JP2004059694A - Dispersing agent, dispersion and method for producing inorganic powder dispersion - Google Patents

Dispersing agent, dispersion and method for producing inorganic powder dispersion Download PDF

Info

Publication number
JP2004059694A
JP2004059694A JP2002218556A JP2002218556A JP2004059694A JP 2004059694 A JP2004059694 A JP 2004059694A JP 2002218556 A JP2002218556 A JP 2002218556A JP 2002218556 A JP2002218556 A JP 2002218556A JP 2004059694 A JP2004059694 A JP 2004059694A
Authority
JP
Japan
Prior art keywords
inorganic powder
dispersion
polyamic acid
dispersant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002218556A
Other languages
Japanese (ja)
Other versions
JP4119700B2 (en
Inventor
Nagayasu Kaneshiro
金城 永泰
Taiji Nishikawa
西川 泰司
Renichi Akahori
赤堀 廉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2002218556A priority Critical patent/JP4119700B2/en
Publication of JP2004059694A publication Critical patent/JP2004059694A/en
Application granted granted Critical
Publication of JP4119700B2 publication Critical patent/JP4119700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersing agent for an inorganic powder which can easily disperse the inorganic powder on dispersion, does not cause its decomposition/deterioration, particularly even when applied to a resin requiring high heat in the processing steps, and does not deteriorate the properties of the resin, and a dispersion method. <P>SOLUTION: A method for producing an inorganic powder dispersion to be added to a resin uses a dispersing agent having, as a main component, a heat-resistant resin and/or a heat-resistant resin precursor as the dispersing agent for dispersing an inorganic powder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂などの改質剤、補強剤として用いられる無機粉体の有機溶媒中への分散方法に関する。
【0002】
【従来の技術】
合成樹脂などの改質、および高強度化を目的として無機粉体を添加するという方法が広く用いられている。一般に無機粉体を樹脂に添加する場合には分散媒に無機粉体を分散した分散液を樹脂もしくは樹脂の前駆体に添加・混合する方法が用いられる。この時、分散性の向上、生産性の向上などを目的として分散剤が併用されること、または粉体表面をカップリング剤などで処理する方法を用いられることが多い。分散剤としては第四級アンモニウム塩、有機珪素化合物、有機酸金属塩等が様々な形態で広く用いられている。例えば特開平9−221517号にはプロペニル化合物をモノマーとして用いた重合体が種々の無機粉体に対して良好な分散剤となること、特開平5−25320号には有機リン酸が微粉末鉱物充填剤に対して有効な分散剤となりうることが開示されている。しかしこれら広く知られている分散剤は耐熱性の低い有機基で修飾された物が多く、加工工程で高熱を必要とする樹脂、例えばポリイミド等に適用した場合、分散剤が分解・劣化し樹脂の特性を低下させることが多かった。
【0003】
【発明が解決しようとする課題】
無機粉体を分散させる場合に、容易に分散ができ、特に、加工工程で高熱を必要とするような樹脂に適用しても、分散剤が分解・劣化せず、樹脂の特性を低下させることのない無機粉体の分散剤および、分散方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、無機粉体を有機溶媒中に分散させる方法において、耐熱性樹脂および/またはその前駆体を主成分とする分散剤を用いる無機粉体の分散方法を内容とする。
本発明は、無機粉体を有機溶媒中に分散させる方法において、可溶性ポリイミドおよび/またはポリアミック酸を主成分とする分散剤を用いる無機粉体の分散方法を内容とする。
【0005】
また本発明は無機粉体とポリアミック酸の合計重量に対して0.5重量%以上となる量のポリアミック酸を含む分散剤を用いる前記無機粉体の分散方法を内容とする。
【0006】
また本発明は無機粉体が酸化チタンである前記無機粉体の分散方法を内容とする。
【0007】
【発明の実施の形態】
本発明の無機粉体の分散方法についてその実施の形態の一例に基づき説明する。
【0008】
本発明に用いられる分散剤は、有機溶媒に可溶な耐熱性樹脂及び/又は耐熱性樹脂前駆体を主成分とする。
このような耐熱性樹脂としては、ポリアミック酸、ポリイミド、ポリサルホン、ポリアミドイミドおよびその前駆体、アラミド樹脂、ポリイソイミド、ポリフェニレンスルフィド、等(入れてください)が挙げられるが、ポリアミック酸および/または可溶性ポリイミドを用いることが好ましい。このような分散剤を用いることによって、無機粉体の分散性がよく、分散させた無機粉体が沈殿しにくく、さらには、樹脂に添加した後の高熱下での加工工程を経ても、分散剤が分解したり、劣化したりしにくく、結果として得られる樹脂成型体などの特性を向上させることが可能となる。
【0009】
ポリアミック酸は基本的には、公知のあらゆるポリアミック酸を適用することができる。本発明に用いられるポリアミック酸は、通常、芳香族酸二無水物の少なくとも1種とジアミンの少なくとも1種を、実質的等モル量を有機溶媒中に溶解させて、得られたポリアミック酸有機溶媒溶液を、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。本発明においてはいかなる重合法により得られたポリアミック酸有機溶媒溶液を用いることも出来るが、その一例として1)ジアミンを溶解または分散させた溶媒中に芳香族酸二無水物を固体状、スラリー状、溶液状またはこれらの組み合わせで添加していく方法、2)芳香族酸二無水物を溶解又は分散させた溶媒中にジアミンを固体状、スラリー状、溶液状またはこれらの組み合わせで添加していく方法、3)ポリアミック酸分子中のモノマー配列を制御する目的で各モノマーを多段階で添加し、最終的に実質的に等モル量の芳香族酸二無水物とジアミンを反応させる方法などが挙げられる。また、別途重合した二種以上のポリアミック酸有機溶媒溶液を混合して用いることも出来る。これらのポリアミック酸溶液の濃度と粘度は用途、プロセスに合わせて適宜調節すればよい。通常、樹脂成型品として強度を発現させるための適当な分子量が得られることから、ポリアミック酸溶液の濃度は5〜35wt%、さらには10〜30wt%、23℃における溶液粘度は100〜10000ポイズ、さらには500〜7000ポイズ、特には1000〜5000ポイズが好ましい。
【0010】
無機粉体の分散媒は分散剤を析出させない物であればいかなる物を用いても良いが、例えば、分散材として可溶性ポリイミドおよび/またはポリアミック酸を用いた場合には、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが好ましい。
【0011】
用いるポリアミック酸の量は、ポリアミック酸と無機粉体の合計重量に対して、0.5重量%以上、好ましくは1重量%以上、より好ましくは2重量%以上用いればよい。さらには、無機粉体を分散させる際に用いられるポリアミック酸量の好ましい範囲としては、ポリアミック酸と無機粉体の合計重量に対して0.5〜20重量%、好ましくは1〜10重量%、さらに好ましくは2〜5重量%である。ポリアミック酸の量がこの範囲より少ないと、分散性の改善効果が見られにくくなる傾向にある。また、ポリアミック酸の量がこの範囲より多いと粘度が高くなり良好な分散状態を得ることが困難となる場合がある。
【0012】
ただし、分散液の調製後、無機粉体の沈降防止のために更に分散剤を添加して分散液の粘度を上昇させて用いることも好ましく、この場合は、分散剤の上限量は特に限定されない。
ポリアミック酸は固体状、スラリー状、溶液状いかなる形態でも良いが、無機粉体分散液中では溶解していることが必要であるため、溶液状の物を用いることが再溶解させる手間がないので好ましい。分散剤としてはいかなる分子量のポリアミック酸を用いても効果を発揮しうるが、無機粉体を充填した樹脂の機械的物性を低下させない為には、上述したポリアミック酸有機溶剤溶液と同等の濃度、粘度を有する溶液をそのまま、もしくは稀釈して用いるのが好ましい。また、分散剤中には公知のあらゆる分散剤、分散助剤、増粘剤、界面活性剤、合成樹脂の可塑剤等の各種薬剤及び/又は添加剤を混合して用いることもできる。
これら各種薬剤及び/又は添加剤は液状であってもよいし、固体であってもよい。またこれら各種薬剤及び/または添加剤の量は分散剤としてのポリアミック酸との合計量に対して10重量%以下、好ましくは5重量%以下、さらに好ましくは3重量%以下である。これら各種薬剤及び/または添加剤の量がこの範囲を上回ると、分散の効果が小さくなる、薬剤の残差が残る、分散剤の耐熱性が低下するなどの現象がみられやすくなる傾向にある。
本発明において、分散液中の無機粉体濃度は、分散液全重量に対して60重量%以下、さらには50重量%以下、特には45重量%以下が好ましい。分散液中の無機粉体濃度がこの範囲を上回ると粘度が高くなりすぎ、分散不良を引き起こしやすくなる傾向にある。
【0013】
このようにして得られる、ポリアミック酸を主成分とする分散剤を用いた無機粉体分散体は沈降防止のため粘度を上昇させていない場合は、1〜100ポイズ、好ましくは1〜80ポイズ、更に好ましくは1〜50ポイズの粘度を示す。
沈降防止のため粘度を上昇させた場合は、好ましくは100〜2000ポイズ、更に好ましくは150〜1500ポイズの粘度を示す。
【0014】
分散剤であるポリアミック酸は、最終的にポリイミドに転化してもよく、ポリアミック酸のまま存在させてもよいが、耐熱性、耐溶剤性の観点から、ポリイミドに転化させる方が好ましい。イミド化には、熱キュア法及び化学キュア法のいずれかを用いる。熱キュア法は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる方法である。また、化学キュア法は、ポリアミック酸有機溶媒溶液に、無水酢酸等の酸無水物に代表される化学的転化剤と、イソキノリン、β−ピコリン、ピリジン等の第三級アミン類等に代表される触媒とを作用させる方法である。化学キュア法に熱キュア法を併用してもよい。イミド化の反応条件は、ポリアミック酸の種類、熱キュア法及び/または化学キュア法の選択等により、変動し得る。また、可溶性ポリイミドの前駆体であるポリアミック酸を製造し、上記の方法によりイミド化に転化させたものを分散剤として用いても良い。ここで、本発明にかかるポリアミック酸に用いられる材料について説明する。
【0015】
本発明にかかるポリアミック酸を選るのに適当な酸無水物は、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0016】
これらのうち、本発明において用いられるポリイミド前駆体ポリアミック酸組成物において最も適当な酸二無水物はピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)であり、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0017】
本発明にかかるポリイミド前駆体ポリアミック酸組成物において使用し得る適当なジアミンは、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0018】
これらジアミンにおいて、4,4’−ジアミノジフェニルエーテル及びp−フェニレンジアミンが特に好ましく、また、これらをモル比で100:0から0:100、好ましくは100:0から10:90の割合で混合した混合物が好ましく用い得る。
【0019】
ポリアミック酸を合成するための好ましい溶媒は、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが好ましい。
【0020】
また、イミド化を化学キュア法により行う場合、化学的転化剤と触媒を含む硬化剤を併用する。本発明にかかるポリアミック酸組成物に添加する化学的転化剤は、例えば脂肪族酸無水物、芳香族酸無水物、N,N ’ − ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族ハロゲン化物、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物が挙げられる。それらのうち、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族無水物またはそれらの2種以上の混合物が、好ましく用い得る。化学的転化剤の量としては、ポリアミック酸中のアミック酸1モルに対して0.5〜5.0モル当量、好ましくは0.8〜4.0モル当量、さらに好ましくは1.0〜3.0モル当量の範囲で好適に用い得る。化学的転化剤の量がこの範囲を下回るとイミド化が遅くなる傾向にあり、生産性を悪化させることがある。またこの範囲を上回ると得られる成型体の機械的特性が悪化したり、イミド化が速くなりすぎて加工しにくくなるなどの不都合を生じることがある。
【0021】
また、イミド化を効果的に行うためには、化学的転化剤に触媒を同時に用いることが好ましい。触媒としては脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。それらのうち複素環式第三級アミンから選択されるものが特に好ましく用い得る。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。触媒の量としてはポリアミック酸中のアミック酸1モルに対して0.1〜2モル当量、好ましくは0.2〜1.5モル当量、さらに好ましくは0.3〜1.0モル当量の割合で用い得る。少なすぎると化学イミド化が進行(硬化)しにくくなる傾向があり、多すぎると化学イミド化の進行(硬化)が速くなり、加工しにくくなるなどの不都合を生じることがある。
本発明で用いられる無機粉体とは、金属酸化物、金属無機酸塩等が挙げられる。これら無機粉体の好ましい一例としては、酸化チタン、酸化亜鉛、酸化鉄、炭酸カルシウム、ピロリン酸カルシウム、第二リン酸カルシウム無水物、酸化錫、シリカ、アルミナ、マグネシア、雲母、合成雲母、粘土鉱物等、特に好ましくは酸化チタン、ピロリン酸カルシウム、第二リン酸カルシウム無水物が挙げられる。また、本発明で用いられる無機粉体は球状、層状、針状、粉粒状またはこれらの混合物等いかなる形状のものを用いてもよく、付与したい機能に応じた形状を選択すればよい。
本発明で用いられる無機粉体の粒子径としては、その平均粒子径が0.01〜20μm、好ましくは0.01〜15μm、更に好ましくは0.01〜10μmのものを用いるのが好ましい。この粒子径が上記範囲を外れると分散性改良の効果が小さくなることがある。
粉体を分散させる溶媒としては、ポリアミック酸を溶解する溶媒で有ればいかなるものも用いることが出来るが、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが分散剤の溶解性と言う観点から好ましい。
無機粉体を分散させる方法としては1)分散剤を溶媒に溶解した後無機粉体を添加する方法、2)溶媒に無機粉体を添加、混合した後分散剤を溶解する方法、3)無機粉体とポリアミック酸を混合し、溶媒を加えて分散させる方法、4)分散を多段階に分けて1)〜3)を組み合わせる方法等が挙げられるが、最終的に分散溶媒、無機粉体、ポリアミック酸という構成の分散液が得られる方法ならばいかなる方法を用いても良い。また無機粉体の分散には、超音波、ビーズミル、ペイントシェーカー等の分散機を使用しても良い。
【0022】
本発明の方法により改質、または補強され得る合成樹脂は、特に限定されないが、ポリエステル樹脂、ポリオレフィン樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリベンズイミダゾール、ポリフェニレンオキサイド、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミドなどが挙げられ、これらの中でポリイミド樹脂の場合に最も大きな改質及び/または補強効果を得ることができる。
また、無機粉体を添加した合成樹脂は、いかなる形態であってもよく、例えば成型体、繊維、フィルムなどが挙げられる。本発明によれば、成型加工直前に無機粉体を添加することも可能であるため、特に流延製膜法によるフィルムへの加工などに好適に用いることができる。
【0023】
本発明を用いて合成樹脂に無機粉体を添加する量は、その改質及び/又は補強の目的等により大きく異なるため、特に限定されるものではないが、特に好ましい例を以下に記述する。
例えば、機械的強度向上等の補強効果、導電性改良などの改質においては、合成樹脂と無機粉体の合計量に対して15〜50重量%、好ましくは15〜40重量%、さらに好ましくは20〜35重量%である。無機粉体の添加量がこの範囲よりも小さいと樹脂の抵抗値が下がらない、または機械的強度の向上効果が得られにくく、この範囲より大きくても抵抗値の改質効果はほぼ飽和する上、合成樹脂の機械的特性が低下する傾向にある。
また更に、表面性の改質、樹脂の摩擦係数を低下させるなどといった合成樹脂の改質においては、合成樹脂と無機粉体の合計量に対して0.01重量%以上、好ましくは0.015重量%以上の添加量があれば改質効果を得ることができる。以上のようにその目的とする改質効果により、好ましい添加量は大きく変動するため、本発明を用いて合成樹脂に無機粉体を添加する場合の好ましい添加量はと刻に限定されるものではない。
【0024】
【実施例】
以下に実施例を挙げて、本発明の効果を具体的に説明するが、本発明は、以下の実施例に限定されるものではなく、当業者は本発明の範囲を逸脱することなく、種々の変更、修正、及び改変を行い得る。
【0025】
無機粉体分散液の粘度は、トキメック社製Viscometer B8H型、No.3ローターを用いて、23℃の液温で測定した。
【0026】
(参考例1)815gのジメチルホルムアミド(DMF)に4,4’−ジアミノジフェニルエーテル88.5gを溶解させ、溶液を10℃に冷却した。ここにピロメリット酸二無水物96.5gを徐々に添加して2時間撹拌、反応させてポリアミック酸溶液を得た。(23℃における粘度2800ポイズ、固形分濃度18.5重量%)。
【0027】
(参考例2)815gのジメチルホルムアミド(DMF)にp−フェニレンジアミン10.0gを溶解させ、溶液を10℃に冷却した。ここにピロメリット酸二無水物18.2gを徐々に添加して1時間撹拌させてポリアミック酸プレポリマーを得た。更にこの反応液に、4,4’−ジアミノジフェニルエーテル74.1gを溶解させた後、ピロメリット酸二無水物82.7gを徐々に添加して2時間撹拌させてポリアミック酸溶液を得た。(23℃における粘度3000ポイズ、固形分濃度18.5重量%、4,4‘−ジアミノジフェニルエーテルとp−フェニレンジアミンのモル比80/20)。
【0028】
(実施例1)針状の酸化チタン11.1g(石原産業株式会社製、FTL−300)にDMF12.5gを加えて混練した後、参考例1で得たポリアミック酸溶液を4g添加して無機粉体分散液を得た(分散剤量 6wt%(無機粉体と分散剤の合計重量に対して);無機粉体分散液粘度 40ポイズ)。この分散液を5℃の冷蔵庫で5日保管したが、無機粉体が沈殿することは無かった。
【0029】
(実施例2)針状の酸化チタン11.1g(石原産業株式会社製、FTL−300)にDMF12.5gを加えて混練した後、参考例2で得たポリアミック酸溶液を4g添加して無機粉体分散液を得た(分散剤量 6wt%(無機粉体と分散剤の合計重量に対して);無機粉体分散液粘度 38ポイズ)。この分散液を5℃の冷蔵庫で5日保管したが、無機粉体が沈殿することは無かった。
【0030】
(実施例3)針状の酸化チタン32g(石原産業株式会社製、FTL−300)にDMFを36gを加えて混錬した後、参考例1で得たポリアミック酸溶液を2g添加して無機粉体分散液を調製した(分散剤量 1.1wt%(無機粉体と分散剤の合計重量に対して);無機粉体分散液粘度 25ポイズ)。この分散液を5℃の冷蔵庫で5日保管したが、無機粉体が沈殿することは無かった。
【0031】
(実施例4)粒状の酸化チタン32g(石原産業株式会社製、CR−60)にDMFを32g加えて混錬した後、参考例1で得たポリアミック酸溶液を4g添加して無機粉体分散液を得た(分散剤量 2.2wt%(無機粉体と分散剤の合計重量に対して);無機粉体分散液粘度 30ポイズ)。この分散液を5℃の冷蔵庫で5日保管したが、無機粉体が沈殿することは無かった。
【0032】
(比較例1)針状の酸化チタン11.1g(石原産業株式会社製、FTL−300)にDMF16.5gを加えて混練したが、流動性のある分散液を得ることはできなかった。
【0033】
(比較例2)粒状の酸化チタン32g(石原産業株式会社製、CR−60)にDMFを36g加えて混錬したが、流動性のある分散液を得ることはできなかった。
【0034】
(実施例5)参考例1で得たポリアミック酸溶液100gに、実施例1で得た針状の酸化チタン分散液27.6gを混合した。次いでこの無機粉体分散ポリアミック酸ワニスに、無水酢酸9g、イソキノリン11.4g、DMF15.6gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃以下に冷却しながら行った。このアルミ箔とポリアミック酸溶液の積層体を140℃で250秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを200℃、300℃、400℃、450℃で各1分間加熱して厚さ75μmの無機粉体充填ポリイミドフィルムを製造した(無機粉体含有量36.5重量%)。この無機粉体充填ポリイミドフィルムの特性を表1に示す。
【0035】
(比較例3)比較例1で得た針状の酸化チタン分散液27.6gを用いた以外は実施例5と全く同様にして無機粉体充填ポリイミドフィルムを得た。(無機粉体含有量36.5重量%)。この無機粉体充填ポリイミドフィルムの特性を表1に示す。
【0036】
(参考例3)無機粉体分散液を用いなかった以外は、実施例5と全く同様にして無機粉体を含有しないポリイミドフィルムを得た。このポリイミドフィルムの特性を表1に示す。
【0037】
(実施例6)参考例2で得たポリアミック酸溶液を100g、実施例2で得た針状の酸化チタン分散液27.6gを用いた以外は実施例5と全く同様にして厚さ75μmの無機粉体充填ポリイミドフィルムを得た(無機粉体含有量36.5重量%)。この無機粉体充填ポリイミドフィルムの特性を表1に示す。
【0038】
(比較例4)比較例1で得た針状の酸化チタン分散液27.6gを用いた以外は実施例6と全く同様にして無機粉体充填ポリイミドフィルムを得た。(無機粉体含有量36.5重量%)。この無機粉体充填ポリイミドフィルムの特性を表1に示す。
(参考例4)無機粉体分散液を用いなかった以外は、実施例6と全く同様にして無機粉体を含有しないポリイミドフィルムを得た。このポリイミドフィルムの特性を表1に示す。
【0039】
(参考例3)
1リットルのセパラブルフラスコに、BAPP(2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン)  123.2g(0.3mol)、無水トリメリット酸  115.3g(0.6mol)、N−メチル−2−ピロリドン716gを投入し、80℃で30分間撹拌した。さらにトルエン  143gを投入した後160℃で2時間還流させた。さらに190℃まで温度を上げて、トルエンを留去した。その後、溶液を室温に戻し、4,4’−ジフェニルメタンジイソシアネート  75.1g(0.3mol)を投入し、190℃で2時間反応させて芳香族ポリアミドイミドのNMP溶液を得た。
【0040】
(実施例7)
参考例3で得たポリアミドイミドの溶液62gに、実施例1で得た針状の酸化チタン分散液27.6gを混合した。
この溶液をPETフィルムに塗布し、130℃で10分間乾燥した後、PETフィルムからはがして、さらに、これをステンレス製の枠で固定した後、270℃で30分間加熱して厚み約60μmの芳香族ポリアミドイミドフィルムを得た。このフィルムの特性を表1に示す。
【0041】
(比較例5)
比較例1で得た針状の酸化チタン分散液を用いた以外は実施例7と同様にしてポリアミドイミドフィルムを得た。このフィルムの特性を表1に示す。
【0042】
【表1】

Figure 2004059694
1)目視による無機粉体凝集の有無
1)ASTM D882に準じて測定
【0043】
【発明の効果】
本発明により、高い耐熱性を有する無機粉体の分散剤を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for dispersing an inorganic powder used as a modifier or a reinforcing agent such as a synthetic resin in an organic solvent.
[0002]
[Prior art]
A method of adding an inorganic powder for the purpose of modifying a synthetic resin or the like and increasing the strength has been widely used. In general, when an inorganic powder is added to a resin, a method of adding and mixing a dispersion liquid in which the inorganic powder is dispersed in a dispersion medium to a resin or a resin precursor is used. At this time, a dispersant is often used in combination for the purpose of improving dispersibility and productivity, or a method of treating the powder surface with a coupling agent or the like is often used. As the dispersant, quaternary ammonium salts, organic silicon compounds, organic acid metal salts and the like are widely used in various forms. For example, JP-A-9-221517 discloses that a polymer using a propenyl compound as a monomer is a good dispersant for various inorganic powders. It is disclosed that it can be an effective dispersant for the filler. However, many of these widely known dispersants are modified with organic groups having low heat resistance, and when applied to resins that require high heat in the processing step, such as polyimide, the dispersants decompose and degrade, and In many cases, the characteristics of the polymer were deteriorated.
[0003]
[Problems to be solved by the invention]
When the inorganic powder is dispersed, it can be easily dispersed, and in particular, even when applied to a resin that requires high heat in the processing step, the dispersing agent does not decompose or deteriorate, thereby lowering the properties of the resin. It is an object of the present invention to provide a dispersant and a dispersion method of an inorganic powder having no powder.
[0004]
[Means for Solving the Problems]
The present invention relates to a method for dispersing an inorganic powder in an organic solvent, the method comprising dispersing an inorganic powder using a heat-resistant resin and / or a precursor thereof as a main component.
The present invention relates to a method for dispersing an inorganic powder in an organic solvent, the method comprising dispersing the inorganic powder using a dispersant containing soluble polyimide and / or polyamic acid as a main component.
[0005]
The present invention also includes a method for dispersing the inorganic powder using a dispersant containing polyamic acid in an amount of 0.5% by weight or more based on the total weight of the inorganic powder and the polyamic acid.
[0006]
The present invention also includes a method for dispersing the inorganic powder, wherein the inorganic powder is titanium oxide.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for dispersing inorganic powder of the present invention will be described based on an example of the embodiment.
[0008]
The dispersant used in the present invention contains a heat-resistant resin and / or a heat-resistant resin precursor soluble in an organic solvent as a main component.
Examples of such heat-resistant resin include polyamic acid, polyimide, polysulfone, polyamideimide and its precursor, aramid resin, polyisoimide, polyphenylene sulfide, etc. (please enter). Preferably, it is used. By using such a dispersant, the dispersibility of the inorganic powder is good, the dispersed inorganic powder is unlikely to precipitate, and even after undergoing a processing step under high heat after being added to the resin, The agent is hardly decomposed or deteriorated, and the properties of the resulting resin molded article can be improved.
[0009]
As the polyamic acid, basically any known polyamic acid can be applied. The polyamic acid used in the present invention is generally obtained by dissolving at least one kind of aromatic dianhydride and at least one kind of diamine in a substantially equimolar amount in an organic solvent. It is produced by stirring the solution under controlled temperature conditions until the polymerization of the dianhydride and diamine is completed. In the present invention, a polyamic acid organic solvent solution obtained by any polymerization method can be used. For example, 1) Aromatic acid dianhydride is dissolved in a solvent in which a diamine is dissolved or dispersed in a solid or slurry form. , A solution or a combination thereof. 2) A diamine is added in a solid, slurry, solution or combination thereof in a solvent in which an aromatic dianhydride is dissolved or dispersed. Method 3) A method in which each monomer is added in multiple stages for the purpose of controlling the monomer arrangement in the polyamic acid molecule, and finally, a substantially equimolar amount of aromatic dianhydride and diamine are reacted. Can be In addition, two or more kinds of separately polymerized polyamic acid organic solvent solutions can be mixed and used. The concentration and viscosity of these polyamic acid solutions may be appropriately adjusted according to the use and process. Usually, since a suitable molecular weight for expressing strength as a resin molded product is obtained, the concentration of the polyamic acid solution is 5 to 35 wt%, further 10 to 30 wt%, and the solution viscosity at 23 ° C. is 100 to 10,000 poise. Further, 500 to 7000 poise is preferable, and 1000 to 5000 poise is particularly preferable.
[0010]
As the dispersion medium of the inorganic powder, any substance may be used as long as it does not precipitate a dispersant. For example, when a soluble polyimide and / or polyamic acid is used as a dispersant, an amide solvent, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. N, N-dimethylformamide or N, N-dimethylacetamide may be used alone or in a mixture at any ratio. Is preferred.
[0011]
The amount of the polyamic acid to be used may be 0.5% by weight or more, preferably 1% by weight or more, more preferably 2% by weight or more based on the total weight of the polyamic acid and the inorganic powder. Further, the preferred range of the amount of the polyamic acid used when dispersing the inorganic powder is 0.5 to 20% by weight, preferably 1 to 10% by weight, based on the total weight of the polyamic acid and the inorganic powder. More preferably, it is 2 to 5% by weight. If the amount of the polyamic acid is less than this range, the effect of improving dispersibility tends to be hardly seen. On the other hand, if the amount of the polyamic acid is larger than this range, the viscosity may increase and it may be difficult to obtain a good dispersion state.
[0012]
However, after the preparation of the dispersion, it is also preferable to increase the viscosity of the dispersion by further adding a dispersant to prevent the sedimentation of the inorganic powder, in this case, the upper limit of the dispersant is not particularly limited .
The polyamic acid may be in any form of solid, slurry, or solution.However, since it is necessary that the polyamic acid is dissolved in the inorganic powder dispersion, it is not necessary to use a solution to re-dissolve it. preferable. As a dispersant, the effect can be exerted by using a polyamic acid of any molecular weight, but in order not to reduce the mechanical properties of the resin filled with the inorganic powder, a concentration equivalent to the above-described organic solvent solution of the polyamic acid, It is preferable to use a solution having viscosity as it is or after diluting it. In addition, various known agents and / or additives such as a dispersant, a dispersing aid, a thickener, a surfactant, and a plasticizer of a synthetic resin can be mixed and used in the dispersant.
These various drugs and / or additives may be liquid or solid. The amount of these various agents and / or additives is 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, based on the total amount of the polyamic acid and the dispersant. When the amount of these various drugs and / or additives exceeds this range, phenomena such as reduced dispersion effect, residual drug residues, and reduced heat resistance of the dispersant tend to be observed. .
In the present invention, the concentration of the inorganic powder in the dispersion is preferably 60% by weight or less, more preferably 50% by weight or less, and particularly preferably 45% by weight or less based on the total weight of the dispersion. If the concentration of the inorganic powder in the dispersion exceeds this range, the viscosity tends to be too high, which tends to cause poor dispersion.
[0013]
Thus obtained, the inorganic powder dispersion using a dispersant containing polyamic acid as a main component, when not increasing the viscosity to prevent sedimentation, 1 to 100 poise, preferably 1 to 80 poise, More preferably, it has a viscosity of 1 to 50 poise.
When the viscosity is increased to prevent sedimentation, the viscosity is preferably 100 to 2000 poise, more preferably 150 to 1500 poise.
[0014]
The polyamic acid, which is a dispersant, may be finally converted to polyimide or may be present as polyamic acid. However, it is preferable to convert to polyimide from the viewpoint of heat resistance and solvent resistance. Either a thermal curing method or a chemical curing method is used for imidation. The thermal curing method is a method in which the imidization reaction proceeds only by heating without the action of a dehydrating ring-closing agent or the like. Further, the chemical curing method is represented by a polyamic acid organic solvent solution, a chemical conversion agent represented by an acid anhydride such as acetic anhydride, and a tertiary amine such as isoquinoline, β-picoline and pyridine. This is a method of reacting with a catalyst. A thermal curing method may be used in combination with the chemical curing method. The reaction conditions for imidization can vary depending on the type of polyamic acid, selection of a heat curing method and / or a chemical curing method, and the like. Alternatively, a polyamic acid, which is a precursor of a soluble polyimide, produced and converted to imidation by the above method may be used as a dispersant. Here, the material used for the polyamic acid according to the present invention will be described.
[0015]
Acid anhydrides suitable for selecting the polyamic acid according to the present invention include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4 ′. -Biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4 4'-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3 4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyfe B) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimeritium) Acid monoester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride) and their analogs, either alone or in any proportion Can be preferably used.
[0016]
Among these, the most suitable acid dianhydride in the polyimide precursor polyamic acid composition used in the present invention is pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenebis (trimellitic acid monoester anhydride), which can be used alone or in a mixture at any ratio.
[0017]
Suitable diamines that can be used in the polyimide precursor polyamic acid composition according to the present invention include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4 '-Diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1, 5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4,4 '-Diaminodiphenyl N-phenylamido , 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, and the like, and these can be used alone or in a mixture in any ratio. .
[0018]
Among these diamines, 4,4′-diaminodiphenyl ether and p-phenylenediamine are particularly preferred, and a mixture obtained by mixing these at a molar ratio of 100: 0 to 0: 100, preferably 100: 0 to 10:90. Can be preferably used.
[0019]
Preferred solvents for synthesizing polyamic acid are amide solvents, ie, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and the like, and N, N-dimethylformamide or N , N-dimethylacetamide alone or in a mixture at any ratio is preferred.
[0020]
When imidization is performed by a chemical curing method, a chemical conversion agent and a curing agent containing a catalyst are used in combination. The chemical converting agent to be added to the polyamic acid composition according to the present invention is, for example, an aliphatic acid anhydride, an aromatic acid anhydride, N, N′-dialkylcarbodiimide, a lower aliphatic halide, a halogenated lower aliphatic halogen. Chloride, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, thionyl halide, or a mixture of two or more thereof. Among them, aliphatic anhydrides such as acetic anhydride, propionic anhydride, and lacnic anhydride or a mixture of two or more thereof can be preferably used. The amount of the chemical conversion agent is 0.5 to 5.0 molar equivalents, preferably 0.8 to 4.0 molar equivalents, more preferably 1.0 to 3 molar equivalents, per mol of the amic acid in the polyamic acid. It can be suitably used in the range of 0.0 molar equivalent. If the amount of the chemical conversion agent is below this range, the imidization tends to be slow, and the productivity may be deteriorated. On the other hand, if it exceeds this range, there may be inconveniences such as deterioration of the mechanical properties of the obtained molded body, and difficulty in processing due to too fast imidization.
[0021]
Further, in order to effectively perform imidization, it is preferable to simultaneously use a catalyst as the chemical conversion agent. As the catalyst, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine or the like is used. Among them, those selected from heterocyclic tertiary amines can be particularly preferably used. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used. The amount of the catalyst is 0.1 to 2 molar equivalents, preferably 0.2 to 1.5 molar equivalents, more preferably 0.3 to 1.0 molar equivalents, per 1 mol of the amic acid in the polyamic acid. Can be used. If the amount is too small, the chemical imidization tends to be difficult to proceed (curing). If the amount is too large, the chemical imidization proceeds (hardening) quickly, which may cause inconvenience such as difficulty in processing.
Examples of the inorganic powder used in the present invention include metal oxides and metal inorganic acid salts. Preferred examples of these inorganic powders include titanium oxide, zinc oxide, iron oxide, calcium carbonate, calcium pyrophosphate, anhydrous dibasic calcium phosphate, tin oxide, silica, alumina, magnesia, mica, synthetic mica, and clay minerals. Preferably, titanium oxide, calcium pyrophosphate and anhydrous dibasic calcium phosphate are used. The inorganic powder used in the present invention may be in any shape such as a sphere, a layer, a needle, a powder, or a mixture thereof, and the shape may be selected according to the function to be provided.
As the particle diameter of the inorganic powder used in the present invention, it is preferable to use one having an average particle diameter of 0.01 to 20 μm, preferably 0.01 to 15 μm, and more preferably 0.01 to 10 μm. If the particle diameter is outside the above range, the effect of improving dispersibility may be reduced.
As the solvent for dispersing the powder, any solvent can be used as long as it is a solvent for dissolving the polyamic acid, but amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl It is preferable to use N, N-dimethylformamide or N, N-dimethylacetamide alone or in a mixture at an arbitrary ratio from the viewpoint of solubility of the dispersant.
The methods for dispersing the inorganic powder include 1) a method in which the dispersant is dissolved in a solvent and then the addition of the inorganic powder, 2) a method in which the inorganic powder is added to the solvent and mixed, and then the dispersant is dissolved. A method in which powder and polyamic acid are mixed, a solvent is added and dispersed, and a method in which dispersion is divided into multiple stages and 1) to 3) are combined, and finally, a dispersion solvent, inorganic powder, Any method may be used as long as a dispersion having a structure of polyamic acid can be obtained. Further, for dispersing the inorganic powder, a disperser such as an ultrasonic wave, a bead mill, a paint shaker and the like may be used.
[0022]
Synthetic resins that can be modified or reinforced by the method of the present invention are not particularly limited, but include polyester resins, polyolefin resins, polyphenylene sulfide resins, polyamide resins, polybenzimidazole, polyphenylene oxide, polyetheretherketone, polyamideimide, and polyimide. Among them, the greatest modification and / or reinforcement effect can be obtained in the case of polyimide resin.
Further, the synthetic resin to which the inorganic powder is added may be in any form, for example, a molded article, a fiber, a film, and the like. According to the present invention, it is possible to add an inorganic powder immediately before molding, so that it can be suitably used particularly for processing into a film by a casting film forming method.
[0023]
The amount of the inorganic powder to be added to the synthetic resin according to the present invention is not particularly limited because it greatly varies depending on the purpose of the modification and / or reinforcement, and particularly preferred examples are described below.
For example, in a reinforcing effect such as an improvement in mechanical strength and a modification such as an improvement in conductivity, 15 to 50% by weight, preferably 15 to 40% by weight, more preferably 15 to 50% by weight, based on the total amount of the synthetic resin and the inorganic powder. 20 to 35% by weight. If the addition amount of the inorganic powder is smaller than this range, the resistance value of the resin does not decrease, or the effect of improving the mechanical strength is hardly obtained. Even if the addition amount is larger than this range, the effect of modifying the resistance value is almost saturated. In addition, the mechanical properties of the synthetic resin tend to decrease.
Furthermore, in the modification of the synthetic resin such as the modification of the surface properties and the reduction of the friction coefficient of the resin, 0.01% by weight or more, preferably 0.015% or more, of the total amount of the synthetic resin and the inorganic powder. If the amount is not less than% by weight, a modifying effect can be obtained. As described above, due to the intended modifying effect, the preferred addition amount varies greatly, so the preferred addition amount when adding the inorganic powder to the synthetic resin using the present invention is not limited to every minute. Absent.
[0024]
【Example】
Hereinafter, the effects of the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and those skilled in the art may use various methods without departing from the scope of the present invention. Can be changed, modified, and modified.
[0025]
The viscosity of the inorganic powder dispersion was measured using a Viscometer B8H manufactured by Tokimec Co., The measurement was performed at a liquid temperature of 23 ° C. using a three rotor.
[0026]
Reference Example 1 88.5 g of 4,4′-diaminodiphenyl ether was dissolved in 815 g of dimethylformamide (DMF), and the solution was cooled to 10 ° C. Here, 96.5 g of pyromellitic dianhydride was gradually added, and the mixture was stirred and reacted for 2 hours to obtain a polyamic acid solution. (Viscosity at 23 ° C. 2800 poise, solid content concentration 18.5% by weight).
[0027]
Reference Example 2 10.0 g of p-phenylenediamine was dissolved in 815 g of dimethylformamide (DMF), and the solution was cooled to 10 ° C. To this, 18.2 g of pyromellitic dianhydride was gradually added and stirred for 1 hour to obtain a polyamic acid prepolymer. Further, after dissolving 74.1 g of 4,4'-diaminodiphenyl ether in the reaction solution, 82.7 g of pyromellitic dianhydride was gradually added and stirred for 2 hours to obtain a polyamic acid solution. (Viscosity at 23 ° C .: 3000 poise; solids concentration: 18.5% by weight; molar ratio of 4,4′-diaminodiphenyl ether to p-phenylenediamine: 80/20).
[0028]
(Example 1) DMF (12.5 g) was added to needle-like titanium oxide (11.1 g, manufactured by Ishihara Sangyo Co., Ltd., FTL-300) and kneaded, and then the polyamic acid solution obtained in Reference Example 1 (4 g) was added, followed by inorganic addition. A powder dispersion was obtained (amount of the dispersant: 6 wt% (based on the total weight of the inorganic powder and the dispersant); viscosity of the inorganic powder dispersion: 40 poise). This dispersion was stored in a refrigerator at 5 ° C. for 5 days, but no inorganic powder precipitated.
[0029]
(Example 2) After adding 12.5 g of DMF to 11.1 g of needle-shaped titanium oxide (FTL-300, manufactured by Ishihara Sangyo Co., Ltd.) and kneading, 4 g of the polyamic acid solution obtained in Reference Example 2 was added to obtain an inorganic material. A powder dispersion was obtained (amount of the dispersant: 6 wt% (based on the total weight of the inorganic powder and the dispersant); viscosity of the inorganic powder dispersion: 38 poise). This dispersion was stored in a refrigerator at 5 ° C. for 5 days, but no inorganic powder precipitated.
[0030]
Example 3 After adding 36 g of DMF to 32 g of needle-like titanium oxide (FTL-300, manufactured by Ishihara Sangyo Co., Ltd.) and kneading the mixture, 2 g of the polyamic acid solution obtained in Reference Example 1 was added, and inorganic powder was added. A body dispersion was prepared (amount of dispersant: 1.1 wt% (based on the total weight of inorganic powder and dispersant); viscosity of inorganic powder dispersion: 25 poise). This dispersion was stored in a refrigerator at 5 ° C. for 5 days, but no inorganic powder precipitated.
[0031]
(Example 4) After adding 32 g of DMF to 32 g of granular titanium oxide (CR-60, manufactured by Ishihara Sangyo Co., Ltd.) and kneading, 4 g of the polyamic acid solution obtained in Reference Example 1 was added to disperse the inorganic powder. A liquid was obtained (amount of dispersant: 2.2 wt% (based on the total weight of inorganic powder and dispersant); viscosity of inorganic powder dispersion liquid: 30 poise). This dispersion was stored in a refrigerator at 5 ° C. for 5 days, but no inorganic powder precipitated.
[0032]
(Comparative Example 1) 16.5 g of DMF was added to 11.1 g of needle-like titanium oxide (manufactured by Ishihara Sangyo Co., Ltd., FTL-300) and kneaded. However, a fluid dispersion could not be obtained.
[0033]
(Comparative Example 2) 36 g of DMF was added to 32 g of granular titanium oxide (CR-60, manufactured by Ishihara Sangyo Co., Ltd.), and the mixture was kneaded, but a fluid dispersion could not be obtained.
[0034]
(Example 5) To 100 g of the polyamic acid solution obtained in Reference Example 1, 27.6 g of the acicular titanium oxide dispersion obtained in Example 1 was mixed. Next, a curing agent composed of 9 g of acetic anhydride, 11.4 g of isoquinoline, and 15.6 g of DMF was mixed with the inorganic powder-dispersed polyamic acid varnish, stirred, defoamed by centrifugation, and then cast on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. or less. The laminate of the aluminum foil and the polyamic acid solution was heated at 140 ° C. for 250 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to a frame. This gel film was heated at 200 ° C., 300 ° C., 400 ° C. and 450 ° C. for 1 minute each to produce a 75 μm thick inorganic powder-filled polyimide film (inorganic powder content 36.5% by weight). Table 1 shows the characteristics of the inorganic powder-filled polyimide film.
[0035]
Comparative Example 3 An inorganic powder-filled polyimide film was obtained in exactly the same manner as in Example 5, except that 27.6 g of the acicular titanium oxide dispersion obtained in Comparative Example 1 was used. (Inorganic powder content 36.5% by weight). Table 1 shows the characteristics of the inorganic powder-filled polyimide film.
[0036]
(Reference Example 3) A polyimide film containing no inorganic powder was obtained in exactly the same manner as in Example 5 except that the inorganic powder dispersion was not used. Table 1 shows the characteristics of this polyimide film.
[0037]
(Example 6) Except that 100 g of the polyamic acid solution obtained in Reference Example 2 and 27.6 g of the acicular titanium oxide dispersion obtained in Example 2 were used, a 75 μm-thick film was formed in the same manner as in Example 5. An inorganic powder-filled polyimide film was obtained (inorganic powder content: 36.5% by weight). Table 1 shows the characteristics of the inorganic powder-filled polyimide film.
[0038]
Comparative Example 4 An inorganic powder-filled polyimide film was obtained in exactly the same manner as in Example 6, except that 27.6 g of the acicular titanium oxide dispersion obtained in Comparative Example 1 was used. (Inorganic powder content 36.5% by weight). Table 1 shows the characteristics of the inorganic powder-filled polyimide film.
(Reference Example 4) A polyimide film containing no inorganic powder was obtained in exactly the same manner as in Example 6, except that the inorganic powder dispersion was not used. Table 1 shows the characteristics of this polyimide film.
[0039]
(Reference Example 3)
In a 1-liter separable flask, 123.2 g (0.3 mol) of BAPP (2,2-bis- [4- (4-aminophenoxy) phenyl] propane) and 115.3 g (0.6 mol) of trimellitic anhydride are placed. , N-methyl-2-pyrrolidone (716 g) was added, and the mixture was stirred at 80 ° C for 30 minutes. Further, 143 g of toluene was added, and the mixture was refluxed at 160 ° C. for 2 hours. The temperature was further increased to 190 ° C., and toluene was distilled off. Thereafter, the solution was returned to room temperature, 75.1 g (0.3 mol) of 4,4'-diphenylmethane diisocyanate was charged, and reacted at 190 ° C. for 2 hours to obtain an NMP solution of aromatic polyamideimide.
[0040]
(Example 7)
To 62 g of the polyamideimide solution obtained in Reference Example 3, 27.6 g of the acicular titanium oxide dispersion obtained in Example 1 was mixed.
This solution was applied to a PET film, dried at 130 ° C. for 10 minutes, peeled off the PET film, and further fixed with a stainless steel frame, and then heated at 270 ° C. for 30 minutes to obtain an aromatic film having a thickness of about 60 μm. An aromatic polyamideimide film was obtained. The properties of this film are shown in Table 1.
[0041]
(Comparative Example 5)
A polyamideimide film was obtained in the same manner as in Example 7, except that the needle-like titanium oxide dispersion obtained in Comparative Example 1 was used. The properties of this film are shown in Table 1.
[0042]
[Table 1]
Figure 2004059694
1) Presence or absence of aggregation of inorganic powder by visual observation 1) Measured according to ASTM D882
【The invention's effect】
According to the present invention, an inorganic powder dispersant having high heat resistance can be provided.

Claims (7)

樹脂添加用の無機粉体分散液の製造方法であって、無機粉体を分散させる分散剤として、耐熱性樹脂および/または耐熱性樹脂前駆体を主成分とする分散剤を用いることを特徴とする無機粉体分散体の製造方法。A method for producing an inorganic powder dispersion liquid for adding a resin, wherein a dispersant containing a heat-resistant resin and / or a heat-resistant resin precursor as a main component is used as a dispersant for dispersing the inorganic powder. Of producing an inorganic powder dispersion. 前記耐熱性樹脂及び/又は耐熱性樹脂前駆体を主成分とする分散剤が、ポリアミック酸および/または可溶性ポリイミドである請求項1記載の無機粉体分散液の製造方法。The method for producing an inorganic powder dispersion according to claim 1, wherein the dispersant containing the heat-resistant resin and / or the heat-resistant resin precursor as a main component is a polyamic acid and / or a soluble polyimide. 前記分散剤を、無機粉体と分散剤中のポリアミック酸の合計重量に対して0.5重量%以上となるように用いることを特徴とする請求項1または2記載の無機粉体の分散方法。3. The method according to claim 1, wherein the dispersant is used in an amount of 0.5% by weight or more based on the total weight of the inorganic powder and the polyamic acid in the dispersant. . 無機粉体が酸化チタン、第二リン酸カルシウム無水物(CaHPO)、ピロリン酸カルシウム(Ca)または二酸化ケイ素であることを特徴とする請求項1〜3のいずれか一行に記載の無機粉体の分散方法。Titanium inorganic powder is oxidized, dicalcium phosphate anhydrous (CaHPO 4), inorganic as claimed in any one line of claim 1, wherein the calcium pyrophosphate (Ca 2 P 2 O 7) or silicon dioxide Powder dispersion method. 無機粉体を添加する樹脂が、耐熱性樹脂及び/又は耐熱性樹脂前駆体である請求項1〜4のいずれか一項に記載の無機粉体分散液の製造方法。The method for producing an inorganic powder dispersion according to any one of claims 1 to 4, wherein the resin to which the inorganic powder is added is a heat-resistant resin and / or a heat-resistant resin precursor. ポリアミック酸および/または可溶性ポリイミドを主成分とする分散剤であって、耐熱性樹脂に添加される無機粉体を分散させるための耐熱性分散剤。A heat-resistant dispersant containing a polyamic acid and / or a soluble polyimide as a main component for dispersing an inorganic powder added to a heat-resistant resin. ポリアミック酸および/または可溶性ポリイミドで分散された無機粉体の分散体であって、ポリアミック酸および/または可溶性ポリイミドが、ポリアミック酸および/または可溶性ポリイミドならびに無機粉体の合計重量に対して0.5〜20重量%である無機粉体分散体。A dispersion of an inorganic powder dispersed with a polyamic acid and / or a soluble polyimide, wherein the polyamic acid and / or the soluble polyimide is 0.5% based on the total weight of the polyamic acid and / or the soluble polyimide and the inorganic powder. An inorganic powder dispersion of up to 20% by weight.
JP2002218556A 2002-07-26 2002-07-26 Method for producing inorganic powder dispersion for resin addition, polyimide film and polyamideimide film Expired - Lifetime JP4119700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218556A JP4119700B2 (en) 2002-07-26 2002-07-26 Method for producing inorganic powder dispersion for resin addition, polyimide film and polyamideimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218556A JP4119700B2 (en) 2002-07-26 2002-07-26 Method for producing inorganic powder dispersion for resin addition, polyimide film and polyamideimide film

Publications (2)

Publication Number Publication Date
JP2004059694A true JP2004059694A (en) 2004-02-26
JP4119700B2 JP4119700B2 (en) 2008-07-16

Family

ID=31939705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218556A Expired - Lifetime JP4119700B2 (en) 2002-07-26 2002-07-26 Method for producing inorganic powder dispersion for resin addition, polyimide film and polyamideimide film

Country Status (1)

Country Link
JP (1) JP4119700B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132905A (en) * 2008-12-08 2010-06-17 General Electric Co <Ge> Method and system for centrifugal resin degassing
WO2011001949A1 (en) * 2009-06-29 2011-01-06 宇部興産株式会社 Polyimide precursor solution composition containing filler, and polyimide film using same
US8319299B2 (en) 2009-11-20 2012-11-27 Auman Brian C Thin film transistor compositions, and methods relating thereto
JP2013036021A (en) * 2011-07-08 2013-02-21 Ube Industries Ltd Carbon nanotube dispersant including polyamic acid
US8653512B2 (en) 2009-11-20 2014-02-18 E. I. Du Pont De Nemours And Company Thin film transistor compositions, and methods relating thereto
CN109796591A (en) * 2019-01-16 2019-05-24 武汉柔显科技股份有限公司 Polyimide precursor, polyimide nano composite thin film and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132905A (en) * 2008-12-08 2010-06-17 General Electric Co <Ge> Method and system for centrifugal resin degassing
WO2011001949A1 (en) * 2009-06-29 2011-01-06 宇部興産株式会社 Polyimide precursor solution composition containing filler, and polyimide film using same
CN102471576A (en) * 2009-06-29 2012-05-23 宇部兴产株式会社 Polyimide precursor solution composition containing filler, and polyimide film using same
JP5708488B2 (en) * 2009-06-29 2015-04-30 宇部興産株式会社 Polyimide precursor solution composition containing filler and polyimide film using the same
US8319299B2 (en) 2009-11-20 2012-11-27 Auman Brian C Thin film transistor compositions, and methods relating thereto
US8653512B2 (en) 2009-11-20 2014-02-18 E. I. Du Pont De Nemours And Company Thin film transistor compositions, and methods relating thereto
JP2013036021A (en) * 2011-07-08 2013-02-21 Ube Industries Ltd Carbon nanotube dispersant including polyamic acid
CN109796591A (en) * 2019-01-16 2019-05-24 武汉柔显科技股份有限公司 Polyimide precursor, polyimide nano composite thin film and preparation method thereof

Also Published As

Publication number Publication date
JP4119700B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
EP2462181B1 (en) Matte finish polyimide films and methods relating thereto
JP5473601B2 (en) POLYIMIDE RESIN COMPOSITION, POLYIMIDE PRECURSOR RESIN COMPOSITION PROVIDING THE POLYIMIDE RESIN COMPOSITION AND METHOD FOR PRODUCING THEM, POLYIMIDE FILM AND METHOD FOR PRODUCING THE SAME
KR100975625B1 (en) Method for producing polyimide film
TWI535766B (en) Method for manufacturing conductive polyimide film
EP2596052A1 (en) Matte finish polyimide films and methods relating thereto
JPH06212075A (en) Preparation of polyimide molding article containing pigment
US20130196134A1 (en) Matte finish polyimide films and methods relating thereto
JP4392578B2 (en) Sliding polyimide film and method for producing the same
JP2004035825A (en) Semiconductive polyimide film and method of producing the same
US20140227501A1 (en) Matte finish polyimide films and methods relating thereto
JP4119700B2 (en) Method for producing inorganic powder dispersion for resin addition, polyimide film and polyamideimide film
JP2010254935A (en) Method for producing polyamideimide mixture film containing polyimide
JP2007063492A (en) Polyimide film having little defect
JP2006028216A (en) Polyimide film and manufacturing method of the polyimide film
TWI605474B (en) Conductive polyaniline film manufacturing method
TWI432321B (en) Matte finish polyimide films and methods relating thereto
JP2021105149A (en) Method for manufacturing resin film, and method for manufacturing metal-clad laminated plate
JP3489068B2 (en) Cover coat ink and manufacturing method thereof
JPH0790081A (en) Polyimide resin
JP2024022280A (en) Resin film, metal-clad laminate, and circuit board
JP2024005109A (en) Polyimide resin and method for producing polyimide resin composition
JPH09328549A (en) Polyimide composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term