JP2004059825A - Abrasive composition - Google Patents

Abrasive composition Download PDF

Info

Publication number
JP2004059825A
JP2004059825A JP2002222411A JP2002222411A JP2004059825A JP 2004059825 A JP2004059825 A JP 2004059825A JP 2002222411 A JP2002222411 A JP 2002222411A JP 2002222411 A JP2002222411 A JP 2002222411A JP 2004059825 A JP2004059825 A JP 2004059825A
Authority
JP
Japan
Prior art keywords
polishing
acid
polishing composition
copper
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222411A
Other languages
Japanese (ja)
Inventor
Toshiro Takeda
竹田 敏郎
Michio Kimura
木村 道生
Toshihiko Ogawa
小川 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002222411A priority Critical patent/JP2004059825A/en
Publication of JP2004059825A publication Critical patent/JP2004059825A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive composition for CMP process of a semiconductor device having a copper film and a tantalum compound, having high selectivity to have high abrasion rate of copper and small abrasion rate of the tantalum compound and giving a smooth surface of the copper film. <P>SOLUTION: The abrasive composition of Example 1 is produced by mixing an abrasive material composed of polymethyl methacrylate (PMMA) particles having an average particle diameter of 30 nm and a tensile strength of 48 N/mm<SP>2</SP>at 23°C, benzotriazole, hydrogen peroxide and an organic acid into an ion-exchanged water filtered with a cartridge filter of 0.5μm to get the concentration shown in Table 1 and stirring the mixture with a high-speed homogenizer to uniformly disperse the components. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨用組成物に関し、特に半導体のデバイスウエハーの表面平坦化加工に好適に用いられる研磨用組成物に関するものである。
【0002】
【従来の技術】
エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきており、これら半導体素子に於ける回路の集積度が急激に増大するに伴って半導体デバイスのデザインルールは年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面の平坦性はますます厳しくなってきている。
【0003】
一方で配線の微細化による配線抵抗の増大をカバーするために、配線材料としてアルミニウムやタングステンからより電気抵抗の小さな銅配線が検討されてきている。しかしながら銅を配線層や配線間の相互接続に用いる場合には、絶縁膜上に配線溝や孔を形成した後、スパッタリングやメッキによって銅膜を形成して不要な部分を化学的機械的研磨法(CMP)によって絶縁膜上の不要な銅が取り除かれる。
【0004】
かかるプロセスでは銅が絶縁膜中に拡散してデバイス特性を低下させるので、通常は銅の拡散防止のために絶縁膜上にバリア層としてタンタルやタンタルナイトライドの層を設けることが一般的になっている。
【0005】
このようにして最上層に銅膜を形成させたデバイスの平坦化CMPプロセスにおいては、初めに不要な部分の銅膜を絶縁層上に形成されたタンタル化合物の表面層まで研磨し、次のステップでは絶縁膜上のタンタル化合物の層を研磨しSiO面が出たところで研磨が終了していなければならない。このようなプロセスを図1に示したが、かかるプロセスにおけるCMP研磨では銅、タンタル化合物、SiOなどの異種材料に対して研磨レートに選択的性があることが必要である。
【0006】
即ちステップ1では銅に対する研磨レートが高く、タンタル化合物に対してはほとんど研磨能力がない程度の選択性が必要である。さらにステップ2ではタンタル化合物に対する研磨レートは大きいがSiOに対する研磨レートが小さいほどSiOの削りすぎを防止できるので好ましい。
【0007】
このプロセスを理想的には一つの研磨材で研磨できることが望まれるが、異種材料に対する研磨レートの選択比をプロセスの途中で変化させることはできないのでプロセスを2ステップに分けて異なる選択性を有する2つのスラリーでそれぞれのCMP工程を実施する。通常溝や孔の銅膜の削りすぎ(ディッシング、リセス、エロージョン)を防ぐためにステップ1ではタンタル化合物上の銅膜は少し残した状態で研磨を終了させる。ついでステップ2ではSiO層をストッパーとして残ったわずかな銅とタンタル化合物を研磨除去する。
【0008】
ステップ1に用いられる研磨用組成物に対しては、ステップ2でリカバーできないような表面上の欠陥(スクラッチ)を発生させることなく銅膜に対してのみ大きい研磨レートを有することが必要である。
【0009】
このような銅膜用の研磨用組成物としては、アミノ酢酸およびアミド硫酸から選ばれる少なくとも1種類の有機酸と酸化剤と水とを含有する研磨用組成物が、特開平7−233485号公報に示されている。銅に対して比較的大きな研磨レートが得られているがこれは酸化剤によってイオン化された銅が上記の有機酸とキレートを形成して機械的に研磨されやすくなったためと推定できる。
【0010】
しかしながら前記研磨用組成物を用いて、銅膜およびタンタル化合物を有する半導体デバイスを研磨すると、銅とタンタル化合物の研磨選択比が充分でなかったり、銅に対する選択比を高めると配線溝や孔の銅膜が削られ過ぎたり、銅膜表面の平滑性が損なわれる等の問題があった。
【0011】
【発明が解決しようとする課題】
本発明は、銅膜とタンタル化合物を有する半導体デバイスのCMP加工プロセスにおいて、銅の研磨レートは大きいがタンタル化合物の研磨レートが小さいという選択性の高い研磨用組成物を提供することにあり、更に銅膜表面の平滑性にも優れたCMP加工用の研磨用組成物である。
【0012】
【課題を解決するための手段】
本発明は(A)研磨材、(B)酸化防止剤、(C)有機酸、(D)過酸化水素、および(E)水を含有する研磨用組成物において、(A)研磨材が、平均粒径5〜500nmの範囲にある有機高分子化合物であってその粒子の23℃の引っ張り強度が30〜150N/mmであり、研磨材の研磨用組成物中の濃度が1〜30重量%であり、(B)酸化防止剤がベンゾトリアゾールまたはその誘導体であり、研磨用組成物中の濃度が0.01〜5重量%であり、(C)有機酸がシュウ酸、コハク酸、クエン酸、酒石酸、リンゴ酸、乳酸及びアミノ酸からなる群より選択された少なくとも一つ以上の酸であり、研磨組成物中の濃度が0.01〜5重量%であり、(D)過酸化水素の研磨用組成物中の濃度が0.03〜5重量%であることを特徴とする研磨用組成物である。
【0013】
本発明はかかる上記の問題点を解決するために種々検討した結果、特定の有機微粒子砥粒と特定の化合物および水を含有する研磨用組成物を用いることにより、銅膜に対する研磨レートが大きく、タンタル化合物に対する研磨レートが小さい、高い選択性を得ることができ、銅膜表面の平滑性にも優れた結果が得られることを見いだし、発明を完成するに至ったものである。
【0014】
本発明に用いられる研磨材は、有機高分子化合物であり、例えば、ビニルモノマーの乳化重合などによって得られる有機高分子化合物の微粒子やポリエステル,ポリアミド、ポリベンゾオキサゾールなど重縮合によって得られる有機高分子の微粒子やフェノール樹脂、メラミン樹脂などの付加縮合によって得られる有機高分子の微粒子をあげることができ、単独或いは任意に組み合わせ用いることができる。好ましくは比較的安価で粒径の揃った極性の低いビニル系高分子である。その有機高分子化合物は、微粒子形状で用いられ、その平均粒径は5〜500nmの範囲にある有機高分子化合物からなるものである。
【0015】
さらにはこの微粒子のJIS K 6760で測定された引張り強度が23℃、30〜150N/mmであることが好ましい。引張り強度が30N/mm未満であると銅の研磨速度が極端に低下するので好ましくない。強度が150N/mmを越えると研磨速度が大きくなり銅とTaやTaNとの選択比が低下するので好ましくない。引張り強度の測定は公知の方法で測定可能である。例を挙げると、成型加工してフィルム化できる場合は短冊状またはダンベル型に加工して引っ張り試験を実施して求めることができる。
【0016】
研磨材の一次粒子平均径は走査型電子顕微鏡によって観察することができるが、平均粒径は5nm〜500nmの範囲にあることがより好ましい。5nmより小さいと研磨レートが大きくなりにくいので好ましくなく、500nmを越えると被研磨物表面にスクラッチを発生しやすくなったり、タンタル化合物の研磨レートを押さえることが難しくなるので好ましくない。また特性を損なわない程度でコロイダルシリカ等の無機微粒子を研磨剤として併用することももちろん可能である。
【0017】
研磨材の研磨用組成物中の濃度は1〜30重量%であることが望ましい。研磨材の濃度が小さくなりすぎると機械的な研磨能力が減少し研磨レートが低下するので好ましくなく、濃度が高すぎると機械的研磨能力が増大してタンタル化合物の研磨レートをおさえることができなくなり、選択性が低下するので好ましくない。
【0018】
本発明の研磨用組成物は酸化防止剤としてベンゾトリアゾール又はその誘導体を含有する。研磨用組成物中の濃度は0.01〜5重量%であることが望ましい。0.01重量%未満であると銅膜の研磨レートが過度に大きくなり制御できなくなるので好ましくなく、5.0重量%を超えると研磨レートが極端に低下するので好ましくない。
【0019】
本発明の研磨用組成物は有機酸が含まれる。本発明における有機酸は銅とのキレートを形成し、銅の研磨速度を制御しやすくなるので好ましい。具体的な例を挙げるとシュウ酸、コハク酸、クエン酸、酒石酸、リンゴ酸、乳酸、アミノ酸の中から選ばれた少なくとも一つの有機酸である。添加量については研磨組成物中、0.01〜5重量%の範囲で使用する。0.01重量%未満ではキレート形成効果が不十分であり、5重量%を越えると研磨速度が制御できなくなり過研磨になるので好ましくない。
【0020】
本発明の研磨用組成物は過酸化水素を含有する。本発明における研磨用組成物において過酸化水素は酸化剤として作用しているものである。過酸化水素は銅膜に対して酸化作用を発揮し、イオン化を促進することによって銅膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.03〜5重量%であることが望ましい。この範囲の濃度から高くなっても低くなり過ぎても銅膜の研磨レートが低下するので好ましくない。
【0021】
本発明の研磨用組成物の媒体は水であり、イオン性不純物や金属イオンを極力減らしたものであることが望ましい。
【0022】
本発明の研磨用組成物は上記の各成分、研磨材、酸化防止剤、有機酸を水に混合、溶解、分散させて製造する。過酸化水素は、研磨直前に前記の混合液に添加、混合するが予め混合しておくことも可能である。それらの混合方法は、任意の装置で行うことができる。例えば、翼式回転攪拌機、超音波分散機、ビーズミル分散機、ニーダー、ボールミルなどが適用可能である。
【0023】
また上記成分以外に種々の研磨助剤を配合してもよい。このような研磨助剤の例としては、分散助剤、防錆剤、消泡剤、pH調整剤、防かび剤等が挙げられるが、これらはスラリーの分散貯蔵安定性、研磨速度の向上の目的で加えられる。分散助剤としてはヘキサメタリン酸ソーダ等が挙げられる。もちろん各種界面活性剤や水溶性高分子などを添加して分散性を向上させることができることは言うまでもない。pH調整剤としてはアンモニアなどの塩基性化合物や酢酸、塩酸、硝酸等の酸性化合物が挙げられる。消泡剤としては流動パラフィン、ジメチルシリコーンオイル、ステアリン酸モノ、ジグリセリド混合物、ソルビタンモノパルミチエート、等が挙げられる。
【0024】
【実施例】
本発明を実施例で具体的に説明する。
<実施例1>
研磨材として、平均粒径30nmで23℃の引張り強度が48N/mmのポリメチルメタクリレート(PMMA)粒子、ベンゾトリアゾール、過酸化水素、有機酸が表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて実施例1の研磨用組成物を得た。
【0025】
<研磨評価>
被研磨物は6インチのシリコンウエハー上にスパッタリングで2000Åのタンタル(Ta)並びに電解メッキで10000Åの銅を製膜したものを準備し、銅、Ta面を研磨した。
研磨は定盤径600mmの片面研磨機を用いた。研磨機の定盤にはロデール社製(米国)のポリウレタン製研磨パッドIC−1000/Suba400を専用の両面テープで張り付け、研磨液組成物(スラリー)を流しながら1分間、銅、タンタル膜を研磨した。研磨条件としては加重を300g/cm、定盤の回転数を40rpm、ウエハー回転数40rpm、研磨材組成物の流量を200ml/minとした。
【0026】
ウエハーを洗浄、乾燥後減少した膜厚を求めることにより研磨速度(Å/mi
n)を求めた。タンタルの研磨速度に対する銅の研磨速度の比を選択比とした。また光学顕微鏡で研磨面を観察して研磨状態を調べ以下のランク分けをした。
◎:良好、○:ごく一部にやや平滑不足があるも全般に良好、×:平滑不足

××:著しく腐食され平滑性NG
【0027】
<実施例2〜8、比較例1〜6>
研磨材C1〜C4、ベンゾトリアゾール、過酸化水素、有機酸が表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて実施例1と同様に研磨用組成物を調整し、実施例1と同様に研磨性評価を行った。
評価結果を表1に示した。
【0028】
【表1】

Figure 2004059825
【0029】
【発明の効果】
以上のように本発明によれば銅膜、タンタル膜を含む半導体デバイスのCMP加工プロセスにおいて銅膜を優先的に研磨可能な研磨液組成物が得られ、半導体デバイスを効率的に製造することができる。
【図面の簡単な説明】
【図1】銅膜を形成させたデバイスの研磨プロセスの模式図
【符号の説明】
1.Cu
2.Ta
3.SiO [0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing composition used for polishing semiconductors, substrates for various memory hard disks, and the like, and more particularly to a polishing composition suitably used for flattening a surface of a semiconductor device wafer.
[0002]
[Prior art]
The recent remarkable development of the electronics industry has evolved into transistors, ICs, LSIs, and VLSIs. With the rapid increase in the degree of circuit integration in these semiconductor devices, the design rules for semiconductor devices have become smaller year by year. The depth of focus in the device manufacturing process has become shallower, and the flatness of the pattern formation surface has become increasingly severe.
[0003]
On the other hand, in order to cover an increase in wiring resistance due to miniaturization of wiring, copper wiring having lower electric resistance has been studied from aluminum and tungsten as wiring materials. However, when copper is used for wiring layers and interconnections between wiring, after forming wiring grooves and holes on the insulating film, a copper film is formed by sputtering or plating, and unnecessary parts are chemically and mechanically polished. Unnecessary copper on the insulating film is removed by the (CMP).
[0004]
In such a process, copper diffuses into the insulating film and deteriorates device characteristics. Therefore, it is common practice to provide a tantalum or tantalum nitride layer as a barrier layer on the insulating film to prevent copper diffusion. ing.
[0005]
In the planarization CMP process for a device in which a copper film is formed on the uppermost layer in this manner, an unnecessary portion of the copper film is first polished to a tantalum compound surface layer formed on an insulating layer, and the next step is performed. Then, the tantalum compound layer on the insulating film must be polished and the polishing must be completed when the SiO 2 surface comes out. FIG. 1 shows such a process. In the CMP polishing in such a process, it is necessary that the polishing rate be selective to different materials such as copper, a tantalum compound, and SiO 2 .
[0006]
That is, in step 1, the polishing rate for copper is high and the selectivity is such that there is almost no polishing ability for the tantalum compound. Furthermore the polishing rate is larger for Step 2 in the tantalum compound is preferred because it prevents the cutting too much SiO 2 smaller the polishing rate for SiO 2.
[0007]
Ideally, this process should be able to be polished with a single abrasive, but since the selectivity of the polishing rate for different materials cannot be changed during the process, the process is divided into two steps and has different selectivities. Perform each CMP step with the two slurries. In order to prevent the copper film in the grooves and holes from being excessively ground (dishing, recess, erosion), the polishing is terminated in step 1 with the copper film on the tantalum compound being left slightly. Next, in Step 2, a small amount of copper and a tantalum compound remaining using the SiO 2 layer as a stopper are polished and removed.
[0008]
The polishing composition used in step 1 needs to have a high polishing rate only for the copper film without generating surface defects (scratch) that cannot be recovered in step 2.
[0009]
As such a polishing composition for a copper film, a polishing composition containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent, and water is disclosed in JP-A-7-233485. Is shown in A relatively large polishing rate is obtained for copper, which is presumed to be because copper ionized by the oxidizing agent forms a chelate with the above-mentioned organic acid and is easily polished mechanically.
[0010]
However, when the polishing composition is used to polish a semiconductor device having a copper film and a tantalum compound, when the polishing selectivity between copper and the tantalum compound is not sufficient, or when the selectivity to copper is increased, the copper in the wiring grooves and holes becomes poor. There have been problems such as excessive removal of the film and impairment of the smoothness of the copper film surface.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a highly selective polishing composition in which a polishing rate of copper is high but a polishing rate of a tantalum compound is low in a CMP processing process of a semiconductor device having a copper film and a tantalum compound. It is a polishing composition for CMP processing that also has excellent smoothness on the copper film surface.
[0012]
[Means for Solving the Problems]
The present invention relates to a polishing composition containing (A) an abrasive, (B) an antioxidant, (C) an organic acid, (D) hydrogen peroxide, and (E) water, wherein (A) the abrasive is An organic polymer compound having an average particle size in the range of 5 to 500 nm, a tensile strength at 23 ° C. of the particles of 30 to 150 N / mm 2 , and a concentration of the abrasive in the polishing composition of 1 to 30% by weight. %, (B) the antioxidant is benzotriazole or a derivative thereof, the concentration in the polishing composition is 0.01 to 5% by weight, and (C) the organic acid is oxalic acid, succinic acid, citric acid. At least one acid selected from the group consisting of acids, tartaric acid, malic acid, lactic acid, and amino acids, wherein the concentration in the polishing composition is 0.01 to 5% by weight; Characterized in that the concentration in the polishing composition is 0.03 to 5% by weight. It is a polishing composition.
[0013]
As a result of various studies to solve the above problems, the present invention uses a polishing composition containing a specific organic fine particle abrasive and a specific compound and water, the polishing rate for a copper film is large, The inventors have found that the polishing rate with respect to the tantalum compound is small, high selectivity can be obtained, and excellent results can be obtained in the smoothness of the copper film surface, and the present invention has been completed.
[0014]
The abrasive used in the present invention is an organic polymer compound, for example, fine particles of an organic polymer compound obtained by emulsion polymerization of a vinyl monomer, or an organic polymer obtained by polycondensation such as polyester, polyamide, and polybenzoxazole. And fine particles of an organic polymer obtained by addition condensation of a phenol resin, a melamine resin or the like, and these can be used alone or in any combination. Preferably, it is a relatively inexpensive vinyl polymer having a uniform particle size and a low polarity. The organic polymer compound is used in the form of fine particles, and has an average particle diameter in the range of 5 to 500 nm.
[0015]
Further, it is preferable that the tensile strength of these fine particles measured according to JIS K 6760 is 23 ° C. and 30 to 150 N / mm 2 . If the tensile strength is less than 30 N / mm 2 , the polishing rate of copper is extremely reduced, which is not preferable. If the strength exceeds 150 N / mm 2 , the polishing rate increases, and the selectivity between copper and Ta or TaN decreases, which is not preferable. The measurement of the tensile strength can be measured by a known method. For example, when a film can be formed by molding, it can be obtained by processing into a strip or dumbbell shape and conducting a tensile test.
[0016]
The average primary particle diameter of the abrasive can be observed with a scanning electron microscope, and the average particle diameter is more preferably in the range of 5 nm to 500 nm. If it is less than 5 nm, the polishing rate is difficult to increase, which is not preferable. If it exceeds 500 nm, scratches are likely to occur on the surface of the object to be polished, and it becomes difficult to suppress the polishing rate of the tantalum compound, which is not preferable. It is of course possible to use inorganic fine particles such as colloidal silica together as an abrasive without impairing the properties.
[0017]
The concentration of the abrasive in the polishing composition is desirably 1 to 30% by weight. If the concentration of the abrasive is too low, the mechanical polishing ability decreases and the polishing rate decreases, which is not preferable.If the concentration is too high, the mechanical polishing ability increases and the polishing rate of the tantalum compound cannot be suppressed. This is not preferred because the selectivity decreases.
[0018]
The polishing composition of the present invention contains benzotriazole or a derivative thereof as an antioxidant. The concentration in the polishing composition is desirably 0.01 to 5% by weight. If the amount is less than 0.01% by weight, the polishing rate of the copper film becomes excessively large and cannot be controlled, and if it exceeds 5.0% by weight, the polishing rate is extremely lowered.
[0019]
The polishing composition of the present invention contains an organic acid. The organic acid in the present invention is preferable because it forms a chelate with copper and easily controls the polishing rate of copper. Specific examples include at least one organic acid selected from oxalic acid, succinic acid, citric acid, tartaric acid, malic acid, lactic acid, and amino acids. The additive amount is used in the range of 0.01 to 5% by weight in the polishing composition. If it is less than 0.01% by weight, the effect of forming a chelate is insufficient, and if it exceeds 5% by weight, the polishing rate cannot be controlled, resulting in overpolishing, which is not preferable.
[0020]
The polishing composition of the present invention contains hydrogen peroxide. In the polishing composition of the present invention, hydrogen peroxide acts as an oxidizing agent. Hydrogen peroxide exerts an oxidizing effect on the copper film and has a function of increasing the polishing rate of the copper film by promoting ionization, but the concentration in the polishing composition is 0.03 to 5% by weight. It is desirable. If the concentration is too high or too low, the polishing rate of the copper film is undesirably reduced.
[0021]
The medium of the polishing composition of the present invention is water, and it is preferable that ionic impurities and metal ions are reduced as much as possible.
[0022]
The polishing composition of the present invention is produced by mixing, dissolving, and dispersing the above components, an abrasive, an antioxidant, and an organic acid in water. Hydrogen peroxide is added to and mixed with the above mixed solution immediately before polishing, but it is also possible to mix them in advance. These mixing methods can be performed with any device. For example, a blade-type rotary stirrer, an ultrasonic disperser, a bead mill disperser, a kneader, a ball mill and the like can be applied.
[0023]
In addition to the above components, various polishing aids may be blended. Examples of such polishing aids include dispersing aids, rust preventives, defoamers, pH adjusters, fungicides, and the like, which are used to improve the dispersion storage stability of the slurry and the polishing rate. Added for purpose. Examples of the dispersing aid include sodium hexametaphosphate. Needless to say, various surfactants and water-soluble polymers can be added to improve the dispersibility. Examples of the pH adjuster include basic compounds such as ammonia and acidic compounds such as acetic acid, hydrochloric acid, and nitric acid. Examples of the antifoaming agent include liquid paraffin, dimethyl silicone oil, monostearic acid, a mixture of diglycerides, and sorbitan monopalmitate.
[0024]
【Example】
The present invention will be specifically described with reference to examples.
<Example 1>
As an abrasive, polymethyl methacrylate (PMMA) particles having an average particle diameter of 30 nm and a tensile strength of 48 N / mm 2 at 23 ° C., benzotriazole, hydrogen peroxide, and an organic acid were adjusted to the concentrations shown in Table 1 so as to have the concentrations shown in Table 1. The mixture was mixed with ion-exchanged water filtered through a 0.5 μm cartridge filter, stirred with a high-speed homogenizer and uniformly dispersed to obtain a polishing composition of Example 1.
[0025]
<Polishing evaluation>
An object to be polished was prepared by forming a 2000-inch tantalum (Ta) film on a 6-inch silicon wafer by sputtering and a 10000-cm copper film by electrolytic plating, and the copper and Ta surfaces were polished.
Polishing was performed using a single-side polishing machine having a platen diameter of 600 mm. A polishing pad IC-1000 / Suba400 made by Rodale (USA) is attached to the surface plate of the polishing machine with a special double-sided tape, and the copper and tantalum films are polished for 1 minute while flowing a polishing composition (slurry). did. The polishing conditions were a load of 300 g / cm 2 , a platen rotation speed of 40 rpm, a wafer rotation speed of 40 rpm, and a flow rate of the abrasive composition of 200 ml / min.
[0026]
The polishing rate (Å / mi) is obtained by obtaining the reduced film thickness after cleaning and drying the wafer.
n) was determined. The ratio of the polishing rate of copper to the polishing rate of tantalum was used as the selectivity. In addition, the polished surface was observed with an optical microscope to check the polished state, and the following ranking was made.
◎: good, :: only a part of the surface is slightly smooth and insufficient, but generally good.
XX: Notably corroded and smooth NG
[0027]
<Examples 2 to 8, Comparative Examples 1 to 6>
The abrasives C1 to C4, benzotriazole, hydrogen peroxide, and organic acid were mixed with ion-exchanged water filtered through a 0.5 μm cartridge filter so as to have the concentration shown in Table 1, and stirred with a high-speed homogenizer. The composition was uniformly dispersed to prepare a polishing composition in the same manner as in Example 1, and the polishing property was evaluated in the same manner as in Example 1.
Table 1 shows the evaluation results.
[0028]
[Table 1]
Figure 2004059825
[0029]
【The invention's effect】
As described above, according to the present invention, a polishing composition capable of preferentially polishing a copper film in a CMP processing process of a semiconductor device including a copper film and a tantalum film is obtained, and a semiconductor device can be efficiently manufactured. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view of a polishing process of a device having a copper film formed thereon.
1. Cu
2. Ta
3. SiO 2

Claims (1)

(A)研磨材、(B)酸化防止剤、(C)有機酸、(D)過酸化水素、および(E)水を含有する研磨用組成物において、(A)研磨材が、平均粒径5〜500nmの範囲にある有機高分子化合物であってその粒子の23℃の引っ張り強度が30〜150N/mmであり、研磨材の研磨用組成物中の濃度が1〜30重量%であり、(B)酸化防止剤がベンゾトリアゾールまたはその誘導体であり、研磨用組成物中の濃度が0.01〜5重量%であり、(C)有機酸がシュウ酸、コハク酸、クエン酸、酒石酸、リンゴ酸、乳酸及びアミノ酸からなる群より選択された少なくとも一つ以上の酸であり、研磨組成物中の濃度が0.01〜5重量%であり、(D)過酸化水素の研磨用組成物中の濃度が0.03〜5重量%であることを特徴とする研磨用組成物。In a polishing composition containing (A) an abrasive, (B) an antioxidant, (C) an organic acid, (D) hydrogen peroxide, and (E) water, (A) the abrasive has an average particle size. An organic polymer compound in the range of 5 to 500 nm, the particles have a tensile strength at 23 ° C. of 30 to 150 N / mm 2 , and the concentration of the abrasive in the polishing composition is 1 to 30% by weight. , (B) the antioxidant is benzotriazole or a derivative thereof, the concentration in the polishing composition is 0.01 to 5% by weight, and (C) the organic acid is oxalic acid, succinic acid, citric acid, tartaric acid. At least one acid selected from the group consisting of malic acid, lactic acid and amino acid, the concentration in the polishing composition is 0.01 to 5% by weight, and (D) a polishing composition of hydrogen peroxide. Characterized in that the concentration in the substance is 0.03 to 5% by weight. Polishing composition.
JP2002222411A 2002-07-31 2002-07-31 Abrasive composition Pending JP2004059825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222411A JP2004059825A (en) 2002-07-31 2002-07-31 Abrasive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222411A JP2004059825A (en) 2002-07-31 2002-07-31 Abrasive composition

Publications (1)

Publication Number Publication Date
JP2004059825A true JP2004059825A (en) 2004-02-26

Family

ID=31942437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222411A Pending JP2004059825A (en) 2002-07-31 2002-07-31 Abrasive composition

Country Status (1)

Country Link
JP (1) JP2004059825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121001A (en) * 2004-10-25 2006-05-11 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device and abrasive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121001A (en) * 2004-10-25 2006-05-11 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device and abrasive

Similar Documents

Publication Publication Date Title
JP2003297779A (en) Composition for polishing and polishing method
JP2003286477A (en) Polishing composition and polishing method
JP2005082791A (en) Polishing composition
JP2003218071A (en) Composition for polishing
JP2003133266A (en) Polishing composition
JP3732203B2 (en) Polishing composition
JP2004281848A (en) Abrasive composition
JP2004059825A (en) Abrasive composition
JP2003336039A (en) Abrasive composition
JP2003238942A (en) Polishing composition
JP2006210451A (en) Polishing composition
JP2004067869A (en) Polishing composition
JP2003321671A (en) Composition for abrasive
JP2004175904A (en) Polishing composition
JP3741435B2 (en) Polishing composition
JP2003197572A (en) Composition for polishing
JP2004067868A (en) Polishing composition
JP2004059824A (en) Abrasive composition
JP2004149630A (en) Polishing composition
JP2003151927A (en) Polishing composition
JP2004143260A (en) Polishing composition
JP2003249468A (en) Polishing composition
JP2003313541A (en) Polishing composition
JP2003306665A (en) Polishing composition
JP2004149655A (en) Polishing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113