JP2004058609A - Method for manufacturing laminated sheet - Google Patents

Method for manufacturing laminated sheet Download PDF

Info

Publication number
JP2004058609A
JP2004058609A JP2002223746A JP2002223746A JP2004058609A JP 2004058609 A JP2004058609 A JP 2004058609A JP 2002223746 A JP2002223746 A JP 2002223746A JP 2002223746 A JP2002223746 A JP 2002223746A JP 2004058609 A JP2004058609 A JP 2004058609A
Authority
JP
Japan
Prior art keywords
bag
mold
core material
thermosetting resin
fibrous reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223746A
Other languages
Japanese (ja)
Inventor
Toru Kaneko
金子 徹
Sadataka Umemoto
梅元 禎孝
Kiyoto Sasaki
佐々木 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2002223746A priority Critical patent/JP2004058609A/en
Publication of JP2004058609A publication Critical patent/JP2004058609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a lightweight, high-strength and high-rigidity laminated sheet and easily manufacture a honeycomb laminated sheet of curved surface shape. <P>SOLUTION: The method for manufacturing a laminated sheet comprises the following process steps of laminating cores 10 comprising fibrous reinforcing materials 2 and 4, thermosetting resin films 6 and 8 and a fiber and lapping a bag 12 on the them to seal the peripheral edge of the bag 12 airtightly with a mold. After that, the cores 10 are compressed by discharging the air between the bag 12 and the mold and the fibrous reinforcing materials 2 and 4 and the cores 10 are impregnated with the thermally molten thermosetting resin film 6. Then, the cores 10 are restored to their original shape by feeding air between the bag 12 and the mold 10 and the resin is thermally set under such a state to manufacture the laminated sheet. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、型に積重した繊維質補強材、熱硬化性樹脂フィルム及び繊維からなる芯材をバッグを用いて密封し、バッグと型との間の真空度を調整して芯材の圧縮、復元を行って熱硬化性樹脂を含浸させる積層板の製造方法に関する。
【0002】
【従来の技術】
サンドイッチパネル等の積層板は、表面板や芯材等を耐衝撃、耐食、耐摩耗などそれぞれの使用目的に応じて選択し、積層して一体構造にした複合構造材で、非常に多くの用途に採用されている。
【0003】
特に、ハニカム積層板は、軽量で、高剛性などの優れた機械的特性を有することから、航空機、船舶などの構造体や建材などに広く使用されている。ハニカム基材としては、アルミ箔からなるアルミハニカム、強化繊維とマトリックス樹脂からなる繊維強化樹脂(FRP)ハニカム、耐火性を目的としてアラミド繊維の不織布にフェノール樹脂を含浸させたアラミドハニカム等が用いられている。
【0004】
曲面形状のハニカム積層板を製造する場合においては、通常は樹脂が硬化した状態のFRPハニカムを所定の曲面形状に変形したり、あるいは所定の曲面に沿うようにハニカム基材を機械で切削するなどした後表面板で挟むことにより製造している。ハニカム基材はそのままでは変形させること自体が困難である。一方、切削して曲面へ加工する場合は、材料ロスが大きく、コストが高くなるという問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、軽量で、高強度、高剛性の積層板を容易に製造することができ、特にハニカム積層板であっても容易に曲面形状の積層板を製造することができる積層板の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明は、以下に記載するものである。
【0007】
〔1〕 繊維質補強材、熱硬化性樹脂フィルム及び繊維からなる芯材を型の一面上に積重し、これらの上にバッグを重ねると共に当該バッグ周縁を型に気密にシールし、次いでバッグと型との間を排気することにより芯材を圧縮した状態で加熱して溶融した熱硬化性樹脂フィルムを繊維質補強材及び芯材に含浸させた後、バッグと型の間に気体を送りこんで芯材の形状を復元させた状態で含浸させた樹脂を加熱硬化させる積層板の製造方法。
【0008】
〔2〕 繊維質補強材、熱硬化性樹脂フィルム及び繊維からなる芯材を型の一面上に積重し、これらの上に一のバッグを重ねると共に当該バッグ周縁を型の他面を被覆した他のバッグに気密にシールし、次いでバッグと型との間を排気することにより芯材を圧縮した状態で加熱して溶融した熱硬化性樹脂フィルムを繊維質補強材及び芯材に含浸させた後、バッグと型の間に気体を送りこんで芯材の形状を復元させた状態で含浸させた樹脂を加熱硬化させる積層板の製造方法。
【0009】
〔3〕 繊維質補強材が炭素繊維織物であって、芯材が三次元配向繊維材である〔1〕又は〔2〕に記載の製造方法。
【0010】
〔4〕 芯材がハニカム形状の編織物である〔1〕又は〔2〕に記載の製造方法。
【0011】
〔5〕 積層板が曲面形状を有するものである〔1〕又は〔2〕に記載の製造方法。
【0012】
【発明の実施の形態】
以下、図1を参照して本発明の製造方法について説明する。
【0013】
本発明の積層板の製造方法は、まず型14上に、繊維質補強材4、熱硬化性樹脂フィルム8、繊維からなる芯材10、熱硬化性樹脂6、繊維補強材2を順次積重する。
【0014】
本発明で用いる繊維質補強材としては、炭素繊維、ガラス繊維、アラミド繊維等を挙げることができる。中でも、強度、弾性率の観点から炭素繊維を用いることが好ましい。炭素繊維は、アクリル系、ピッチ系、レーヨン系などいずれの由来であっても良い。またその形態としては特に限定されず、例えば一方向に引き揃えた長繊維、不織布、織物、編物等を挙げることができるが、織物とすることが好ましい。
【0015】
繊維質補強材の目付は200〜3000g/mが好ましく、400〜2000g/mがより好ましい。
【0016】
繊維質補強材として織物を用いる場合はいずれの織形式のものでもよいが、面対称の織物を用いることが好ましい。又は、面対称でない織物を複数積重し面対称に積層できる織物が好ましい。面対称の織物あるいは積重して面対称とした織物を用いることにより、積層板の反りを防止できる。
【0017】
面対称の織物又は積重して面対称とすることができる織物としては、多軸織物を挙げることができる。多軸織物とは、一方向に引き揃えたシート状の繊維強化材を角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。
【0018】
面対称の多軸織物の例としては、〔+45/−45/−45/+45〕、〔0/+45/−45/−45/+45/0〕等を挙げることができる。積重して面対称となる多軸織物の組合わせとしては、例えば〔+45/−45〕及び〔−45/+45〕、〔0/+45/−45〕及び〔−45/+45/0〕、〔+45/0/−45/90〕及び〔90/−45/0/+45〕等を挙げることができる。一方向に引き揃えた繊維強化材を積層する角度はこれらに限定されず、任意の角度とすることができる。
【0019】
多軸織物の厚さは、用途により適宜選択するものであるが、通常0.2〜3mmが好ましい。
【0020】
熱硬化性樹脂フィルムに用いる樹脂は、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等を挙げることができる。本発明においてはこれらの樹脂の混合物を使用することもできる。中でもエポキシ樹脂、フェノール樹脂が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていてもよい。
【0021】
熱硬化性樹脂フィルムの厚さは芯材等の厚さや製造する積層板の使用目的により異なるが、一般的には後述するように芯材を復元した際に、芯材の当初の空隙に近い空隙を再現できるような樹脂量とすることにより、より軽量で剛性の高い積層板が得られる。具体的には、積層板の繊維体積含有率として30〜60%になるようにフィルム厚さを調整することが好ましい。
【0022】
また、熱硬化性樹脂フィルムの取扱い性を高めるため、熱硬化性樹脂フィルムにキャリアを使用することが好ましい。キャリアの片面又は両面に樹脂を塗布した熱硬化性樹脂フィルムは保形性が付与され取扱い性に優れる。キャリアとしては、ガラス繊維シート、炭素繊維シート、アラミド繊維シート、ポリエチレンフィルム、セルロース繊維シートを用いることができる。
【0023】
なお、キャリアを使用した熱硬化性樹脂フィルムは2枚以上を重ねてもよい。複数層のキャリアとすることにより、樹脂の含有量を高めることができる。
【0024】
更に、繊維からなる芯材としては、例えばガラス繊維で作られたパラビーム(商品名:パラビーム社製)等が使用できる。
【0025】
芯材に用いる繊維としては特に制限されず公知のものが使用できるが、有機繊維が好ましく、ポリエステル、ポリエチレン、ポリイミド、ポリカーボネート、ポリアミド等を挙げることができる。これらの繊維を芯材として用いる際の形態としては、特に限定されず、不織布、織物、編物等とすることができる。
【0026】
軽量かつ高剛性の積層板を得ることを目的とする場合には、芯材として特にセル壁の剛性が高い三次元に配向した繊維材を用いることが好ましく、柱状の開放セルを多数有する芯材を用いることが更に好ましい。中でも、編織物の編織技術を駆使して、多角形の柱状貫通孔を編織物全表面に形成したハニカム形状の編織物を用いることが好ましい。
【0027】
この場合、編織物の厚さは、用途により適宜選択するものであるが、通常5〜100mmが好ましい。
【0028】
前記積層した各材料上にバッグ12を重ねて配置し、バッグ12の周縁を型14と気密にシールし、密封する(図1(a))。
【0029】
バッグの材質は、通常用いられる公知のものを使用することができる。更に、バッグの形状としては特に制限されず、型や目的とする積層板の形状によりシート状、袋状等の形状を適宜選択して用いることができる。また、バッグのシールは、減圧により芯材が圧縮されて芯材及び繊維質補強材が型に密着するように行うことができればよい。
【0030】
バッグを用いて繊維質補強材等を密封した後、型14とバッグ12間の気体を排気して減圧にする(図1(b))。型とバッグ間を減圧にすることにより、芯材10は圧縮され、繊維質補強材2、4、熱硬化性樹脂フィルム6、8とともに型14に密着する。更に、芯材が圧縮された状態でオーブン等を用いて加熱することにより、熱硬化性樹脂フィルム6及び8を溶融させ、芯材10及び繊維質補強材2、4に熱硬化性樹脂を含浸させる。加熱温度は80〜200℃が好ましい。また、加熱を行う際には、型14とバッグ12間の気体を排気しながら行うことが好ましい。
【0031】
芯材としてセル構造を有するものを用いた場合には、芯材の圧縮は芯材の空隙が構成するセルが潰れる程度まで行うことが好ましい。
【0032】
その後、型14とバッグ12間に気体を送りこんで芯材10の形状を復元させ、この状態で含浸させた樹脂を加熱硬化させて硬化表皮層4a、硬化芯材層10a、硬化表皮層2aとすることにより積層板を製造する(図1(c))。
【0033】
芯材の形状を復元させる場合には必ずしも圧縮前の状態まで完全に復元させる必要はないが、軽量の積層板を得るためには、極力芯材を復元させることが好ましい。
【0034】
本発明の製造方法は、大気圧を利用して加圧を行うので型に強い圧力がかからず、成形用型としては、金型のほか、FRP樹脂製等の比較的剛性の低い型を用いることができる。
【0035】
本例においては、繊維質補強材、熱硬化性樹脂フィルム、芯材を上記のように積重したが、これに限られず積重する順序、枚数等は積層板の使用目的により決定できる。芯材に熱硬化性樹脂が含浸しやすいように芯材に隣接して熱硬化性樹脂フィルムを積重することが好ましい。更にシールする方法としては、例えば、図1に示すようにバッグをシーラントで型にシールする方法、前記各材料を積重した型を袋状のバッグに挿入しバッグ周縁を型にシールする方法、前記各材料上に重ねて配置した一のバッグと型の他面に配置した他のバッグをシーラントで気密にシールする方法等を例示できる。型全体をバッグで覆いバッグ同士をシールする方法は、治具取付け孔があって型に直接シールしても密封できない場合や、中空型が通気性材料で形成されている場合等に特に有効である。
【0036】
本発明においては、繊維質補強材、熱硬化性樹脂フィルムに代えて、熱硬化性樹脂フィルムと繊維質補強材とを貼着したセミ含浸プリプレグを用いてもよい。
【0037】
図2は、本発明で用いるセミ含浸プリプレグの一例を示す概略図である。このセミ含浸プリプレグ100は、熱硬化性樹脂フィルム20の片面に繊維質補強材22を貼着してなる。熱硬化性樹脂フィルム及び繊維質補強材は、上記と同様のものを使用する。セミ含浸プリプレグとして上記熱硬化性樹脂フィルム20の片面に繊維質補強材22を貼着したもの以外に熱硬化性樹脂フィルムの両面に繊維質補強材を貼着したものを使用することもできる。図2に示すように熱硬化性樹脂フィルムの片面のみに繊維質補強材を貼着したセミ含浸プリプレグは、積層板を製造する際に熱硬化性樹脂を芯材に含浸させやすいため好ましい。
【0038】
繊維質補強材22は、熱硬化性樹脂フィルム20の樹脂が含浸した樹脂含浸層24及び樹脂が含浸していない未含浸層26からなる。繊維質補強材22の表面までは樹脂が含浸しておらず、繊維質補強材22表面にタックが生じることがない。
【0039】
セミ含浸プリプレグの製造方法は、熱硬化性樹脂フィルムに繊維質補強材を積重し、0.01〜0.5MPaで加圧下、室温〜100℃で0.1〜5分間加熱することにより製造することができる。繊維質補強材への熱硬化性樹脂フィルムの樹脂の含浸は、プリプレグ表面まで樹脂が含浸しない程度であれば良いが、繊維質補強材の厚さの0〜70%が好ましく、5〜55%とすることがより好ましい。
【0040】
本発明により製造することができるハニカム形状の編織物を芯材として用いた積層板の一例の一部切欠斜視図を図3に示す。
【0041】
硬化表皮層30及び32は、繊維質補強材と、繊維質補強材に含浸させ硬化させた熱硬化性樹脂とからなる。硬化芯材層34は、芯材として用いたハニカム形状の編織物と、編織物に含浸させ硬化させた熱硬化性樹脂とからなる。
【0042】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0043】
実施例1
エピコート828(ジャパンエポキシレジン社製)を80質量部、エピコート1001(ジャパンエポキシレジン社製)を20質量部、ジシアンジアミド(ジャパンエポキシレジン社製)を5質量部、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリア(保士谷化学工業社製)を5質量部計量し、70℃でロールミルで混錬し、樹脂組成物を得た。 その後、70℃でドクターブレード法により樹脂目付1500g/mの樹脂フィルムを作製し、樹脂フィルムの片面にガラス織物WP03(日東紡績社製)を貼り付け、キャリア付き樹脂フィルムを得た。
【0044】
離型処理をした平らなアルミ板の上に、炭素繊維HTA−12K(東邦テナックス社製)を使用した多軸織物(〔0/+45/−45〕:CF目付 600g/m)を積層し、その上に上記1500g/mの樹脂フィルムを積層し、その上に芯材のパラビーム 85086(蝶理社製)を積層した。更にパラビームの上に上記1500g/mの樹脂フィルムを積層し、その上に多軸織物(〔−45/+45/0〕:CF目付600g/m)を積層した。その後、積層した材料全体をナイロンバッグ(WRIGHTLON #7400、AIRTECH社製)で覆い、型とナイロンバッグをシーラントテープでシールし、バッグ内を真空ポンプで減圧した。
【0045】
その後、硬化炉内で80℃で30分、真空ポンプで減圧しながら炭素繊維強化材と芯材に樹脂を含浸させた。その後、硬化炉の温度を130℃に上昇させ、バッグ内の真空を解除し、芯材を復元させながら130℃で2時間、加熱硬化し、ハニカム積層板を得た。
【0046】
【発明の効果】
本発明によれば、軽量で、高強度、高剛性の積層板を容易に製造することができる。特に、ハニカム積層板とする場合であっても、曲面形状の積層板を得ることができる。
【0047】
また、本発明の製造方法は大気圧を利用して加圧を行うため型に強い圧力がかからず、比較的剛性の低いFRP製の型を用いることができる。
【図面の簡単な説明】
【図1】本発明の積層板の製造方法の一例を示すフロー図で、(a)は積層板材料をバッグと型との間にシールした状態を示す断面図、(b)は芯材を圧縮した状態を示す断面図、(c)は樹脂を含浸させ芯材の形状を復元した状態を示す断面図である。
【図2】本発明で用いるセミ含浸プリプレグの一例を示す概略斜視図である。
【図3】本発明において得られるハニカム積層板の一例を示す一部切欠斜視図である。
【符号の説明】
2、4、22  繊維質補強材
2a、4a、30、32  硬化表皮層
6、8、20  熱硬化性樹脂フィルム
10  芯材
10a、34  硬化芯材層
12  バッグ
14  型
16  シーラント
24  樹脂含浸層
26  未含浸層
100  セミ含浸プリプレグ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a bag to seal a core material composed of a fibrous reinforcing material, a thermosetting resin film, and fibers stacked in a mold, and adjusts the degree of vacuum between the bag and the mold to compress the core material. The present invention relates to a method for producing a laminate in which restoration is performed and a thermosetting resin is impregnated.
[0002]
[Prior art]
Laminated plates such as sandwich panels are composite structural materials in which the surface plate and core material are selected according to their intended use, such as impact resistance, corrosion resistance, and wear resistance, and are laminated to form an integrated structure. Has been adopted.
[0003]
In particular, honeycomb laminates are lightweight and have excellent mechanical properties such as high rigidity, and thus are widely used for structures such as aircraft and ships, and building materials. As the honeycomb substrate, an aluminum honeycomb made of an aluminum foil, a fiber reinforced resin (FRP) honeycomb made of a reinforcing fiber and a matrix resin, an aramid honeycomb obtained by impregnating a nonwoven fabric of an aramid fiber with a phenol resin for fire resistance, and the like are used. ing.
[0004]
In the case of manufacturing a honeycomb laminated board having a curved shape, usually, the FRP honeycomb in a state where the resin is cured is deformed into a predetermined curved shape, or a honeycomb substrate is cut by a machine so as to follow the predetermined curved surface. After that, it is manufactured by sandwiching between surface plates. It is difficult to deform the honeycomb substrate itself as it is. On the other hand, when cutting into a curved surface, there is a problem that the material loss is large and the cost is high.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a light-weight, high-strength, high-rigidity laminated board that can be easily manufactured, and in particular, a honeycomb-shaped laminated board that can easily produce a curved-shaped laminated board. It is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
The present invention that solves the above-mentioned problems is described below.
[0007]
[1] A fibrous reinforcing material, a thermosetting resin film, and a core material composed of fibers are stacked on one surface of a mold, a bag is stacked on these, and the periphery of the bag is hermetically sealed in the mold. After the core material is compressed and evacuated by heating the core material in a compressed state and the molten thermosetting resin film is impregnated into the fibrous reinforcing material and the core material, gas is sent between the bag and the mold. A method for producing a laminated board, in which a resin impregnated in a state where the shape of a core material is restored by heating is cured by heating.
[0008]
[2] A fibrous reinforcing material, a thermosetting resin film, and a core material composed of fibers were stacked on one surface of a mold, a bag was stacked on these, and the periphery of the bag was covered on the other surface of the mold. The bag was airtightly sealed, and then the core material was heated in a compressed state by evacuating the space between the bag and the mold, and the melted thermosetting resin film was impregnated into the fibrous reinforcing material and the core material. Thereafter, a method of manufacturing a laminated board in which a resin impregnated with heat is cured in a state where the shape of the core material is restored by sending gas between the bag and the mold.
[0009]
[3] The production method according to [1] or [2], wherein the fibrous reinforcing material is a carbon fiber fabric, and the core material is a three-dimensionally oriented fiber material.
[0010]
[4] The production method according to [1] or [2], wherein the core material is a honeycomb-shaped knitted fabric.
[0011]
[5] The production method according to [1] or [2], wherein the laminate has a curved shape.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the manufacturing method of the present invention will be described with reference to FIG.
[0013]
In the method for manufacturing a laminate according to the present invention, first, a fibrous reinforcing material 4, a thermosetting resin film 8, a core material 10 made of fibers, a thermosetting resin 6, and a fiber reinforcing material 2 are sequentially stacked on a mold 14. I do.
[0014]
Examples of the fibrous reinforcing material used in the present invention include carbon fiber, glass fiber, and aramid fiber. Above all, it is preferable to use carbon fibers from the viewpoint of strength and elastic modulus. The carbon fiber may be derived from any of acrylic, pitch, rayon, and the like. The form is not particularly limited, and may be, for example, a long fiber, a nonwoven fabric, a woven fabric, a knitted fabric, or the like, which is aligned in one direction, but is preferably a woven fabric.
[0015]
Basis weight of the fibrous reinforcement is preferably 200~3000g / m 2, 400~2000g / m 2 is more preferable.
[0016]
When a woven fabric is used as the fibrous reinforcing material, any woven type may be used, but a plane-symmetric woven fabric is preferably used. Alternatively, a woven fabric that can be stacked a plurality of non-symmetrically woven fabrics and stacked symmetrically is preferred. By using a plane-symmetric fabric or a pile-symmetric fabric, warpage of the laminated board can be prevented.
[0017]
As a plane-symmetric fabric or a fabric that can be stacked and made plane-symmetric, a multiaxial fabric can be mentioned. The multiaxial woven fabric refers to a woven fabric obtained by laminating sheet-like fiber reinforced materials aligned in one direction at different angles and knitting them with nylon yarn, polyester yarn, glass fiber yarn, or the like.
[0018]
Examples of plane-symmetric multiaxial fabrics include [+ 45 / -45 / -45 / + 45] and [0 / + 45 / -45 / -45 / + 45/0]. Examples of combinations of multiaxial woven fabrics that are stacked to be plane-symmetrical include [+ 45 / -45] and [-45 / + 45], [0 / + 45 / -45] and [-45 / + 45/0], [+ 45/0 / -45 / 90] and [90 / -45 / 0 / + 45]. The angle at which the fiber reinforced materials aligned in one direction are stacked is not limited to these, and may be any angle.
[0019]
The thickness of the multiaxial woven fabric is appropriately selected depending on the application, but is preferably 0.2 to 3 mm.
[0020]
The resin used for the thermosetting resin film includes epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, urethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide resin and cyanate ester resin. Prepolymerized resins and the like can be mentioned. In the present invention, a mixture of these resins can also be used. Among them, epoxy resins and phenol resins are preferred. These thermosetting resins may contain a curing agent, a curing accelerator, and the like.
[0021]
The thickness of the thermosetting resin film varies depending on the thickness of the core material and the intended use of the laminated board to be manufactured, but generally, when the core material is restored as described later, it is close to the initial gap of the core material. By setting the amount of the resin so that the gap can be reproduced, a lighter and more rigid laminate can be obtained. Specifically, it is preferable to adjust the film thickness so that the fiber volume content of the laminate is 30 to 60%.
[0022]
Further, in order to enhance the handleability of the thermosetting resin film, it is preferable to use a carrier for the thermosetting resin film. A thermosetting resin film in which a resin is applied to one or both surfaces of a carrier is provided with a shape retention property and is excellent in handleability. As the carrier, a glass fiber sheet, a carbon fiber sheet, an aramid fiber sheet, a polyethylene film, and a cellulose fiber sheet can be used.
[0023]
Note that two or more thermosetting resin films using a carrier may be stacked. By using a plurality of layers of the carrier, the content of the resin can be increased.
[0024]
Further, as the core material made of fiber, for example, parabeam (trade name: manufactured by Parabeam) made of glass fiber can be used.
[0025]
The fibers used for the core material are not particularly limited, and known fibers can be used, but organic fibers are preferable, and examples thereof include polyester, polyethylene, polyimide, polycarbonate, and polyamide. The form when these fibers are used as a core material is not particularly limited, and may be a nonwoven fabric, a woven fabric, a knitted fabric, or the like.
[0026]
When the purpose is to obtain a lightweight and highly rigid laminate, it is preferable to use a three-dimensionally oriented fiber material having particularly high rigidity of the cell wall as the core material, and a core material having many columnar open cells. It is more preferred to use Among them, it is preferable to use a honeycomb-shaped knitted fabric in which polygonal columnar through holes are formed on the entire surface of the knitted fabric by making full use of the knitting and weaving technology of the knitted fabric.
[0027]
In this case, the thickness of the knitted fabric is appropriately selected depending on the application, but is usually preferably 5 to 100 mm.
[0028]
The bag 12 is placed on each of the stacked materials, and the peripheral edge of the bag 12 is hermetically sealed with the mold 14 and sealed (FIG. 1A).
[0029]
As the material of the bag, a commonly used known material can be used. Furthermore, the shape of the bag is not particularly limited, and a shape such as a sheet shape or a bag shape can be appropriately selected and used depending on the shape of the mold and the intended laminated plate. Further, the bag may be sealed as long as the core material is compressed by the reduced pressure so that the core material and the fibrous reinforcing material adhere to the mold.
[0030]
After sealing the fibrous reinforcing material and the like using the bag, the gas between the mold 14 and the bag 12 is exhausted to reduce the pressure (FIG. 1B). By reducing the pressure between the mold and the bag, the core 10 is compressed and adheres to the mold 14 together with the fibrous reinforcements 2 and 4 and the thermosetting resin films 6 and 8. Further, by heating the core material in a compressed state using an oven or the like, the thermosetting resin films 6 and 8 are melted, and the core material 10 and the fibrous reinforcing materials 2 and 4 are impregnated with the thermosetting resin. Let it. The heating temperature is preferably from 80 to 200C. Further, it is preferable that the heating is performed while exhausting the gas between the mold 14 and the bag 12.
[0031]
When a material having a cell structure is used as the core material, the compression of the core material is preferably performed until the cells constituting the voids of the core material are crushed.
[0032]
Thereafter, gas is sent between the mold 14 and the bag 12 to restore the shape of the core material 10, and in this state, the impregnated resin is heated and cured to form a cured skin layer 4a, a cured core material layer 10a, and a cured skin layer 2a. Then, a laminate is manufactured (FIG. 1C).
[0033]
When restoring the shape of the core material, it is not always necessary to completely restore the state before compression, but it is preferable to restore the core material as much as possible in order to obtain a lightweight laminate.
[0034]
In the manufacturing method of the present invention, since pressure is applied using atmospheric pressure, strong pressure is not applied to the mold. As a molding die, a relatively low-rigidity mold such as a FRP resin is used in addition to a mold. Can be used.
[0035]
In this example, the fibrous reinforcing material, the thermosetting resin film, and the core material were stacked as described above. However, the present invention is not limited to this, and the stacking order, number of sheets, and the like can be determined according to the purpose of use of the laminate. It is preferable to stack thermosetting resin films adjacent to the core material so that the core material is easily impregnated with the thermosetting resin. Further, as a method of sealing, for example, as shown in FIG. 1, a method of sealing a bag with a sealant in a mold, a method of inserting a stack of the above-described materials into a bag-like bag, and sealing the periphery of the bag with the mold, For example, a method of hermetically sealing one bag overlaid on each material and another bag placed on the other side of the mold with a sealant can be exemplified. The method of covering the entire mold with a bag and sealing the bags is particularly effective when there is a jig mounting hole and it is not possible to seal even if the mold is directly sealed, or when the hollow mold is formed of a breathable material. is there.
[0036]
In the present invention, a semi-impregnated prepreg in which a thermosetting resin film and a fibrous reinforcing material are adhered may be used instead of the fibrous reinforcing material and the thermosetting resin film.
[0037]
FIG. 2 is a schematic diagram showing an example of the semi-impregnated prepreg used in the present invention. The semi-impregnated prepreg 100 is formed by attaching a fibrous reinforcing material 22 to one surface of a thermosetting resin film 20. The same thermosetting resin film and fibrous reinforcing material as described above are used. As the semi-impregnated prepreg, in addition to the thermosetting resin film 20 having a fibrous reinforcing material 22 adhered to one surface of the thermosetting resin film 20, a thermosetting resin film having a fibrous reinforcing material adhered to both surfaces thereof can also be used. As shown in FIG. 2, a semi-impregnated prepreg in which a fibrous reinforcing material is adhered to only one surface of a thermosetting resin film is preferable because the core material can be easily impregnated with the thermosetting resin when manufacturing a laminate.
[0038]
The fibrous reinforcing material 22 includes a resin-impregnated layer 24 impregnated with the resin of the thermosetting resin film 20 and an unimpregnated layer 26 not impregnated with the resin. The resin is not impregnated up to the surface of the fibrous reinforcement 22, and no tack is generated on the surface of the fibrous reinforcement 22.
[0039]
The semi-impregnated prepreg is manufactured by stacking a fibrous reinforcing material on a thermosetting resin film and heating at room temperature to 100 ° C. for 0.1 to 5 minutes under pressure at 0.01 to 0.5 MPa. can do. The impregnation of the resin of the thermosetting resin film into the fibrous reinforcing material may be such that the resin does not impregnate the prepreg surface, but is preferably 0 to 70%, more preferably 5 to 55% of the thickness of the fibrous reinforcing material. Is more preferable.
[0040]
FIG. 3 shows a partially cutaway perspective view of an example of a laminated plate using a honeycomb-shaped knitted fabric as a core material that can be produced by the present invention.
[0041]
The cured skin layers 30 and 32 are composed of a fibrous reinforcing material and a thermosetting resin impregnated into the fibrous reinforcing material and cured. The cured core layer 34 is composed of a honeycomb-shaped knitted fabric used as a core and a thermosetting resin impregnated into the knitted fabric and cured.
[0042]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0043]
Example 1
80 parts by mass of Epicoat 828 (manufactured by Japan Epoxy Resin), 20 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resin), 5 parts by mass of dicyandiamide (manufactured by Japan Epoxy Resin), 3- (3,4-dichlorophenyl) 5 parts by mass of -1,1-dimethylurea (manufactured by Houshiya Chemical Industry Co., Ltd.) was weighed and kneaded at 70 ° C. with a roll mill to obtain a resin composition. Thereafter, a resin film having a resin weight of 1500 g / m 2 was prepared at 70 ° C. by a doctor blade method, and a glass fabric WP03 (manufactured by Nitto Boseki Co., Ltd.) was attached to one surface of the resin film to obtain a resin film with a carrier.
[0044]
A multiaxial woven fabric ([0 / + 45 / -45]: CF weight: 600 g / m 2 ) using carbon fiber HTA-12K (manufactured by Toho Tenax Co., Ltd.) was laminated on a flat aluminum plate subjected to a release treatment. The resin film of 1500 g / m 2 was laminated thereon, and parabeam 85086 (manufactured by Chori Co., Ltd.) as a core material was laminated thereon. Further, the above 1500 g / m 2 resin film was laminated on the parabeam, and the multiaxial woven fabric ([−45 / + 45/0]: CF basis weight 600 g / m 2 ) was laminated thereon. Thereafter, the entire laminated material was covered with a nylon bag (WRIGTLON # 7400, manufactured by AIRTECH), the mold and the nylon bag were sealed with a sealant tape, and the inside of the bag was evacuated with a vacuum pump.
[0045]
Thereafter, the carbon fiber reinforced material and the core material were impregnated with the resin while reducing the pressure with a vacuum pump at 80 ° C. for 30 minutes in a curing furnace. Thereafter, the temperature of the curing furnace was raised to 130 ° C., the vacuum in the bag was released, and heating and curing was performed at 130 ° C. for 2 hours while restoring the core material, to obtain a honeycomb laminated plate.
[0046]
【The invention's effect】
According to the present invention, a lightweight, high-strength, high-rigid laminate can be easily manufactured. In particular, even when a honeycomb laminate is used, a laminate having a curved shape can be obtained.
[0047]
Further, in the manufacturing method of the present invention, since pressure is applied using atmospheric pressure, a strong pressure is not applied to the mold, and a relatively rigid FRP mold can be used.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing an example of a method for producing a laminate according to the present invention, wherein (a) is a cross-sectional view showing a state in which a laminate material is sealed between a bag and a mold, and (b) is a core material. FIG. 4C is a cross-sectional view showing a compressed state, and FIG. 4C is a cross-sectional view showing a state where the shape of the core material is restored by impregnation with a resin.
FIG. 2 is a schematic perspective view showing an example of a semi-impregnated prepreg used in the present invention.
FIG. 3 is a partially cutaway perspective view showing an example of a honeycomb laminate obtained in the present invention.
[Explanation of symbols]
2, 4, 22 Fibrous reinforcing material 2a, 4a, 30, 32 Cured skin layer 6, 8, 20 Thermosetting resin film 10 Core material 10a, 34 Cured core material layer 12 Bag 14 Type 16 Sealant 24 Resin impregnated layer 26 Unimpregnated layer 100 Semi-impregnated prepreg

Claims (5)

繊維質補強材、熱硬化性樹脂フィルム及び繊維からなる芯材を型の一面上に積重し、これらの上にバッグを重ねると共に当該バッグ周縁を型に気密にシールし、次いでバッグと型との間を排気することにより芯材を圧縮した状態で加熱して溶融した熱硬化性樹脂フィルムを繊維質補強材及び芯材に含浸させた後、バッグと型の間に気体を送りこんで芯材の形状を復元させた状態で含浸させた樹脂を加熱硬化させる積層板の製造方法。A fibrous reinforcing material, a thermosetting resin film, and a core material composed of fibers are stacked on one surface of a mold, a bag is stacked on these, and the periphery of the bag is hermetically sealed in the mold. After the air is exhausted, the core material is heated and melted in a compressed state, and then the fibrous reinforcing material and the core material are impregnated with the thermosetting resin film. A method for producing a laminate, in which a resin impregnated in a state where the shape of the resin is restored is heated and cured. 繊維質補強材、熱硬化性樹脂フィルム及び繊維からなる芯材を型の一面上に積重し、これらの上に一のバッグを重ねると共に当該バッグ周縁を型の他面を被覆した他のバッグに気密にシールし、次いでバッグと型との間を排気することにより芯材を圧縮した状態で加熱して溶融した熱硬化性樹脂フィルムを繊維質補強材及び芯材に含浸させた後、バッグと型の間に気体を送りこんで芯材の形状を復元させた状態で含浸させた樹脂を加熱硬化させる積層板の製造方法。Another bag in which a fibrous reinforcing material, a thermosetting resin film, and a core material composed of fibers are stacked on one surface of a mold, and one bag is stacked thereon and the periphery of the bag is covered with the other surface of the mold. Airtightly sealed, and then heat and melt the thermosetting resin film in a state where the core material is compressed by evacuating the bag and the mold to impregnate the fibrous reinforcing material and the core material into the bag. A method for producing a laminate, in which a resin impregnated in a state where the shape of a core material is restored by sending a gas between the mold and a mold is heated and cured. 繊維質補強材が炭素繊維織物であって、芯材が三次元配向繊維材である請求項1又は2に記載の製造方法。3. The method according to claim 1, wherein the fibrous reinforcing material is a carbon fiber fabric, and the core material is a three-dimensionally oriented fiber material. 芯材がハニカム形状の編織物である請求項1又は2に記載の製造方法。The method according to claim 1, wherein the core material is a honeycomb-shaped knitted fabric. 積層板が曲面形状を有するものである請求項1又は2に記載の製造方法。The method according to claim 1, wherein the laminate has a curved shape.
JP2002223746A 2002-07-31 2002-07-31 Method for manufacturing laminated sheet Pending JP2004058609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223746A JP2004058609A (en) 2002-07-31 2002-07-31 Method for manufacturing laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223746A JP2004058609A (en) 2002-07-31 2002-07-31 Method for manufacturing laminated sheet

Publications (1)

Publication Number Publication Date
JP2004058609A true JP2004058609A (en) 2004-02-26

Family

ID=31943429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223746A Pending JP2004058609A (en) 2002-07-31 2002-07-31 Method for manufacturing laminated sheet

Country Status (1)

Country Link
JP (1) JP2004058609A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037239A1 (en) 2009-09-28 2011-03-31 三菱レイヨン株式会社 Fiber-reinforced composite material
JP2012016828A (en) * 2010-07-06 2012-01-26 Tomoegawa Paper Co Ltd Composite sheet and composite adhesive sheet
JP2012513913A (en) * 2008-12-30 2012-06-21 エムアールエイ・システムズ・インコーポレイテッド Process and apparatus for making composite structures
JP2012131230A (en) * 2012-01-10 2012-07-12 Mitsubishi Rayon Co Ltd Laminate manufacturing method
JP2012529385A (en) * 2009-06-12 2012-11-22 クイックステップ、テクノロジーズ、プロプライエタリ、リミテッド Manufacturing method for advanced composite components
JP2013216328A (en) * 2012-04-04 2013-10-24 Gifu Plast Ind Co Ltd Resin container
JP2014141093A (en) * 2012-12-26 2014-08-07 Hikari Resin Kogyo Co Ltd Laminate structure and method for manufacturing the same
JP2018134871A (en) * 2016-07-22 2018-08-30 住友ベークライト株式会社 Composite material sheet, curved panel member, and method for producing sandwich panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513913A (en) * 2008-12-30 2012-06-21 エムアールエイ・システムズ・インコーポレイテッド Process and apparatus for making composite structures
JP2012529385A (en) * 2009-06-12 2012-11-22 クイックステップ、テクノロジーズ、プロプライエタリ、リミテッド Manufacturing method for advanced composite components
WO2011037239A1 (en) 2009-09-28 2011-03-31 三菱レイヨン株式会社 Fiber-reinforced composite material
JP2012016828A (en) * 2010-07-06 2012-01-26 Tomoegawa Paper Co Ltd Composite sheet and composite adhesive sheet
JP2012131230A (en) * 2012-01-10 2012-07-12 Mitsubishi Rayon Co Ltd Laminate manufacturing method
JP2013216328A (en) * 2012-04-04 2013-10-24 Gifu Plast Ind Co Ltd Resin container
JP2014141093A (en) * 2012-12-26 2014-08-07 Hikari Resin Kogyo Co Ltd Laminate structure and method for manufacturing the same
JP2018134871A (en) * 2016-07-22 2018-08-30 住友ベークライト株式会社 Composite material sheet, curved panel member, and method for producing sandwich panel

Similar Documents

Publication Publication Date Title
EP2495099B1 (en) Fiber-reinforced molded product and method for producing same
US8052831B2 (en) Low temperature, vacuum cure fabrication process for large, honeycomb core stiffened composite structures
KR100286153B1 (en) Complex molding apparatus, high pressure co-curing molding method using the same, and honeycomb core molded product manufactured therefrom
AU761069C (en) Moulding materials
US20040200571A1 (en) Methods of forming honeycomb sandwich composite panels
JP4941798B2 (en) Partially impregnated prepreg
US20090252921A1 (en) Method for the production of a sandwich component having a honeycomb core and the sandwich component obtained in this way
JP3911410B2 (en) Manufacturing method for composite products
WO2005060386A2 (en) Process for the manufacture of composite structures
JP2003011231A (en) Method for producing composite material panel
US20050194724A1 (en) Method of forming a composite structure
JP2004058609A (en) Method for manufacturing laminated sheet
JP4458739B2 (en) Manufacturing method of molded products
JP2007099966A (en) Prepreg
JP2004035604A (en) Semi-impregnated prepreg
JPH07178859A (en) Laminate and production thereof
JP2004058608A (en) Method for manufacturing hollow molded article
JP4052381B2 (en) Resin coat molding method
JP2004299178A (en) Resin transfer molding method
JP5417461B2 (en) Manufacturing method of laminate
JP2004058610A (en) Semi-impregnated prepreg and molding method using this prepreg
JP2004074471A (en) Frp molding intermediate material and its production method
JP2003305741A (en) Manufacturing method for laminated structure
JPH02209234A (en) Preparation of fiber reinforced composite material
JPH02209235A (en) Preparation of fiber reinforced composite material