JP2004059382A - Rare earth silicate single crystal - Google Patents

Rare earth silicate single crystal Download PDF

Info

Publication number
JP2004059382A
JP2004059382A JP2002221536A JP2002221536A JP2004059382A JP 2004059382 A JP2004059382 A JP 2004059382A JP 2002221536 A JP2002221536 A JP 2002221536A JP 2002221536 A JP2002221536 A JP 2002221536A JP 2004059382 A JP2004059382 A JP 2004059382A
Authority
JP
Japan
Prior art keywords
single crystal
rare earth
ppm
silicate single
gadolinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002221536A
Other languages
Japanese (ja)
Other versions
JP4228609B2 (en
Inventor
Keiji Sumiya
住谷 圭二
Hiroyuki Ishibashi
石橋 浩之
Senguttoban Nachimusu
ナチムス セングットバン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002221536A priority Critical patent/JP4228609B2/en
Priority to US10/621,350 priority patent/US6926847B2/en
Priority to DE10334513A priority patent/DE10334513B4/en
Priority to FR0309375A priority patent/FR2843131B1/en
Publication of JP2004059382A publication Critical patent/JP2004059382A/en
Application granted granted Critical
Publication of JP4228609B2 publication Critical patent/JP4228609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth silicate single crystal which makes it possible to decrease slow components of a photogenesis decay curve required in scintillator characteristics and to shorten the time for fluorescence decay. <P>SOLUTION: The rare earth silicate single crystal contains Al ≥ 0.4 ppm and ≤50 ppm. The rare earth component of the rare earth silicate single crystal is gadolinium. The rare earth silicate single crystal is cerium activated gadolinium silicate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シンチレータ等に用いられる希土類珪酸塩単結晶に関する。
【0002】
【従来の技術】
珪酸ガドリニウム単結晶等の希土類珪酸塩単結晶は、シンチレータ、蛍光体等として広く用いられている。この珪酸ガドリニウム単結晶等は、希土類酸化物の酸化ガドリニウムと珪素酸化物の二酸化珪素を原料として、チョクラルスキー法等の原料融液から単結晶を育成する方法によって製造される。更に、一般には希土類珪酸塩単結晶に蛍光中心としてCe等の添加物をドープしている。蛍光減衰時間等のシンチレータ特性には、構成元素以外の希土類元素及び遷移金属等の不純物が悪影響を与えると考えられ、それらの不純物元素を低減した99.99重量%以上の高純度原料(Gd、SiO等)を使用して結晶育成が行なわれている。
【0003】
【発明が解決しようとする課題】
従来の珪酸ガドリニウム単結晶等の希土類珪酸塩単結晶をシンチレータとして用いた場合の発光減衰曲線は2成分からなり、減衰の速い成分(Fast成分)は30〜60ns、遅い成分(Slow成分)は400〜600nsであり、その減衰の速い成分(Fast成分)と遅い成分(Slow成分)の出力比(存在比)はそれぞれ70〜80%:30〜20%程度であった。このため蛍光減衰時間の短縮化が望まれるPET(陽電子放出核種断層撮像装置、Positronemission computed tomography)用シンチレータでは発光減衰曲線の遅い成分(Slow成分)のみを高速化させ、その出力比(存在比)を低減することが望まれていた。
本発明は発光減衰曲線の遅い成分(Slow成分)を低減し、蛍光減衰時間を短縮化することを特徴とする希土類珪酸塩単結晶を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、特定の不純物を添加した希土類珪酸塩単結晶、すなわちAlを0.4ppmを超えて50ppm以下含有させることにより蛍光減衰時間を短縮化することを特徴とする希土類珪酸塩単結晶である。希土類成分がガドリニウムであると好ましく、またCeをドープした珪酸ガドリニウム単結晶であることが好ましい。
【0005】
【発明の実施の形態】
本発明者らは、希土類珪酸塩単結晶の発光減衰曲線の2成分:減衰の速い成分(Fast成分)及び遅い成分(Slow成分)とそれぞれの出力比(存在比)と、その原料である希土類珪酸塩単結晶中の不純物濃度について検討した結果、特定の不純物元素を含有させることが、育成した単結晶の特性に影響することを見いだし本発明に達した。すなわち珪酸ガドリニウム単結晶中にAlを0.4ppmを超えて50ppm以下含有させることによって発光減衰曲線の遅い成分(Slow成分)を低減し、蛍光減衰時間の短縮化が図られ、シンチレータ特性を向上できることがわかった。
【0006】
本発明における希土類珪酸塩単結晶中のAlの含有量は0.4ppmを超えて50ppm以下であることが必要であり、好ましくは5ppm〜40ppmの範囲、最も好ましくは10〜30ppmの範囲である。
【0007】
不純物Alの含有量が0.4ppm以下の場合、発光減衰曲線における遅い成分(Slow成分)は低減されず、蛍光減衰時間は短縮化されない。一方、不純物Alの含有量が0.4ppmを超えると、発光減衰曲線における遅い成分(Slow成分)が低減され、蛍光減衰時間は短縮化される。しかし、不純物Alの含有量が50ppmを超えると、蛍光出力が急激に減少し劣化する。このため、本発明における不純物Alの含有量は0.4ppmを超えて50ppm以下であることが必要である。
【0008】
本発明の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶以外の、一般式Ln2−xCeSiO(但し、Ln=Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選ばれる少なくとも1種の元素を表し、x=0〜2の値である)で示される希土類珪酸塩単結晶についても、同様の結果となる。以上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の結晶構造と同じ結晶構造を持ち、その構造は空間群P21/cに属する。
【0009】
【実施例】
本発明を実施例に基づいて具体的に説明する。原料として酸化ガドリニウム(Gd、99.99重量%)、二酸化珪素(SiO、99.99重量%)、酸化セリウム(CeO、99.99重量%)、及び酸化アルミニウム(Al、99.99重量%)を使用して、チョクラルスキー法によって単結晶を育成した。単結晶から10×10×10mmの試料を採取して、シンチレータのエネルギースペクトル(137Cs)及びデジタルオシロにより発光減衰曲線を測定し、蛍光減衰時間、減衰成分の存在比(Fast成分/Slow成分)、及び蛍光出力をまとめて表1に示した。ただし、それぞれの実施例について3本の単結晶を育成し、その平均値を示した。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。
【0010】
(実施例1)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを5.9g、そして酸化アルミニウムを0.0075g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP:Inductively Coupled Plasma)質量分析法を用いて測定した結果、0.6ppmであった。
【0011】
(実施例2)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを5.9g、そして酸化アルミニウムを0.3g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、24ppmであった。
【0012】
(実施例3)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを5.9g、そして酸化アルミニウムを0.5625g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、45ppmであった。
【0013】
比較例として、実施例と同様にCe濃度0.48mol%の珪酸ガドリニウム単結晶の場合の例を説明する。原料として実施例で使用したものと全く同じ(精製ロット番号も同じ)酸化ガドリニウム(Gd、99.99重量%)と、二酸化珪素(SiO、99.99重量%)、酸化セリウム(CeO、99.99重量%)及び酸化アルミニウム(Al、99.99重量%)を使用して、チョクラルスキー法によって単結晶を育成した。単結晶から10×10×10mmの試料を採取して、シンチレータのエネルギースペクトル(137Cs)及びデジタルオシロにより発光減衰曲線を測定し、蛍光減衰時間、減衰成分の存在比(Fast成分/Slow成分)、及び蛍光出力をまとめて表1に示した。ただし、それぞれの条件について3本の単結晶を育成し、その平均値を示した。
【0014】
(比較例1)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、そして酸化セリウムを5.9g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0ppmであった。
【0015】
(比較例2)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを5.9g、そして酸化アルミニウムを0.0025g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0.2ppmであった。
【0016】
(比較例3)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを5.9g、そして酸化アルミニウムを0.65g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、52ppmであった。
【0017】
(比較例4)
Ce濃度0.48mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを5.9g、そして酸化アルミニウムを0.875g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、70ppmであった。
【0018】
【表1】

Figure 2004059382
【0019】
比較例1、2に示したように、不純物Alの濃度が低いと発光減衰曲線の遅い成分(Slow成分)は低減されず、蛍光減衰時間は短縮化されない。一方、実施例1〜3に示したように、不純物Al濃度が0.4ppmを越すとSlow成分の存在比は低減し、その結果蛍光減衰時間は大きく短縮化される。しかし、比較例3、4に示したように、不純物Alの濃度が50ppmを越すと蛍光減衰時間は短縮化されるが、蛍光出力が急激に低下し、シンチレータ特性が劣化する。不純物Al濃度を0.4ppmを超えて50ppm以下の範囲に存在させることにより、シンチレータ特性を保ちながら蛍光減衰時間を短縮化させることができ、これによりPET装置の高速診断化を図ることができる。
【0020】
【発明の効果】
本発明による希土類珪酸塩単結晶は発光減衰曲線の遅い成分(Slow成分)を低減し、蛍光減衰時間の短縮化を図ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to rare earth silicate single crystals used for scintillators and the like.
[0002]
[Prior art]
Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like. The gadolinium silicate single crystal and the like are manufactured by using a rare earth oxide gadolinium oxide and a silicon oxide silicon dioxide as raw materials and growing the single crystal from a raw material melt such as the Czochralski method. Further, in general, a rare earth silicate single crystal is doped with an additive such as Ce as a fluorescent center. It is considered that impurities such as rare earth elements and transition metals other than the constituent elements have an adverse effect on the scintillator characteristics such as the fluorescence decay time, and a high-purity raw material (Gd 2 ) of 99.99% by weight or more in which those impurity elements are reduced. O 3 , SiO 2, etc.) are used for crystal growth.
[0003]
[Problems to be solved by the invention]
When a rare earth silicate single crystal such as a conventional gadolinium silicate single crystal is used as a scintillator, an emission decay curve is composed of two components, a fast-decay component (Fast component) is 30 to 60 ns, and a slow-decay component (Slow component) is 400. The output ratio (existence ratio) of the fast-decay component (Fast component) and the slow-decay component (Slow component) was about 70 to 80%: 30 to 20%, respectively. For this reason, in a scintillator for PET (Positionemission Computed Tomography), for which it is desired to shorten the fluorescence decay time, only the slow component (Slow component) of the emission decay curve is speeded up and its output ratio (existence ratio). It has been desired to reduce this.
The present invention provides a rare earth silicate single crystal characterized by reducing a slow component (Slow component) of an emission decay curve and shortening a fluorescence decay time.
[0004]
[Means for Solving the Problems]
The present invention is a rare earth silicate single crystal to which specific impurities are added, that is, a rare earth silicate single crystal characterized by shortening the fluorescence decay time by containing Al in excess of 0.4 ppm and 50 ppm or less. . The rare earth component is preferably gadolinium, and is preferably a gadolinium silicate single crystal doped with Ce.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have proposed two components of a luminescence decay curve of a rare-earth silicate single crystal: a fast-decay component (Fast component) and a slow-decay component (Slow component), their respective output ratios (existence ratio), and a rare-earth element as a raw material thereof. As a result of studying the impurity concentration in the silicate single crystal, it has been found that the inclusion of a specific impurity element affects the characteristics of the grown single crystal, and the present invention has been achieved. That is, by adding Al in the gadolinium silicate single crystal in an amount of more than 0.4 ppm and 50 ppm or less, a slow component (Slow component) of the emission decay curve is reduced, the fluorescence decay time is shortened, and the scintillator characteristics can be improved. I understood.
[0006]
The content of Al in the rare earth silicate single crystal in the present invention needs to be more than 0.4 ppm and 50 ppm or less, preferably in the range of 5 ppm to 40 ppm, and most preferably in the range of 10 to 30 ppm.
[0007]
When the content of the impurity Al is 0.4 ppm or less, the slow component (Slow component) in the emission decay curve is not reduced, and the fluorescence decay time is not shortened. On the other hand, when the content of the impurity Al exceeds 0.4 ppm, the slow component (Slow component) in the emission decay curve is reduced, and the fluorescence decay time is shortened. However, when the content of the impurity Al exceeds 50 ppm, the fluorescent output sharply decreases and deteriorates. Therefore, the content of the impurity Al in the present invention needs to be more than 0.4 ppm and 50 ppm or less.
[0008]
Rare earth silicate single crystal of the present invention, other than gadolinium silicate single crystal, the formula Ln 2-x Ce x SiO 5 ( where, Ln = Sc, Y, La , Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu represent at least one element selected from the group consisting of x = 0 to 2). Results. The above rare earth silicate single crystal has the same crystal structure as the gadolinium silicate single crystal, and the structure belongs to the space group P21 / c.
[0009]
【Example】
The present invention will be specifically described based on examples. Gadolinium oxide (Gd 2 O 3 , 99.99% by weight), silicon dioxide (SiO 2 , 99.99% by weight), cerium oxide (CeO 2 , 99.99% by weight), and aluminum oxide (Al 2 O) as raw materials 3 , 99.99% by weight) to grow a single crystal by the Czochralski method. A 10 × 10 × 10 mm 3 sample was collected from the single crystal, and the emission spectrum of the scintillator ( 137 Cs) and the emission decay curve were measured using a digital oscilloscope. The fluorescence decay time and the abundance ratio of the decay component (Fast component / Slow component) ) And the fluorescence output are summarized in Table 1. However, three single crystals were grown for each example, and the average value was shown. Note that the present embodiment shows a preferred example, and the present invention is not limited to these embodiments.
[0010]
(Example 1)
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 5.9 g of cerium oxide, and 0.0075 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., charged into an Ir crucible having a diameter of 100 mm, and charged as raw materials. The pulling was completed at a temperature of 1950 ° C., a rotation speed of the seed crystal of 30 rpm, and a pulling speed of 2 mm / h at the stage when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the concentration of Al in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, the result was 0.6 ppm.
[0011]
(Example 2)
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 5.9 g of cerium oxide, and 0.3 g of aluminum oxide were weighed and mixed, and fired at 1200 ° C., and then charged into an Ir crucible having a diameter of 100 mm. The pulling was completed at a temperature of 1950 ° C., a rotation speed of the seed crystal of 30 rpm, and a pulling speed of 2 mm / h at the stage when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the Al concentration in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, the result was 24 ppm.
[0012]
Example 3
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 5.9 g of cerium oxide, and 0.5625 g of aluminum oxide were weighed and mixed, and fired at 1200 ° C., and then charged into an Ir crucible having a diameter of 100 mm. The pulling was completed at a temperature of 1950 ° C., a rotation speed of the seed crystal of 30 rpm, and a pulling speed of 2 mm / h at the stage when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the Al concentration in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, the result was 45 ppm.
[0013]
As a comparative example, an example of a gadolinium silicate single crystal having a Ce concentration of 0.48 mol% as in the example will be described. Gadolinium oxide (Gd 2 O 3 , 99.99% by weight), silicon dioxide (SiO 2 , 99.99% by weight), cerium oxide Single crystals were grown by Czochralski method using CeO 2 , 99.99% by weight) and aluminum oxide (Al 2 O 3 , 99.99% by weight). A 10 × 10 × 10 mm 3 sample was collected from the single crystal, and the emission spectrum of the scintillator ( 137 Cs) and the emission decay curve were measured using a digital oscilloscope. The fluorescence decay time and the abundance ratio of the decay component (Fast component / Slow component) ) And the fluorescence output are summarized in Table 1. However, three single crystals were grown under each condition, and the average value was shown.
[0014]
(Comparative Example 1)
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide and 5.9 g of cerium oxide are weighed and mixed, fired at 1200 ° C., charged into an Ir crucible having a diameter of 100 mm, and a raw material melt at 1950 ° C. and a seed crystal Under the conditions of a rotation speed of 30 rpm and a pulling speed of 2 mm / h, pulling was completed when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the Al concentration in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, the result was 0 ppm.
[0015]
(Comparative Example 2)
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 5.9 g of cerium oxide, and 0.0025 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and then charged into an Ir crucible having a diameter of 100 mm. The pulling was completed at a temperature of 1950 ° C., a rotation speed of the seed crystal of 30 rpm, and a pulling speed of 2 mm / h at the stage when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the Al concentration in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, it was 0.2 ppm.
[0016]
(Comparative Example 3)
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 5.9 g of cerium oxide, and 0.65 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. The pulling was completed when 80% by weight of the raw material was crystallized under the conditions of a melt of 1950 ° C., a rotation speed of the seed crystal of 30 rpm, and a pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the Al concentration in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, the result was 52 ppm.
[0017]
(Comparative Example 4)
A gadolinium silicate single crystal having a Ce concentration of 0.48 mol% was produced as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 5.9 g of cerium oxide, and 0.875 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. The pulling was completed when 80% by weight of the raw material was crystallized under the conditions of a melt of 1950 ° C., a rotation speed of the seed crystal of 30 rpm, and a pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. As a result of measuring the Al concentration in the produced crystal by using inductively coupled plasma (ICP) mass spectrometry, the result was 70 ppm.
[0018]
[Table 1]
Figure 2004059382
[0019]
As shown in Comparative Examples 1 and 2, when the concentration of the impurity Al is low, the slow component (Slow component) of the emission decay curve is not reduced, and the fluorescence decay time is not shortened. On the other hand, as shown in Examples 1 to 3, when the impurity Al concentration exceeds 0.4 ppm, the abundance ratio of the Slow component decreases, and as a result, the fluorescence decay time is greatly shortened. However, as shown in Comparative Examples 3 and 4, when the concentration of the impurity Al exceeds 50 ppm, the fluorescence decay time is shortened, but the fluorescent output sharply decreases, and the scintillator characteristics deteriorate. When the impurity Al concentration is in the range of more than 0.4 ppm and not more than 50 ppm, the fluorescence decay time can be shortened while maintaining the scintillator characteristics, whereby high-speed diagnosis of the PET apparatus can be achieved.
[0020]
【The invention's effect】
The rare-earth silicate single crystal according to the present invention can reduce the slow component (Slow component) of the emission decay curve and shorten the fluorescence decay time.

Claims (3)

Alを0.4ppmを超えて50ppm以下含有することを特徴とする希土類珪酸塩単結晶。A rare-earth silicate single crystal containing more than 0.4 ppm of Al and 50 ppm or less. 希土類成分が、ガドリニウムである請求項1記載の希土類珪酸塩単結晶。The rare earth silicate single crystal according to claim 1, wherein the rare earth component is gadolinium. 希土類珪酸塩単結晶がセリウム賦活珪酸ガドリニウムである請求項1または請求項2記載の希土類珪酸塩単結晶。3. The rare earth silicate single crystal according to claim 1, wherein the rare earth silicate single crystal is cerium-activated gadolinium silicate.
JP2002221536A 2002-07-30 2002-07-30 Cerium-activated gadolinium silicate single crystal Expired - Fee Related JP4228609B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002221536A JP4228609B2 (en) 2002-07-30 2002-07-30 Cerium-activated gadolinium silicate single crystal
US10/621,350 US6926847B2 (en) 2002-07-30 2003-07-18 Single crystals of silicates of rare earth elements
DE10334513A DE10334513B4 (en) 2002-07-30 2003-07-29 A process for producing a single crystal of a cerium-doped gadolinium silicate
FR0309375A FR2843131B1 (en) 2002-07-30 2003-07-30 RARE EARTH ELEMENTS SILICATE MONOCRYSTAL AND SCINTILLATOR CONTAINING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221536A JP4228609B2 (en) 2002-07-30 2002-07-30 Cerium-activated gadolinium silicate single crystal

Publications (2)

Publication Number Publication Date
JP2004059382A true JP2004059382A (en) 2004-02-26
JP4228609B2 JP4228609B2 (en) 2009-02-25

Family

ID=31941821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221536A Expired - Fee Related JP4228609B2 (en) 2002-07-30 2002-07-30 Cerium-activated gadolinium silicate single crystal

Country Status (1)

Country Link
JP (1) JP4228609B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282161B2 (en) 2004-01-20 2007-10-16 Hitachi Chemical Co., Ltd. Inorganic scintillator
JP2008007393A (en) * 2006-05-30 2008-01-17 Hitachi Chem Co Ltd Single crystal for scintillator and manufacturing method for the same
US8999281B2 (en) * 2007-06-01 2015-04-07 Hitachi Chemical Company, Ltd. Scintillator single crystal, heat treatment method for production of scintillator single crystal, and method for production of scintillator single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282161B2 (en) 2004-01-20 2007-10-16 Hitachi Chemical Co., Ltd. Inorganic scintillator
JP2008007393A (en) * 2006-05-30 2008-01-17 Hitachi Chem Co Ltd Single crystal for scintillator and manufacturing method for the same
US7749323B2 (en) 2006-05-30 2010-07-06 Hitachi Chemical Company, Ltd. Single crystal for scintillator and method for manufacturing same
US8999281B2 (en) * 2007-06-01 2015-04-07 Hitachi Chemical Company, Ltd. Scintillator single crystal, heat treatment method for production of scintillator single crystal, and method for production of scintillator single crystal

Also Published As

Publication number Publication date
JP4228609B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US6437336B1 (en) Scintillator crystals and their applications and manufacturing process
JP5521273B2 (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator, and method for producing single crystal for scintillator
US9328288B2 (en) Rare-earth oxyorthosilicates with improved growth stability and scintillation characteristics
WO2006049284A1 (en) Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
CA2741850A1 (en) Cerium-doped lutetium oxyorthosilicate (lso) scintillators
WO2003102112A1 (en) Crystalline rare-earth activated oxyorthosilicate phosphor
US20060163484A1 (en) Metal halide for radiation detection, method for production thereof and radiation detector
CN105986320A (en) Sc/Ce-codoped lutetium silicate and lutetium yttrium silicate crystals and melt-process growth method thereof
JP4851810B2 (en) Single crystal material for scintillator and manufacturing method
US9175420B2 (en) Suppression of crystal growth instabilities during production of rare-earth oxyorthosilicate crystals
JP2011026547A (en) Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator
Foster et al. Boron codoping of Czochralski grown lutetium aluminum garnet and the effect on scintillation properties
CN101377020A (en) Rare earth silicates polycrystal material doped with Ce&lt;3+&gt; and preparing method thereof
JP2009046598A (en) Single crystal material for scintillator
CN105332056A (en) Divalent metal cation and cerium co-doped lutetium aluminum garnet crystal for laser illumination and preparation method thereof
Shimura et al. Zr doped GSO: Ce single crystals and their scintillation performance
CN1587447A (en) Process for preparing high temperature cerium blended lutetium pyrosilicate scintillation monocrystal
JP2020518698A (en) Rare earth halide scintillation materials and their applications
JP4228609B2 (en) Cerium-activated gadolinium silicate single crystal
JP4228611B2 (en) Cerium-activated gadolinium silicate single crystal
JP2701577B2 (en) Single crystal heat treatment method
EP1489205A1 (en) LUMINOUS MATERIAL FOR SCINTILLATOR COMPRISING SINGLE CRYSTAL OF Yb MIXED CRYSTAL OXIDE
JP2016056378A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator
CN112390278B (en) Strong electron-withdrawing element doped rare earth orthosilicate scintillation material and preparation method and application thereof
JP4605588B2 (en) Fluoride single crystal for radiation detection, method for producing the same, and radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R151 Written notification of patent or utility model registration

Ref document number: 4228609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees