表面に蒸着材料を蒸着するにあたって、筒状体の開口部を長辺と短辺からなる矩形に形成し、一辺の長さが開口部の長辺より短く且つ短辺の長さより長い大きさの被蒸着体を、筒状体の開口部の短辺と平行に移動させて開口部を横切らせることによって、被蒸着体の開口部に対向させた側の表面に蒸着を行なうようにしたので、被蒸着体が大きな面積を有するものであっても、小さい面積で筒状体の開口部を形成することができ、開口部内における蒸発物質の濃度差は小さくなるものであって、被蒸着体の全面に対して均一な濃度で蒸発物質を蒸着させて、均一な膜厚で蒸着を行なうことができるものである。
【0027】
また請求項2の発明は、請求項1において、被蒸着体は一辺が200mm以上の略正方形の板材であることを特徴とするものであり、このような面積の大きい被蒸着体であっても、小さい面積の開口部を有する筒状体を用いて、被蒸着体の全面に均一な膜厚で蒸着を行なうことができるものである。
【0028】
また請求項3の発明は、請求項1又は2において、筒状体の蒸着材料がセットされる筒状体の基部の寸法よりも、筒状体の先端の開口部の短辺を小さくすることによって、開口部の面積を筒状体の基部の面積よりも小さく形成したので、開口部の開口面積をより小さくして、開口部から輻射熱が放散されることを低減することができるものであり、被蒸着体の温度が輻射熱による加熱で蒸着材料の蒸発温度や分解温度にまで上昇することを防止でき、蒸着効率が低下することを防ぐことができるものである。
【0029】
また請求項4の発明は、請求項1乃至3のいずれかにおいて、蒸着材料と開口部との間において、筒状体内に蒸着材料が蒸発した物質の開口部側への移動を制御する制御部材を設けたので、開口部を通過する蒸発物質の濃度を制御部材で均一化することをができ、被蒸着体への蒸着の膜厚をより一層均一にすることができるものである。
【0030】
また請求項5の発明は、請求項4において、制御部材として、蒸着材料に近い側に配置され、蒸着材料から蒸発した物質が通過する通孔を設けた孔開き板と、開口部に近い側に配置され、開口部の長辺側の各内面に対向して張り出して設けられる一対の障害板とを用い、各障害板の対向する先端間の間隙の幅が開口部の長辺の中央部ほど幅狭になると共に端部ほど幅広になるように形成したので、開口部を通過する蒸発物質の濃度を制御部材で均一化することができ、被蒸着体への蒸着の膜厚をより一層均一にすることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すものであり、(a)は正面断面図、(b)は一部の平面図である。
【図2】同上の実施の形態の一例を示すものであり、(a)は一部の正面断面図、(b)は一部の平面図である。
【図3】本発明の他の実施の形態の一例を示すものであり、(a)は正面断面図、(b)は一部の平面図である。
【図4】本発明の他の実施の形態の一例を示すものであり、(a)は正面断面図、(b)は一部の平面図である。
【図5】同上の制御部材を示すものであり、(a)は図4(a)のイ−イ線断面図、(b)は図4(a)のロ−ロ線断面図である。
【図6】従来例の断面図である。
【符号の説明】
1 真空チャンバー
2 蒸着材料
3 被蒸着体
4 筒状体
5 開口部
5a 長辺
5b 短辺
8 制御部材
9 通孔
10 孔開き板
11 障害板
12 間隙
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum evaporation method for evaporating an evaporation material in a vacuum atmosphere and evaporating an evaporating substance on an object to be evaporated.
[0002]
[Prior art]
The vacuum evaporation apparatus arranges an evaporation material and an object to be deposited in a vacuum chamber, heats and evaporates the evaporation material in a state where the pressure in the vacuum chamber is reduced, and deposits the evaporated substance on the surface of the object to be evaporated. The deposition is performed by depositing. The substance evaporated from the evaporation material of the evaporation source is emitted straight from the evaporation source in the normal direction.However, since the emission space is kept in a vacuum, the evaporation material goes straight and is arranged to face the evaporation source. Deposited on the surface of the object to be deposited.
[0003]
However, since the evaporating substance is emitted straight from the evaporation source in the normal direction as described above, many evaporating substances do not proceed toward the object to be deposited. Since it does not adhere to the surface of the deposition object, there is a problem that the yield of deposition is low and the deposition rate on the surface of the deposition target is low. Therefore, as disclosed in JP-A-4-45259 and JP-A-9-272703, a space in which a deposition material of an evaporation source disposed in a vacuum chamber and a deposition target face each other is a cylindrical body. A vacuum evaporation apparatus has been proposed which surrounds and heats a cylindrical body at a temperature at which a vapor deposition material is re-evaporated, and vapor-deposits a substance evaporated from an evaporation source on the surface of an object to be vapor-deposited through the cylindrical body.
[0004]
FIG. 6 shows an example of such a case, in which a tubular body 4 that opens vertically is disposed in a vacuum chamber 1, and a heater 16 is wound around the tubular body 4 to heat the tubular body 4. I can do it. The vapor deposition material 2 is arranged so as to face the opening 17 at the lower end of the cylindrical body 4, and the vapor deposition material 2 can be evaporated by heating with the heater 18. The deposition target 3 is disposed above the opening 5 at the upper end of the cylindrical body 4, and the opening 5 can be opened and closed by a shutter 19.
[0005]
In this case, when the pressure inside the vacuum chamber 1 is reduced and the evaporation material 2 is heated and evaporated, and the shutter 19 is opened, the material evaporated from the evaporation material 2 flies through the cylindrical body 4 and passes therethrough. It adheres to the surface of the deposition target 3 through the opening 5 at the upper end of the cylindrical body 4 and deposits the evaporation material of the deposition material 2 on the deposition target 3 to perform deposition. In this case, since the space in which the evaporation material 2 and the object 3 are opposed to each other is surrounded by the cylindrical body 4, the evaporation material generated from the evaporation material 2 is surrounded by the cylindrical body 4. A material capable of traveling in the direction of the deposition target 3 while reflecting the evaporation substance on the inner surface of the cylindrical body 4 and allowing most of the evaporation substance generated from the deposition material 2 to reach the surface of the deposition target 3 In addition, it is possible to reduce the amount of escape without adhering to the deposition target 3 and perform deposition with a high yield. Further, the cylindrical body 4 is heated by the heater 16. Even if the evaporated substance adheres to the inner surface of the cylindrical body 4, it is reheated and re-evaporated, and the re-evaporated substance reaches the deposition target 3. This is for forming a vapor deposition layer, which can prevent the evaporation material from being deposited on the cylindrical body 4 and lowering the yield.
[0006]
[Problems to be solved by the invention]
As described above, the vapor deposition material 2 disposed in the base of the cylindrical body 4 is evaporated, and the vaporized substance is caused to fly in the cylindrical body 4 so as to face the opening 5 at the upper end of the cylindrical body 4. Vapor deposition can be performed by attaching the flying evaporation material to the deposition target 3 through the opening 5. In this case, when vapor deposition is performed on the entire surface of the deposition target 3, the deposition target 3 needs to be arranged so as to enter the area of the opening 5 of the cylindrical body 4. Therefore, the size of the opening 5 of the cylindrical body 4 needs to be larger than the area of the body 3 to be evaporated. For example, when the body 3 to be evaporated is a plate material having a side of 200 mm or more, the cylindrical body 4 The opening 5 of 4 must be formed larger than this.
[0007]
Here, the evaporating substance evaporated from the vapor deposition material 2 disposed in the base of the cylindrical body 4 flies through the cylindrical body 4 to reach the opening 5, but the distribution of the concentration of the evaporating substance passing through the opening 5. Is not uniform, and the concentration of the evaporant increases at the center of the opening 5, particularly at a portion corresponding to the position where the deposition material 2 is disposed, and decreases at the periphery of the opening 5. When the area of the opening 5 of the cylindrical body 4 is small, the uneven distribution of the concentration of the evaporating substance in the central part and the peripheral part does not become so large, and there is no particular problem. Has a large area such as 200 mm or more on each side, a large difference occurs between the concentration of the evaporating substance passing through the central portion of the opening 5 and the concentration of the evaporating substance passing through the peripheral portion. The problem is that the thickness of the deposited film becomes non-uniform, for example, the thickness of the deposited film is thicker at the center and thinner at the periphery.
[0008]
The present invention has been made in view of the above points, and an object of the present invention is to provide a vacuum deposition method capable of performing deposition with a uniform film thickness on an object to be deposited having a large area.
[0009]
[Means for Solving the Problems]
In the vacuum vapor deposition method according to claim 1 of the present invention, the temperature at which the vapor deposition material 2 is evaporated between the vapor deposition material 2 and the vapor deposition object 3 is arranged in the vacuum chamber 1. A cylindrical body 4 whose inner surface is heated is arranged, and the evaporation material 2 is heated and evaporated, and the evaporated substance is passed through the opening 5 of the cylindrical body 4 from the inside of the cylindrical body 4 and the surface of the body 3 to be evaporated. When the vapor deposition material 2 is vapor-deposited on the surface of the body 3 to be vapor-deposited, the opening 5 of the cylindrical body 4 is formed into a rectangle having the long side 5a and the short side 5b, and the length of one side is The deposition target 3 having a size shorter than the long side 5 a and longer than the short side 5 b of the portion 5 is moved in parallel with the short side 5 b of the opening 5 of the cylindrical body 4 to cross the opening 5. Thus, vapor deposition is performed on the surface of the object 3 to be opposed to the opening 5. It is.
[0010]
According to a second aspect of the present invention, in the first aspect, the deposition target 3 is a substantially square plate material having a side of 200 mm or more.
[0011]
According to a third aspect of the present invention, in the first or second aspect, the dimension of the short side 5b of the opening 5 at the distal end of the cylindrical body 4 is made larger than the dimension of the base on which the deposition material 2 of the cylindrical body 4 is set. By reducing the size, the area of the opening 5 is formed to be smaller than the area of the base of the tubular body 4.
[0012]
According to a fourth aspect of the present invention, in any one of the first to third aspects, between the vapor deposition material 2 and the opening 5, a substance obtained by evaporating the vapor deposition material 2 in the cylindrical body 4 is directed to the opening 5 side. A control member 8 for controlling the movement is provided.
[0013]
According to a fifth aspect of the present invention, in the fourth aspect, as the control member 8, a perforated plate 10 provided with a through hole 9 which is disposed on a side close to the vapor deposition material 2 and through which a substance evaporated from the vapor deposition material 2 passes. A pair of obstacle plates 11, 11 which are arranged on the side close to the opening 5 and protrude so as to face each inner surface on the long side 5 a side of the opening 5, and opposing tips of the obstacle plates 11, 11 The width of the gap 12 is formed so as to be narrower toward the center of the long side 5a of the opening 5 and wider toward the end.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0015]
FIG. 1 shows an example of an embodiment of the present invention. A vacuum pump 23 is connected to a side surface of a vacuum chamber 1 via a gate valve 22. A cylindrical body 4 is arranged in the vacuum chamber 1. The cylindrical body 4 is formed in a square cylindrical shape having an opening 5 on the upper surface. A heater 21 such as a sheath heater is wound around the outer periphery of the cylindrical body 4 so that the cylindrical body 4 can be heated. It is. A crucible 24 is fitted and attached to the center of the bottom surface of the cylindrical body 4, and the crucible 24 is filled with the deposition material 2. The crucible 24 has a built-in heater 25 for heating the deposition material 2, and the heating temperature can be detected by a temperature sensor 26 formed by a thermocouple or the like. A side opening 27 is formed in the side wall of the tubular body 4, and a film thickness gauge 28 is attached so as to face the inside of the side opening 27. The film thickness meter 28 is formed by a quartz crystal film thickness meter or the like, and can automatically measure the film thickness of the film deposited and adhered on the surface.
[0016]
Here, in the tubular body 4 formed in a square tubular shape, the opening 5 at the upper end thereof is formed in a rectangular shape having a long side 5a and a short side 5b. The deposition target 3 formed of a glass substrate or the like is generally substantially square, the long side 5a of the opening 5 is formed longer than one side of the deposition target 3, and the short side 5b of the opening 5 is It is formed to have a dimension shorter than one side. The short side 5b of the opening 5 is preferably about 1/2 to 1/4 of the long side 5a. Even when the object 3 has a large area of 200 mm or more on one side (preferably 300 mm or more, but there is no particular upper limit, but practically 1 m), the area of the opening 5 is 1 / of that of the object 3. It can be formed to about 1/4.
[0017]
In addition, a transport means for horizontally feeding the deposition target body 3 is provided above the cylindrical body 4. For example, as shown in FIG. 2, the transport means is formed by a pair of transport rails 30 and a transport jig 31 that are horizontally arranged. Each of the transport rails 30 is shown in FIG. As shown in FIG. 1, a pair of the paired members is disposed so as to extend from one side of the cylindrical body 4 to the other side of the cylindrical body 4 across the near edge of the cylindrical body 4. A transfer jig 31 is provided to extend between the transfer rails 30. The transport jig 31 is formed in a frame shape by providing an evaporation opening 32 at a position between the transport rails 30, 30, and the opening of the cylindrical body 4 is opened from one side of the cylindrical body 4. The transport rail 30 is moved so as to cross the upper side of the tube 5 and reach the other side of the tubular body 4. The deposition target 3 formed of a glass plate or the like is placed and set on the transport jig 31 with the lower surface facing the deposition opening 32 as shown in FIG. The vapor deposition can be performed when the transport jig 31 is moved from the side position of the tubular body 4 to a position immediately above the opening 5 of the tubular body 4.
[0018]
When depositing the deposition material 2 on the deposition target 3 such as a glass substrate using the vacuum deposition apparatus formed as described above, first, the vacuum pump 23 is operated to evacuate the vacuum chamber 1. The pressure is reduced to a state, and the cylindrical body 4 is heated by causing the heater 21 to generate heat. The heating temperature of the cylindrical body 4 is set to a temperature at which the evaporation material of the evaporation material 2 adheres to the inner surface of the cylindrical body 4, evaporates again, and does not accumulate on the inner surface of the cylindrical body 4. Further, the heater 25 is heated to evaporate the vapor deposition material 2 in the crucible 24, and the vaporized substance is caused to fly into the cylindrical body 4.
[0019]
Then, as shown in FIG. 2A, the object 3 is placed on the transport jig 31, and the transport shaft 31 is moved along the transport rail 30, thereby obtaining the components shown in FIGS. Is moved from one side position of the cylindrical body 4 to a position immediately above the opening 5 of the cylindrical body 4 from the solid line position to the chain line position, and further, is passed just above the opening 5. The object 3 is moved to the other lateral position of the cylindrical body 4. As described above, when passing the deposition target 3 across the position immediately above the opening 5, the evaporating substance from the deposition material 2 adheres to the lower surface of the deposition target 3 facing the opening 5 through the opening 5, The deposition material 2 can be deposited on the lower surface of the object 3 to be deposited. When vapor deposition is performed by passing the object 3 across the opening 5 of the cylindrical body 4, the film thickness of the vapor deposition can be adjusted according to the number of passes through the opening 5. In addition to transporting the vapor deposition body 3 in one direction and crossing the opening 5, the vapor deposition body 3 may be transported in a reciprocating direction or a plurality of times in the reciprocating direction to cross the opening 5.
[0020]
At this time, the deposition target 3 moves the position within the range of the long side 5 a of the opening 5 of the cylindrical body 4 in a direction parallel to the short side 5 b of the opening 5, and traverses just above the opening 5. Since the entire surface of the lower surface of the deposition target 3 crosses directly above the opening 5, the deposition material 2 can be deposited on the entire lower surface of the deposition target 3. . Here, even when the deposition target 3 has a large area of 200 mm or more on one side, the opening 5 of the cylindrical body 4 is formed into a rectangular shape including the long side 5a and the short side 5b as described above. 5 can be formed to have a small area, and the concentration of the vaporized material from the vaporized material 2 in the base of the cylindrical body 4 in the central portion and the peripheral portion when passing through the opening 5 is reduced. The difference is small. Therefore, the evaporating substance is deposited at a uniform concentration over the entire surface of the object 3 to be deposited, and can be deposited with a uniform film thickness.
[0021]
FIG. 3 shows another embodiment of the present invention. In the embodiment of FIG. 1, the cylindrical body 4 is formed in a straight shape having the same inner diameter from the base to the opening 5 at the upper end, but in the embodiment of FIG. The dimension of the short side 5b of the opening 5 at the upper end of the cylindrical body 4 is made smaller than the dimension of the base to be set so that the area of the opening 5 is smaller than the area of the base of the cylindrical body 4. It is formed. Dimension W 1 of the short side 5b of the opening 5 is about 1 / 2-1 / 4 of the width W 2 of the base of the tubular body 4, preferably much evaporation material does not affect the flow resistance of flying is . The dimension of the long side 5a of the opening 5 is the same as the dimension of the base of the tubular body 4, so that the upper part of the tubular body 4 is inclined such that the surface on the long side 5a side is inclined obliquely upward toward the inside. It is formed in a shape in which the inner diameter is narrowed. Other configurations are the same as those in FIG. 1 and FIG.
[0022]
In FIG. 3, the dimension of the short side 5b of the opening 5 at the upper end of the tubular body 4 is made smaller than the dimension of the base of the tubular body 4 in this way, so that the opening area of the opening 5 is made smaller. Is what you can do. Therefore, in the heated tubular body 4, the radiant heat is radiated upward from the inner wall of the tubular body 4 through the opening 5, but the radiant heat is radiated by making the opening area of the opening 5 smaller. It is possible to reduce the possibility that the object 3 is heated by radiant heat, and the temperature of the object 3 is heated to the evaporation temperature or decomposition temperature of the evaporation material, and the evaporation efficiency is reduced. That can prevent that.
[0023]
FIG. 4 shows another embodiment of the present invention, in which a space between a vapor deposition material 2 set on the bottom of a cylindrical body 4 and an opening 5 at an upper end of the cylindrical body 4 is formed. A control member 8 is provided for controlling a flight path when a substance obtained by evaporating the vapor deposition material 2 flies toward the opening 5 and moves. As the control member 8, a perforated plate 10 disposed immediately above the vapor deposition material 2 and an obstacle plate 11 disposed immediately below the opening 5 are used.
[0024]
As shown in FIG. 5A, the perforated plate 10 is formed by providing a large number of through holes 9 so as to be distributed more in the peripheral part than in the central part. It is attached to the inner surface of the tubular body 4 so as to partition vertically. Also, as shown in FIG. 5B, a pair of obstacle plates 11 are provided so as to protrude in opposition to the respective inner surfaces on the long side 5a side of the opening 5, and a gap is provided between the opposed front ends of the obstacle plates 11, 11. 12 are formed. By forming the tip edge of each obstacle plate 11 so as to protrude toward the center, the width of the gap 12 between the tips of the obstacle plates 11, 11 becomes narrower toward the center along the long side 5 a of the opening 5. It is formed so that it becomes wider at the end. Other configurations are the same as those in FIGS.
[0025]
In FIG. 4, the evaporation material 2 is set at the center of the bottom of the cylindrical body 4, so that the evaporation material from which the evaporation material 2 has evaporated evaporates at the center of the bottom of the cylindrical body 4. However, it is blocked by a perforated plate 10 provided immediately above the evaporation material 2, passes through a large number of through holes 9 provided in the perforated plate 10, and flies above the perforated plate 10. Here, since the through holes 9 are formed so as to be distributed more in the peripheral portion than in the central portion, it is possible to suppress the evaporation material from being discharged linearly from the crucible 24 and directly going to the object 3. Is what you can do. Further, the flying evaporating substance is blocked by the obstacle plate 11 and flies upward through the gap 12 between the obstacle plates 11, and the gap 12 becomes narrower toward the center along the long side 5 a of the opening 5. In addition, since it is formed to be wider toward the end, it passes through the gap 12 while being spread toward the end. In this way, the concentration of the evaporating substance passing through the opening 5 can be made uniform over the entire surface of the opening 5 so that the concentration of the evaporating substance is not high at the center of the opening 5 and does not decrease at the periphery. It is possible to make the film thickness of the deposition on the deposition target 3 more uniform.
[0026]
【The invention's effect】
As described above, in the vacuum deposition method according to claim 1 of the present invention, the deposition material and the object to be deposited are arranged in a vacuum chamber, and the inner surface is heated at a temperature at which the deposition material evaporates between the deposition material and the object to be deposited. By disposing a heated tubular body, heating and evaporating the evaporation material, and allowing the evaporated substance to reach the surface of the deposited body from the tubular body through the opening of the tubular body, In depositing a deposition material on the surface of the tube, the opening of the cylindrical body is formed into a rectangle having a long side and a short side, and the length of one side is shorter than the long side of the opening and longer than the length of the short side. Since the object to be deposited is moved in parallel with the short side of the opening of the cylindrical body and crosses the opening, vapor deposition is performed on the surface facing the opening of the object to be deposited. Even if the object to be deposited has a large area, The opening of the body can be formed, and the difference in the concentration of the evaporating substance in the opening becomes small, and the evaporating substance is deposited at a uniform concentration over the entire surface of the object to be deposited, so that a uniform film is formed. Thickness can be deposited.
[0027]
The invention according to claim 2 is characterized in that, in claim 1, the object to be deposited is a substantially square plate material having a side of 200 mm or more. By using a cylindrical body having an opening having a small area, vapor deposition can be performed with a uniform film thickness over the entire surface of the body to be vapor-deposited.
[0028]
According to a third aspect of the present invention, in the first or second aspect, the short side of the opening at the tip of the cylindrical body is smaller than the dimension of the base of the cylindrical body on which the vapor deposition material of the cylindrical body is set. Thus, since the area of the opening is formed smaller than the area of the base of the cylindrical body, the opening area of the opening can be made smaller, and radiation of radiant heat from the opening can be reduced. In addition, it is possible to prevent the temperature of the object to be deposited from rising to the evaporation temperature or decomposition temperature of the deposition material due to the heating by radiant heat, and to prevent the deposition efficiency from decreasing.
[0029]
According to a fourth aspect of the present invention, there is provided a control member according to any one of the first to third aspects, wherein the control member controls the movement of the substance, in which the vapor deposition material has evaporated in the cylindrical body, toward the opening between the vapor deposition material and the opening. Is provided, the concentration of the evaporating substance passing through the opening can be made uniform by the control member, and the film thickness of the vapor deposition on the object to be vaporized can be made more uniform.
[0030]
According to a fifth aspect of the present invention, in the fourth aspect, as the control member, a perforated plate provided with a through hole through which a substance evaporated from the vapor deposition material passes is disposed on a side near the vapor deposition material; And a pair of obstacle plates provided to protrude so as to face each inner surface on the long side of the opening, and the width of the gap between the opposed ends of the obstacles is set at the center of the long side of the opening. The thickness of the evaporating substance passing through the opening can be made uniform by the control member, so that the film thickness of the vapor deposition on the object is further increased. It can be made uniform.
[Brief description of the drawings]
FIG. 1 shows an example of an embodiment of the present invention, in which (a) is a front sectional view and (b) is a partial plan view.
FIG. 2 shows an example of the above embodiment, in which (a) is a partial front sectional view and (b) is a partial plan view.
FIG. 3 shows an example of another embodiment of the present invention, in which (a) is a front sectional view and (b) is a partial plan view.
4A and 4B show an example of another embodiment of the present invention, wherein FIG. 4A is a front sectional view, and FIG. 4B is a partial plan view.
5A and 5B show a control member of the above, wherein FIG. 5A is a cross-sectional view taken along the line II in FIG. 4A, and FIG.
FIG. 6 is a sectional view of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Deposition material 3 Deposition target 4 Cylindrical body 5 Opening 5a Long side 5b Short side 8 Control member 9 Through hole 10 Perforated plate 11 Obstacle plate 12 Gap

Claims (5)

真空チャンバー内に蒸着材料及び被蒸着体を配置すると共に蒸着材料と被蒸着体との間に蒸着材料が蒸発される温度で内面が加熱された筒状体を配置し、蒸着材料を加熱して蒸発させ、蒸発させた物質を筒状体内から筒状体の開口部を通して被蒸着体の表面に到達させることによって、被蒸着体の表面に蒸着材料を蒸着するにあたって、筒状体の開口部を長辺と短辺からなる矩形に形成し、一辺の長さが開口部の長辺より短く且つ短辺の長さより長い大きさの被蒸着体を、筒状体の開口部の短辺と平行に移動させて開口部を横切らせることによって、被蒸着体の開口部に対向させた側の表面に蒸着を行なうことを特徴とする真空蒸着方法。Disposing the evaporation material and the object to be deposited in the vacuum chamber and disposing a cylindrical body whose inner surface is heated at a temperature at which the evaporation material is evaporated between the evaporation material and the object to be evaporated, and heating the evaporation material By evaporating the vaporized material from the cylindrical body to reach the surface of the object to be deposited through the opening of the cylindrical body, the vapor-deposited material is deposited on the surface of the object to be evaporated. The object to be deposited is formed into a rectangle having a long side and a short side, and the length of one side is shorter than the long side of the opening and the size of the object to be deposited is longer than the length of the short side. A vacuum deposition method, wherein the vapor deposition is performed on the surface of the object to be vapor-deposited by moving the substrate to cross the opening. 被蒸着体は一辺が200mm以上の略正方形の板材であることを特徴とする請求項1に記載の真空蒸着方法。The vacuum deposition method according to claim 1, wherein the object to be deposited is a substantially square plate material having one side of 200 mm or more. 筒状体の蒸着材料がセットされる筒状体の基部の寸法よりも、筒状体の先端の開口部の短辺を小さくすることによって、開口部の面積を筒状体の基部の面積よりも小さく形成したことを特徴とする請求項1又は2に記載の真空蒸着方法。By making the short side of the opening at the tip of the tubular body smaller than the dimension of the base of the tubular body on which the vapor deposition material of the tubular body is set, the area of the opening is smaller than the area of the base of the tubular body. The vacuum deposition method according to claim 1, wherein the thickness is also reduced. 蒸着材料と開口部との間において、筒状体内に蒸着材料が蒸発した物質の開口部側への移動を制御する制御部材を設けたことを特徴とする請求項1乃至3のいずれかに記載の真空蒸着方法。4. The control member according to claim 1, wherein a control member is provided between the vapor deposition material and the opening to control the movement of the substance in which the vapor deposition material has evaporated in the cylindrical body toward the opening. Vacuum evaporation method. 制御部材として、蒸着材料に近い側に配置され、蒸着材料から蒸発した物質が通過する通孔を設けた孔開き板と、開口部に近い側に配置され、開口部の長辺側の各内面に対向して張り出して設けられる一対の障害板とを用い、各障害板の対向する先端間の間隙の幅が開口部の長辺の中央部ほど幅狭になると共に端部ほど幅広になるように形成したことを特徴とする請求項4に記載の真空蒸着方法。As a control member, a perforated plate provided with a through hole through which a substance evaporated from the vapor deposition material passes, which is disposed on the side close to the vapor deposition material, and each inner surface on the long side of the opening, which is disposed near the opening And a pair of obstacle plates provided so as to protrude in opposition to each other, so that the width of the gap between the opposing ends of each obstacle plate becomes narrower toward the center of the long side of the opening and wider toward the end. The vacuum evaporation method according to claim 4, wherein the vacuum evaporation method is formed.
JP2002218624A 2001-10-26 2002-07-26 Vacuum deposition method Expired - Fee Related JP4174257B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002218624A JP4174257B2 (en) 2002-07-26 2002-07-26 Vacuum deposition method
TW091125316A TWI264473B (en) 2001-10-26 2002-10-25 Vacuum deposition device and vacuum deposition method
ES02777982T ES2391051T3 (en) 2001-10-26 2002-10-28 Vacuum deposition device
EP02777982A EP1457582B1 (en) 2001-10-26 2002-10-28 Device for vacuum deposition
US10/493,587 US20050005857A1 (en) 2001-10-26 2002-10-28 Device and method for vacuum deposition, and organic electroluminescent element provided by the device and the method
KR1020047005798A KR100958682B1 (en) 2001-10-26 2002-10-28 Device and method for vacuum deposition, and organic electroluminescent element provided by he device and the method
AT02777982T ATE555228T1 (en) 2001-10-26 2002-10-28 DEVICE FOR VACUUM DEPOSITATION
PCT/JP2002/011193 WO2003035925A1 (en) 2001-10-26 2002-10-28 Device and method for vacuum deposition, and organic electroluminescent element provided by the device and the method
CNB028212215A CN1302149C (en) 2001-10-26 2002-10-28 Device and method for vacuum deposition, and organic electroluminescent element provided by the device and the method
US12/032,832 US20080156267A1 (en) 2001-10-26 2008-02-18 Device and method for vacuum deposition, and organic electroluminescent element provided by the device and the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218624A JP4174257B2 (en) 2002-07-26 2002-07-26 Vacuum deposition method

Publications (2)

Publication Number Publication Date
JP2004059981A true JP2004059981A (en) 2004-02-26
JP4174257B2 JP4174257B2 (en) 2008-10-29

Family

ID=31939756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218624A Expired - Fee Related JP4174257B2 (en) 2001-10-26 2002-07-26 Vacuum deposition method

Country Status (1)

Country Link
JP (1) JP4174257B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225706A (en) * 2005-02-17 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus
JP2013163845A (en) * 2012-02-10 2013-08-22 Nitto Denko Corp Crucible for vapor deposition, vapor deposition device, and vapor deposition method
WO2016058905A1 (en) * 2014-10-14 2016-04-21 Manz Ag Apparatus and method for layer thickness measurement for a vapour deposition method
US10023108B2 (en) 2014-12-26 2018-07-17 Toshiba Lighting & Technology Corporation Vehicle lamp with light module fixing portion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225706A (en) * 2005-02-17 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus
JP4583200B2 (en) * 2005-02-17 2010-11-17 日立造船株式会社 Vapor deposition equipment
JP2013163845A (en) * 2012-02-10 2013-08-22 Nitto Denko Corp Crucible for vapor deposition, vapor deposition device, and vapor deposition method
EP2813597A4 (en) * 2012-02-10 2015-09-16 Nitto Denko Corp Crucible for vapor deposition, vapor deposition device, and vapor deposition method
CN107076538A (en) * 2014-10-14 2017-08-18 曼兹铜铟镓硒技术公司 Apparatus and method for the layer thickness measure for vapor deposition method
KR20170066458A (en) * 2014-10-14 2017-06-14 만쯔 씨아이쥐에스 테크놀로지 게엠바하 Apparatus and method for layer thickness measurement for a vapour deposition method
WO2016058905A1 (en) * 2014-10-14 2016-04-21 Manz Ag Apparatus and method for layer thickness measurement for a vapour deposition method
JP2017532565A (en) * 2014-10-14 2017-11-02 マンツ・シーアイジーエス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングManz CIGS Technology GmbH Layer thickness measuring apparatus and method for vapor phase growth method
KR20190032650A (en) * 2014-10-14 2019-03-27 나이스 솔라 에너지 게엠베하 Apparatus and method for layer thickness measurement for a vapour deposition method
KR101963987B1 (en) * 2014-10-14 2019-03-29 나이스 솔라 에너지 게엠베하 Apparatus and method for layer thickness measurement for a vapour deposition method
US10684126B2 (en) 2014-10-14 2020-06-16 NICE Solar Energy GmbH Apparatus and method for layer thickness measurement for a vapor deposition method
KR102342107B1 (en) * 2014-10-14 2021-12-22 나이스 솔라 에너지 게엠베하 Apparatus and method for layer thickness measurement for a vapour deposition method
US10023108B2 (en) 2014-12-26 2018-07-17 Toshiba Lighting & Technology Corporation Vehicle lamp with light module fixing portion

Also Published As

Publication number Publication date
JP4174257B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
US6830626B1 (en) Method and apparatus for coating a substrate in a vacuum
JP4782219B2 (en) Vacuum deposition equipment
KR101450339B1 (en) Evaporation source and vacuum evaporator using the same
TWI335356B (en) Apparatus and method for depositing thin films
KR100958682B1 (en) Device and method for vacuum deposition, and organic electroluminescent element provided by he device and the method
US20140109829A1 (en) Linear evaporation source and vacuum deposition apparatus including the same
JP2004225058A (en) Film deposition apparatus, display panel manufacturing apparatus, and method for the same
TW200835017A (en) Vapor deposition sources and methods
JP4966028B2 (en) Vacuum deposition equipment
WO2001031081A1 (en) Method and apparatus for coating a substrate in a vacuum
NL1020820C2 (en) Device for applying a layer to a flat substrate.
JP2002249868A (en) Vapor deposition system
JP4716277B2 (en) Thin film forming method, vapor deposition source substrate, and vapor deposition source substrate manufacturing method
TWI447246B (en) Vacuum evaporation device
JP2006200040A (en) Supporting device for heating vessel and deposition apparatus having the same
JP2004059981A (en) Vacuum vapor deposition method
US20130340679A1 (en) Vacuum deposition device
KR100730172B1 (en) Apparatus for depositing organic thin film
KR100829736B1 (en) Heating crucible of deposit apparatus
KR100666570B1 (en) Vapor deposition source for organic material and evaporating apparatus for organic material
JP3735287B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP5179716B2 (en) Electron beam vacuum deposition method and apparatus
JPS60137896A (en) Crucible for molecular beam source
JP2008156726A (en) Vacuum deposition system
KR101866956B1 (en) Crucible for linear evaporation source and Linear evaporation source having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees