JP2004058088A - Joint method and joint body - Google Patents

Joint method and joint body Download PDF

Info

Publication number
JP2004058088A
JP2004058088A JP2002218981A JP2002218981A JP2004058088A JP 2004058088 A JP2004058088 A JP 2004058088A JP 2002218981 A JP2002218981 A JP 2002218981A JP 2002218981 A JP2002218981 A JP 2002218981A JP 2004058088 A JP2004058088 A JP 2004058088A
Authority
JP
Japan
Prior art keywords
joining
ultrafine
silver
bonding
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002218981A
Other languages
Japanese (ja)
Other versions
JP2004058088A5 (en
Inventor
Naoaki Kogure
小榑 直明
Hiroshi Nagasawa
長澤 浩
Kaori Mikojima
神子島 かおり
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002218981A priority Critical patent/JP2004058088A/en
Publication of JP2004058088A publication Critical patent/JP2004058088A/en
Publication of JP2004058088A5 publication Critical patent/JP2004058088A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to be substituted for conventional solderings, to completely eliminate the use of lead and tin to solve environmental load by heavy metal contamination, and to join at relatively low temperatures. <P>SOLUTION: A joint body is made by mechanically and / or electrically joining two or more of members 52, and can be obtained by bring into contact/interposing a liquid or paste-like joint medium in which a metal ultrafine powder coated with inorganic chain shells is mixed/dispersed into a solvent between the portions to be joined of the members 52 and sintering them. In this case, the members 52 is joined through a joint layer 50 whose thickness t is set on a certain value or less in response to the width (joint lap length) λ of the members 52. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電子部品や半導体装置等を構成するチップを基板等に搭載する際に、前記チップの表面に設けられた電気接合用バンプ(接点)と基板上の電極(接点)とを電気的に接合する電気接点の接合、電気機器、部品に通電用のケーブルを電気的に接合する電気機器、部品へのケーブルの接合、或いは、熱交換器や航空機等の装置、機器の部材間の接合等に使用される接合方法、及びこの方法によって作製した接合体に関する。
【0002】
【従来の技術】
例えば、電子部品や半導体装置等を構成するチップの表面に配列した電気接合用バンプと、基板上のこれらの各バンプに対応する位置に設けた電極との電気的接合には、錫と鉛からなるはんだ(以下、Sn−Pbソルダ又はソルダという)を用いたマイクロソルダリングが広く用いられている。これは、この種のソルダを用いた接合法によれば、一般的に〜39.2MPa程度の接合強度を確保するとともに、ソルダバルクの電気抵抗率を〜17μΩcm程度、溶融温度を〜180℃程度とすることができ、バランスのとれた接合特性を容易に得られることによっている。
【0003】
図10は、この種のソルダを用いた従来の一般的なリフローソルダリングにより、QFC(quad flat package)タイプのICパッケージをプリント配線板の両面に装着する表面実装工程の一例を示す。先ず、図10(a)に示すように、プリント配線板10の表面(上面)の所定の位置にソルダペースト12aを印刷し、更に図10(b)に示すように、ソルダペースト12aに挟まれた所定の位置に接着剤14を塗布する。そして、図10(c)に示すように、各リード22aを前記各ソルダペースト12aに圧接しつつ、接着剤14を介してICパッケージ20aをプリント配線板10の表面に装着し、接着剤14を乾燥・硬化させる。
【0004】
次に、図10(d)に示すように、プリント配線板10を反転させた後、プリント配線板10の裏面(上面)の所定の位置にソルダペースト12bを印刷し、図10(e)に示すように、各リード22bを前記各ソルダペースト12bに圧接しつつ、ICパッケージ20bをプリント配線板10の裏面に装着し、しかる後、例えば300℃程度に加熱することによってソルダペースト12a,12bを溶融固化させる。
【0005】
そして、前述のようにしてICパッケージ20a,20bを装着したプリント配線板10の全体を、図11に示すように、外ケーシング30の内部に格納する場合には、この外ケーシング30に設けた電極32に、はんだ34を介してリード線36を接合するようにしている。
【0006】
ここで、外ケーシング30の電極32にはんだ34を介してリード線36を接合する際に、この時の昇温・加熱によって、既に接合が完了したプリント配線板10と各ICパッケージ20a,20bとのはんだ接合部12a,12b等が再溶融して、電気接点が損傷してしまうことを回避する必要がある。そこで、プリント配線板10と各ICパッケージ20a,20bの接合には、通常と異なる96%Pb含有の高温はんだ(融点:300℃程度)を用い、外ケーシング30の電極32へのリード線36の接合には、通常の低融点はんだ(融点:183℃程度)を用いることが一般に行われている。このように、融点の異なる2種のはんだを用いることにより、リード線36を外ケーシング30に取付ける時に、外ケーシング30の内部の電気接点が再溶融による損傷を受けることを避けることが可能となる。
【0007】
【発明が解決しようとする課題】
しかしながら、近年、地球環境保全の観点から鉛の使用が厳しく制限され、接合用のはんだ材料についても、これが通常40%程度以上の鉛を含有することから、鉛の含有量が零のはんだ材料への転換を強く迫られる状況となっている。通常の60%Sn−40%Pbはんだの代替品としては、Ag−Sn系のものが開発され既に一部で使用されている。しかし、96%Pb−Snからなる高温はんだの代替品の実現の目途は、全くたっていない状況である。このため、前述のようなパッケージタイプの半導体装置を、鉛の含有量が零のはんだ材料を使用して製造することは、接合問題で暗礁に乗り上げた状況となっている。
【0008】
また、例えば熱交換器や航空機の各部品を接合する場合には、ろう接が多用されている。このろう接による接合方法では、必然的に金属材料(ろう材)の融点以上までの加熱を伴うので、接合時の被接合部分の温度が450〜1000℃と非常に高くなり、このように、最高1000℃もの高温に曝されれば、一般的には、部材の広範囲な熱変形や大規模な熱応力・歪を生じることが不可避となる。このため、形状、寸法の精密さを要求される上記部品を、熱変形等の不都合を起こすことのない、比較的低温で確実に接合できるようにしたものの開発が強く望まれている。
【0009】
本発明は、上記事情に鑑みてなされたもので、従来のソルダリングに代替え可能で、しかも鉛及び錫の使用を全廃して重金属汚染による環境負荷を解消でき、しかも比較的低温で接合できるようにした接合方法及びそれによる接合体を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、2つ以上の部材を機械的及び/又は電気的に接合するにあたり、有機鎖殻で被覆された金属超微粒子を溶媒に混入・分散した液状又はペースト状の接合媒体を用意し、前記部材の被接合部間の隙間を該部材の幅(接合のラップ長さ)に対応させた所定の値以下に規制しつつ、前記隙間に前記接合媒体を接触・介在させ焼成することを特徴とする接合方法である。
【0011】
これにより、例えば有機溶剤、液状高分子材料、水、アルコール等の内の一つ又は複数の液体からなる媒体に、有機鎖殻で被覆された金属超微粒子を凝集を起こすことなく均一に混入・分散させた液状又はペースト状の接合媒体を焼成し、この焼成に伴って、金属超微粒子同士を低温焼結すると共に焼結部分と部材間で相互接触による凝着を起こすことによって、部材を強固に接合し、しかも部材の被接合部間の隙間を部材の幅(接合のラップ長さ)に合わせて規制することで、接合媒体を焼成することによって得られる接合層での荷重による損傷や破壊を防止することができる。
【0012】
請求項2に記載の発明は、前記部材の被接合部間の隙間は、前記接合媒体を焼成することによって得られる接合層の厚さをt、部材の幅(接合ラップ長さ)をλとしたとき、
t≦ 0.0849λ
の不等式を満足することを特徴とする請求項1記載の接合方法である。
【0013】
請求項3に記載の発明は、前記金属超微粒子は、銀を含む有機錯体を非酸化性雰囲気で加熱するか、又は還元剤によって還元することによって製造した銀超微粒子であることを特徴とする請求項1または2記載の接合方法である。この銀超微粒子は、例えばステアリン酸銀を250℃程度の窒素雰囲気で4時間加熱し、精製することによって製造される。
【0014】
請求項4に記載の発明は、前記銀超微粒子は、その大きさが5nm程度のクラスタ状をなしていることを特徴とする請求項3記載の接合方法である。これにより、銀超微粒子を微小な粒径として、この銀超微粒子の溶媒中への均一分散性が極めて良好となる。
【0015】
請求項5に記載の発明は、2つ以上の部材を機械的及び/又は電気的に接合した接合体であって、有機鎖殻で被覆された金属超微粒子を溶媒に混入・分散した液状又はペースト状の接合媒体を前記部材の被接合部間に接触・介在させ焼成することによって得られる、厚さを部材の幅(接合ラップ長さ)に対応させて一定の値以下に設定した接合層を介して前記部材を接合したことを特徴とする接合体である。
【0016】
請求項6に記載の発明は、前記接合層は、部材に外荷重が負荷したときに該接合層に荷重が集中しても該接合層での損傷や破壊が起こり難くなるように構成されていることを特徴とする請求項5記載の接合体である。
請求項7に記載の発明は、前記接合層の厚さtは、前記部材の幅(接合ラップ長さ)をλとした時、
t≦ 0.0849λ
に設定されていることを特徴とする請求項5または6記載の接合体である。
【0017】
請求項8に記載の発明は、前記金属超微粒子は、銀を含む有機錯体を非酸化性雰囲気で加熱するか、又は還元剤によって還元することによって製造した銀超微粒子であることを特徴とする請求項5乃至7のいずれかに記載の接合体である。
請求項9に記載の発明は、前記銀超微粒子は、その大きさが5nm程度のクラスタ状をなしていることを特徴とする請求項8記載の接合体である。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、以下の実施の形態では、金属超微粒子として、単体の銀からなる銀超微粒子を使用した例を示しているが、銀以外の金属からなる超微粒子を使用しても良いことは勿論である。
【0019】
図1は、この発明に使用される接合要素としての銀超微粒子(金属超微粒子)40を模式的に示すもので、この銀超微粒子40は、例えば約5nm程度の極小クラスタ状をなしており、その周囲は、例えばアルキル鎖殻42からなる有機鎖殻で被覆されている。
【0020】
このような、周囲をアルキル鎖殻(有機鎖殻)42で被覆した銀超微粒子(金属超微粒子)40は、図2に示すように、例えばミリスチン酸又はステアリン酸を水酸化ナトリウムによって鹸化し、しかる後、硝酸銀と反応させることにより、直鎖型脂肪酸銀塩(アルキル基の炭素数=14,18)を作製する。そして、この直鎖型脂肪酸塩を250℃程度の窒素雰囲気で4時間加熱して変性させ、精製することによって製造することができる。
【0021】
なお、図示していないが、例えばナフテン系高沸点溶媒(非水系溶媒)中で且つオレイン酸(イオン性有機物)の存在下で硝酸銀(金属塩)をその分解還元温度以下で且つイオン性有機物の分解温度以下の240℃程度で3時間加熱することによって、イオン性有機物で周囲を被覆した銀超微粒子を製造するようにしても良い。
【0022】
このようにして製造した銀超微粒子は、その周囲をアルキル鎖殻またはイオン性有機物で被覆しているため、例えばシクロヘキサン等の有機溶媒に溶解させると、互いに凝集することなく、安定した状態で溶媒中に均一に混ざり合い、透明な状態、即ち可溶化状態となる。
【0023】
ここで、金属粒子の融点は、粒径が小さくなると低下することが知られているが、その効果が現れはじめる粒径は20nm以下であり、10nm以下になるとその効果が顕著となる。従って、銀超微粒子の平均粒径は、1〜20nmであるのが好ましく、1〜10nmであるのが特に好ましい。例えば、平均粒径が5nm程度のクラスタレベルの極小の銀超微粒子を使用することにより、200℃程度の加熱で銀超微粒子同士を互いに融着させることができる。
【0024】
次に、前述のようにして製造した銀超微粒子を使って、部材を接合する手順例を図3を参照して説明する。
先ず、前述のようにして製造した、例えば図1に示す周囲をアルキル鎖殻(有機鎖殻)42で被覆した銀超微粒子(金属超微粒子)40を、有機溶剤、液状高分子材料、水、又はアルコール等のうちの1つ又は複数の液体からなる溶媒に混入し分散し、これによって、液状又はペースト状の接合媒体を作成する。ここで、銀超微粒子(金属超微粒子)40は、その寸法が約5nm程度と極小クラスタ状をなしており、互いに分散性良く媒体に均一に混じりあった状態を保つことができる。
【0025】
そして、この接合媒体を、主として金属製の接合する部材の被接合部間に塗布等によって接触・介在させる。この被接合部の表面に接合媒体を塗布した時の状態を図4に示す。この図4から、銀超微粒子40は、互いに非接触状態を保ちながら、溶媒44中に均一に分散していることが判る。
【0026】
そして、接合する部材の被接合部間の隙間を該部材の幅(接合ラップ長さ)に対応させた所定の値以下に規制しつつ、例えば200〜300℃程度に加熱して接合媒体を焼成し、これによって、図6に示すように、銀層からなる接合層50を介して部材52を接合する。つまり、銀超微粒子40を被覆しているアルキル鎖殻42は、200℃程度の加熱で消滅することが知られており、このように、接合媒体を200〜300℃程度で焼成すると、銀超微粒子40の周囲を覆っていたアルキル鎖殻42は消失し、同時に銀超微粒子40同士が直接接触し焼結して銀層が形成され、この銀層からなる接合層50と部材52の表面が直接接触による凝着を起こすので、その結果として、部材52同士が接合される。
【0027】
この時、銀超微粒子40は、著しく小さい粒子であることに起因して生じる低温焼結現象によって、相互に結合していると考えられる。また、一般に銀以外の金属を含む部材と銀層の間の接合は、両者が相互に近づいたことによる凝着、すなわち電気的な金属間結合によって生じると考えられる。
【0028】
この接合方法によれば、接合のための処理温度が200〜300℃と低いので、プロセス実行中に銀超微粒子同士が凝集・粗大化を起こす可能性が極めて低い。その結果、非常に微細な隙間内部にも銀粒子が入り込み、健全な充填がなされやすいので信頼性ある接合が可能となる。つまり、図5は、幅及び深さが共に1μm程度の溝を有する基板46の表面に、前述のようにして、銀超微粒子からなる銀層48を形成した時の状態を示す。この図5から、基板46の表面に設けた微細な溝の内部に銀層48がボイドを生じることなく、確実に充填されていることが判る。
【0029】
図6は、前述のようにして、部材52,52を銀層からなる接合層50で接合して構成した接合体を示す。この接合層50は、部材52に外荷重Fが負荷したときに該接合層50に荷重が集中しても、該接合層50での損傷や破壊が起こり難くなるように構成されている。具体的には、接合層50の厚さtは、部材52の幅(接合のラップ長さ)λとした時、
t≦ 0.0849λ
となるように設定されている。以下、このように設定した理由を説明する。
【0030】
部材52にかかる荷重様式としてしばしば使われる引張りの場合について考察すると、引張り荷重Fは、図6に示すように、突合わせ継手の場合に生じ、通常、部材52の方が接合層50よりも強度、剛性が高いので、荷重Fの増加に伴って接合層50の部分が先に変形して、図7に示すようにくびれた状態となる。そして、接合層50にくびれ50aが激しく生じると、接合層50の内部が膨張することになって接合層50内に空洞を生じやすい。このくびれ現象を抑制するためには、図7で部材52の幅(=接合のラップ長さ)λに対する接合層50の厚さtを小さくすればよく、このためには、この部分の応力状態を材料力学、破壊力学で公知の平面歪状態にすればいいことが判っている。
【0031】
そこで、図8に示す状況を平面歪状態類似と仮定して検討する。すなわち、接合層50の厚さtを、荷重Fによってその周囲の部材52よりも大きな変形を生じた領域の大きさ(塑性域寸法)と見なせば、接合範囲の全長(部材52の幅)λにわたって完全な平面歪状態を起こすためには、次式(1)が成立する必要がある。
【数1】

Figure 2004058088
一方、塑性域寸法(接合層50の厚さ)tは、一般に次式(2)で記述される。
【数2】
Figure 2004058088
式(1)、(2)で、Kは亀裂を有する部材に力を負荷した時の応力拡大係数を、σは接合層の材料の降伏応力を示す。βは接合層の材料特性によって決まる定数で、例えば、
β=π(1+ε)
(ε:引張試験に於ける最大荷重点に相当する歪)を表す。
【0032】
式(1)、(2)から、tについて解くと次式(3)を得る。
【数3】
Figure 2004058088
ここで、本発明に於ける銀層の場合、引張り試験による伸びが0.5程度になると考えられるので、安全側をとってε=0.5とすればβ=1.5π≒4.712となるので、結局、次式(4)を得る。
t ≦ 0.0849λ   …(4)
【0033】
図9は、式(4)をλ−t平面上に表示したものであり、これにより、図9の網点で示す領域に部材の幅(接合ラップ長さ)λ、接合層の厚さtの値の組がおさまるように接合層の形状を設計することによって、接合層にくびれが発生することを抑制し、これによって、部材に外荷重が負荷したときに接合層に荷重が集中しても、接合層での損傷や破壊が起こり難くなるようにすることができる。
【0034】
ここで、その大きさが5nm程度のクラスタ形状をなしている銀超微粒子の融点は210℃程度であるが、この銀超微粒子によって形成された銀膜の融点は、通常の銀と同じ961.93℃となる。つまり、一度融着すると、961.93℃以上でなければ融着しなくなる。これによって、前記従来例に示す、プリント配線板10と各ICパッケージ20a,20bとを本発明の接合方法によって接合し、しかる後、外ケーシング30の電極32に本発明の接合方法によってリード線36を接合しても、この時の昇温・加熱によって、既に接合が完了したプリント配線板10と各ICパッケージ20a,20bとの接合部が再溶融して、電気接点が損傷してしまうことはない。
【0035】
【発明の効果】
以上説明したように、本発明によれば、接合媒体を焼成し、この焼成に伴って金属超微粒子同士、及び金属超微粒子と部材表面を直接接触させることによって部材を強固に接合し、しかも部材の被接合部間の隙間を接合長さに合わせて規制することで、接合媒体を焼成することによって得られる接合層が、外荷重によって損傷や破壊を起こすことを防止することができる。これによって、従来のソルダリングに代替え可能で、しかも鉛及び錫の使用を全廃して重金属汚染による環境負荷を解消でき、しかも比較的低温で接合できるようにした接合方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に使用される銀超微粒子(金属超微粒子)の一例を模式的に示す図である。
【図2】図1に示す銀超微粒子の製造の手順例を示す図である。
【図3】本発明の接合方法の手順例を示す図である。
【図4】被接合部に接合媒体を塗布した状態を示す図である。
【図5】微細な溝を有する基板の表面に銀超微粒子からなる銀層を形成した時の状態を示す図である。
【図6】本発明の部材を銀超微粒子からなる銀層(接合層)で接合した本発明の接合体の一例を示す正面図である。
【図7】接合層にくびれが発生した状態を示す図である。
【図8】平面歪状態によるくびれの抑制の説明に付する図である。
【図9】本発明におけるラップ長さλと接合層厚さtの関係を示すグラフである。
【図10】従来の電気接点の接合方法の一例を工程順に示す図である。
【図11】従来の電気接点の接合方法の他の例を示す図である。
【符号の説明】
40 銀超微粒子
42 アルキル鎖殻
44 溶媒
48 銀層
50 接合層
52 部材[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, for example, when a chip constituting an electronic component or a semiconductor device is mounted on a substrate or the like, an electric bonding bump (contact) provided on the surface of the chip is electrically connected to an electrode (contact) on the substrate. Electrical connection, electrical connection of electrical cables to electrical equipment and components, electrical connection of electrical cables to components, or connection between components of equipment and devices such as heat exchangers and aircraft The present invention relates to a joining method used for joining and the like, and a joined body produced by this method.
[0002]
[Prior art]
For example, tin and lead are used for electrical bonding between the electrical bonding bumps arranged on the surface of a chip constituting an electronic component or a semiconductor device and the electrodes provided at positions corresponding to these bumps on the substrate. Micro soldering using solder (hereinafter, referred to as Sn-Pb solder or solder) is widely used. According to the joining method using this type of solder, generally, a joining strength of about 39.2 MPa is ensured, the electric resistance of the solder bulk is about 17 μΩcm, and the melting temperature is about 180 ° C. And balanced bonding characteristics can be easily obtained.
[0003]
FIG. 10 shows an example of a surface mounting process of mounting a QFC (quad flat package) type IC package on both sides of a printed wiring board by conventional general reflow soldering using this type of solder. First, as shown in FIG. 10A, a solder paste 12a is printed at a predetermined position on the surface (upper surface) of the printed wiring board 10, and is further sandwiched between the solder pastes 12a as shown in FIG. The adhesive 14 is applied to the predetermined position. Then, as shown in FIG. 10 (c), the IC package 20a is mounted on the surface of the printed wiring board 10 via the adhesive 14, while each lead 22a is being pressed against each solder paste 12a, and the adhesive 14 is applied. Dry and cure.
[0004]
Next, as shown in FIG. 10D, after the printed wiring board 10 is inverted, a solder paste 12b is printed at a predetermined position on the back surface (upper surface) of the printed wiring board 10, and FIG. As shown, the IC package 20b is mounted on the back surface of the printed wiring board 10 while the leads 22b are pressed against the solder pastes 12b, and then the solder pastes 12a and 12b are heated to, for example, about 300 ° C. Melt and solidify.
[0005]
When the entire printed wiring board 10 on which the IC packages 20a and 20b are mounted as described above is stored inside the outer casing 30, as shown in FIG. A lead wire 36 is connected to the lead 32 via a solder 34.
[0006]
Here, when the lead wire 36 is joined to the electrode 32 of the outer casing 30 via the solder 34, the printed wiring board 10 and the IC packages 20a, 20b, which have already been joined, are heated and heated at this time. It is necessary to avoid that the solder joints 12a, 12b and the like are re-melted and the electrical contacts are damaged. Therefore, the printed wiring board 10 and each of the IC packages 20a and 20b are joined by using an unusual high-temperature solder containing 96% Pb (melting point: about 300 ° C.) to connect the lead wires 36 to the electrodes 32 of the outer casing 30. It is common practice to use ordinary low melting point solder (melting point: about 183 ° C.) for joining. As described above, by using two kinds of solders having different melting points, it is possible to prevent the electric contacts inside the outer casing 30 from being damaged by re-melting when the lead wire 36 is attached to the outer casing 30. .
[0007]
[Problems to be solved by the invention]
However, in recent years, the use of lead has been severely restricted from the viewpoint of global environmental protection, and solder materials for joining usually contain about 40% or more lead. The situation is now being forced to change. As a substitute for the normal 60% Sn-40% Pb solder, an Ag-Sn-based solder has been developed and is already used in part. However, the prospect of realizing a substitute for a high-temperature solder composed of 96% Pb-Sn is not yet established. For this reason, manufacturing the package-type semiconductor device as described above using a solder material having a zero lead content has led to a situation in which the semiconductor device has been hit by a problem of bonding.
[0008]
In addition, for example, when joining components of a heat exchanger or an aircraft, brazing is often used. This joining method by brazing necessarily involves heating to a temperature equal to or higher than the melting point of the metal material (brazing material), so that the temperature of the portion to be joined at the time of joining becomes extremely high at 450 to 1000 ° C. When exposed to temperatures as high as 1000 ° C. at maximum, it is generally inevitable that a wide range of thermal deformation and large-scale thermal stress / strain of the member will occur. For this reason, there is a strong demand for the development of a component capable of reliably joining the above-mentioned parts requiring high precision in shape and dimensions at a relatively low temperature without causing inconvenience such as thermal deformation.
[0009]
The present invention has been made in view of the above circumstances, and can replace conventional soldering.Also, the use of lead and tin can be completely eliminated to eliminate the environmental burden due to heavy metal contamination, and to enable joining at a relatively low temperature. It is an object of the present invention to provide a bonding method and a bonded body using the same.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, when two or more members are mechanically and / or electrically joined, liquid or paste-like joining is performed by mixing and dispersing metal ultrafine particles coated with an organic chain shell in a solvent. A medium is prepared, and while the gap between the joined portions of the member is regulated to a predetermined value corresponding to the width of the member (the wrap length of the joint), the joining medium is brought into contact with and interposed in the gap. This is a bonding method characterized by firing.
[0011]
Thereby, for example, the ultrafine metal particles coated with the organic chain shell are uniformly mixed into a medium composed of one or more liquids such as an organic solvent, a liquid polymer material, water, and alcohol without causing aggregation. The dispersed liquid or paste-like joining medium is fired, and with this firing, the metal ultrafine particles are sintered at a low temperature and cohesion is caused by mutual contact between the sintered part and the member, thereby strengthening the member. And the gap between the joined parts of the members is regulated according to the width of the members (lap length of the joints), so that the bonding layer obtained by firing the joining medium is damaged or broken by the load on the joining layers. Can be prevented.
[0012]
In the invention described in claim 2, the gap between the joined portions of the member is such that the thickness of the joining layer obtained by firing the joining medium is t, and the width of the member (joining wrap length) is λ. When
t ≦ 0.0849λ
The joining method according to claim 1, wherein the following inequality is satisfied.
[0013]
The invention according to claim 3 is characterized in that the metal ultrafine particles are silver ultrafine particles produced by heating an organic complex containing silver in a non-oxidizing atmosphere or reducing it with a reducing agent. A joining method according to claim 1 or 2. The ultrafine silver particles are produced, for example, by heating and purifying silver stearate in a nitrogen atmosphere at about 250 ° C. for 4 hours.
[0014]
The invention according to a fourth aspect is the bonding method according to the third aspect, wherein the ultrafine silver particles have a cluster shape with a size of about 5 nm. Thereby, the ultrafine silver particles are made to have a fine particle size, and the uniform dispersibility of the ultrafine silver particles in the solvent becomes extremely good.
[0015]
The invention according to claim 5 is a joined body in which two or more members are mechanically and / or electrically joined, and a liquid or a metal in which ultrafine metal particles coated with an organic shell are mixed and dispersed in a solvent. A joining layer whose thickness is set to a certain value or less in accordance with the width of the member (joining wrap length), obtained by contacting and interposing a paste-like joining medium between the parts to be joined of the member and firing the member; A joined body characterized in that the members are joined via a joint.
[0016]
In the invention according to claim 6, the bonding layer is configured such that when an external load is applied to a member, even if a load is concentrated on the bonding layer, damage or destruction of the bonding layer is unlikely to occur. The joined body according to claim 5, wherein
According to a seventh aspect of the present invention, the thickness t of the bonding layer is such that the width of the member (the length of the bonding wrap) is λ.
t ≦ 0.0849λ
The joined body according to claim 5 or 6, wherein
[0017]
The invention according to claim 8 is characterized in that the metal ultrafine particles are silver ultrafine particles produced by heating an organic complex containing silver in a non-oxidizing atmosphere or reducing it with a reducing agent. A joined body according to any one of claims 5 to 7.
The invention according to a ninth aspect is the joined body according to the eighth aspect, wherein the ultrafine silver particles have a cluster shape with a size of about 5 nm.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, an example is shown in which silver ultrafine particles made of simple silver are used as metal ultrafine particles. However, it goes without saying that ultrafine particles made of a metal other than silver may be used. is there.
[0019]
FIG. 1 schematically shows ultrafine silver particles (metallic ultrafine particles) 40 as joining elements used in the present invention. The ultrafine silver particles 40 are in the form of a very small cluster of, for example, about 5 nm. The periphery thereof is covered with, for example, an organic chain shell composed of an alkyl chain shell 42.
[0020]
Such silver ultrafine particles (metal ultrafine particles) 40 whose periphery is covered with an alkyl chain shell (organic shell) 42 are, for example, as shown in FIG. 2, saponified myristic acid or stearic acid with sodium hydroxide. Thereafter, by reacting with silver nitrate, a linear fatty acid silver salt (the number of carbon atoms of the alkyl group = 14, 18) is prepared. Then, the linear fatty acid salt can be produced by heating and denaturing in a nitrogen atmosphere at about 250 ° C. for 4 hours, followed by purification.
[0021]
Although not shown, for example, in a naphthene-based high-boiling solvent (non-aqueous solvent) and in the presence of oleic acid (ionic organic material), silver nitrate (metal salt) is converted at a temperature lower than its decomposition reduction temperature and at a temperature lower than the decomposition reduction temperature. By heating at about 240 ° C. below the decomposition temperature for 3 hours, silver ultrafine particles whose periphery is covered with an ionic organic substance may be produced.
[0022]
Since the ultrafine silver particles produced in this way are covered with an alkyl chain or an ionic organic material, when dissolved in an organic solvent such as cyclohexane, for example, the silver ultrafine particles do not aggregate with each other and remain stable in a stable state. It is uniformly mixed therein and becomes a transparent state, that is, a solubilized state.
[0023]
Here, it is known that the melting point of metal particles decreases as the particle size decreases, but the particle size at which the effect starts to appear is 20 nm or less, and the effect becomes remarkable at 10 nm or less. Therefore, the average particle size of the ultrafine silver particles is preferably from 1 to 20 nm, and particularly preferably from 1 to 10 nm. For example, by using ultra-fine silver particles of a cluster level having an average particle diameter of about 5 nm, the ultra-fine silver particles can be fused together by heating at about 200 ° C.
[0024]
Next, an example of a procedure for joining members using the ultrafine silver particles produced as described above will be described with reference to FIG.
First, for example, ultrafine silver particles (metal ultrafine particles) 40 whose periphery is coated with an alkyl chain shell (organic shell) 42 shown in FIG. 1 as described above are mixed with an organic solvent, a liquid polymer material, water, Alternatively, it is mixed and dispersed in a solvent composed of one or a plurality of liquids such as alcohols, thereby producing a liquid or paste-like joining medium. Here, the silver ultrafine particles (metal ultrafine particles) 40 have a very small cluster shape with a size of about 5 nm, and can maintain a state of being uniformly mixed with the medium with good dispersibility.
[0025]
Then, the joining medium is brought into contact with and interposed between the joined portions of the members to be joined, which are mainly made of metal, by coating or the like. FIG. 4 shows a state in which the joining medium is applied to the surface of the portion to be joined. From FIG. 4, it can be seen that the ultrafine silver particles 40 are uniformly dispersed in the solvent 44 while maintaining a non-contact state with each other.
[0026]
Then, while regulating the gap between the portions to be joined of the members to be joined to a predetermined value or less corresponding to the width of the members (joining wrap length), the joining medium is heated by, for example, heating to about 200 to 300 ° C. Thus, as shown in FIG. 6, the member 52 is joined via the joining layer 50 made of a silver layer. That is, it is known that the alkyl chain shell 42 covering the ultrafine silver particles 40 disappears by heating at about 200 ° C. In this way, when the bonding medium is fired at about 200 to 300 ° C., The alkyl chain shell 42 covering the periphery of the fine particles 40 disappears, and at the same time, the silver ultrafine particles 40 come into direct contact with each other and sinter to form a silver layer. Adhesion occurs due to direct contact, and as a result, the members 52 are joined.
[0027]
At this time, it is considered that the ultrafine silver particles 40 are mutually bonded by a low-temperature sintering phenomenon caused by being extremely small particles. In general, it is considered that bonding between a member containing a metal other than silver and a silver layer is caused by adhesion due to the two coming close to each other, that is, electrical intermetallic coupling.
[0028]
According to this bonding method, since the processing temperature for bonding is as low as 200 to 300 ° C., the possibility that the silver ultrafine particles aggregate and coarsen during the process is extremely low. As a result, silver particles enter into the very fine gaps, and sound filling is easily performed, so that reliable bonding can be performed. That is, FIG. 5 shows a state in which the silver layer 48 made of the ultrafine silver particles is formed on the surface of the substrate 46 having the groove having the width and the depth of about 1 μm as described above. From FIG. 5, it can be seen that the silver layer 48 is reliably filled in the fine grooves provided on the surface of the substrate 46 without generating voids.
[0029]
FIG. 6 shows a joined body formed by joining the members 52, 52 with the joining layer 50 made of a silver layer as described above. The bonding layer 50 is configured such that even when a load is concentrated on the bonding layer 50 when an external load F is applied to the member 52, damage or destruction of the bonding layer 50 is unlikely to occur. Specifically, when the thickness t of the bonding layer 50 is the width (the wrap length of the bonding) λ of the member 52,
t ≦ 0.0849λ
It is set to be. Hereinafter, the reason for the setting will be described.
[0030]
Considering the case of tension, which is often used as a load mode applied to the member 52, the tensile load F is generated in the case of a butt joint as shown in FIG. Since the rigidity is high, the portion of the bonding layer 50 is deformed first with an increase in the load F, and becomes in a constricted state as shown in FIG. When the constriction 50a is generated in the bonding layer 50, the inside of the bonding layer 50 expands, and a cavity is easily generated in the bonding layer 50. In order to suppress the necking phenomenon, the thickness t of the bonding layer 50 with respect to the width (= lap length of the bonding) λ of the member 52 in FIG. 7 may be reduced. Has been found to be in a plane strain state known in material mechanics and fracture mechanics.
[0031]
Therefore, the situation shown in FIG. 8 will be examined on the assumption that the plane distortion state is similar. That is, assuming that the thickness t of the bonding layer 50 is the size of a region (plastic region size) in which the load F causes a larger deformation than the surrounding member 52, the total length of the bonding range (the width of the member 52). In order to cause a complete plane distortion state over λ, the following equation (1) needs to be satisfied.
(Equation 1)
Figure 2004058088
On the other hand, the plastic zone dimension (the thickness of the bonding layer 50) t is generally described by the following equation (2).
(Equation 2)
Figure 2004058088
Equation (1), with (2), K is the stress intensity factor when loaded with a force members having a crack, sigma y indicates the yield stress of the material of the bonding layer. β is a constant determined by the material properties of the bonding layer, for example,
β = π (1 + ε)
(Ε: strain corresponding to the maximum load point in the tensile test).
[0032]
Solving for t from equations (1) and (2) yields the following equation (3).
[Equation 3]
Figure 2004058088
Here, in the case of the silver layer in the present invention, the elongation by a tensile test is considered to be about 0.5, so if ε = 0.5 on the safe side, β = 1.5π ≒ 4.712. Therefore, the following equation (4) is obtained.
t ≦ 0.0849λ (4)
[0033]
FIG. 9 shows equation (4) on the λ-t plane, whereby the width (joining wrap length) λ of the member and the thickness t of the joining layer By designing the shape of the joining layer so that the set of values can be accommodated, it is possible to suppress the occurrence of constriction in the joining layer, so that when an external load is applied to the member, the load concentrates on the joining layer. Also, it is possible to make it difficult for damage or destruction to occur in the bonding layer.
[0034]
Here, the melting point of the ultrafine silver particles having a cluster size of about 5 nm is about 210 ° C., and the melting point of the silver film formed by these ultrafine silver particles is 961. It will be 93 ° C. That is, once fused, fusion will not occur unless the temperature is 961.93 ° C. or higher. As a result, the printed wiring board 10 and each of the IC packages 20a and 20b shown in the conventional example are joined by the joining method of the present invention, and then the lead wires 36 are connected to the electrodes 32 of the outer casing 30 by the joining method of the present invention. However, when the temperature rises and heats at this time, the junction between the printed wiring board 10 and the IC packages 20a and 20b that have already been joined does not melt again, and the electrical contacts are not damaged. Absent.
[0035]
【The invention's effect】
As described above, according to the present invention, the joining medium is baked, and the ultrafine metal particles are brought into contact with each other, and the ultrafine metal particles are brought into direct contact with the surface of the member along with the calcination, thereby firmly joining the members. By regulating the gap between the parts to be joined according to the joining length, it is possible to prevent the joining layer obtained by firing the joining medium from being damaged or broken by an external load. As a result, it is possible to provide a joining method which can be replaced with conventional soldering, can completely eliminate the use of lead and tin, can eliminate the environmental load caused by heavy metal contamination, and can join at a relatively low temperature.
[Brief description of the drawings]
FIG. 1 is a view schematically showing one example of ultrafine silver particles (metal ultrafine particles) used in the present invention.
FIG. 2 is a view showing an example of a procedure for producing the ultrafine silver particles shown in FIG.
FIG. 3 is a diagram showing an example of a procedure of a joining method according to the present invention.
FIG. 4 is a diagram showing a state in which a joining medium is applied to a portion to be joined.
FIG. 5 is a view showing a state in which a silver layer composed of ultrafine silver particles is formed on the surface of a substrate having fine grooves.
FIG. 6 is a front view showing an example of a joined body of the present invention in which members of the present invention are joined by a silver layer (joining layer) made of ultrafine silver particles.
FIG. 7 is a diagram showing a state in which constriction has occurred in a bonding layer.
FIG. 8 is a diagram for describing suppression of constriction due to a plane distortion state.
FIG. 9 is a graph showing a relationship between a wrap length λ and a bonding layer thickness t in the present invention.
FIG. 10 is a diagram showing an example of a conventional method for joining electrical contacts in the order of steps.
FIG. 11 is a view showing another example of a conventional method for joining electrical contacts.
[Explanation of symbols]
40 Ultrafine silver particles 42 Alkyl chain shell 44 Solvent 48 Silver layer 50 Joining layer 52 Member

Claims (9)

2つ以上の部材を機械的及び/又は電気的に接合するにあたり、
有機鎖殻で被覆された金属超微粒子を溶媒に混入・分散した液状又はペースト状の接合媒体を用意し、
前記部材の被接合部間の隙間を該部材の幅(接合のラップ長さ)に対応させた所定の値以下に規制しつつ、前記隙間に前記接合媒体を接触・介在させ焼成することを特徴とする接合方法。
In mechanically and / or electrically joining two or more members,
Prepare a liquid or paste-like joining medium in which ultrafine metal particles coated with an organic chain shell are mixed and dispersed in a solvent,
The method is characterized in that the joining medium is brought into contact with and interposed in the gap and fired while regulating the gap between the joined portions of the member to a predetermined value or less corresponding to the width of the member (lap length of joining). And the joining method.
前記部材の被接合部間の隙間は、前記接合媒体を焼成することによって得られる接合層の厚さをt、部材の幅(接合ラップ長さ)をλとしたとき、
t≦ 0.0849λ
の不等式を満足することを特徴とする請求項1記載の接合方法。
When the thickness of the bonding layer obtained by firing the bonding medium is t, and the width of the member (bonding wrap length) is λ,
t ≦ 0.0849λ
The joining method according to claim 1, wherein the following inequality is satisfied.
前記金属超微粒子は、銀を含む有機錯体を非酸化性雰囲気で加熱するか、又は還元剤によって還元することによって製造した銀超微粒子であることを特徴とする請求項1または2記載の接合方法。The bonding method according to claim 1, wherein the metal ultrafine particles are silver ultrafine particles produced by heating an organic complex containing silver in a non-oxidizing atmosphere or reducing the same with a reducing agent. . 前記銀超微粒子は、その大きさが5nm程度のクラスタ状をなしていることを特徴とする請求項3記載の接合方法。4. The bonding method according to claim 3, wherein the ultrafine silver particles have a cluster shape with a size of about 5 nm. 2つ以上の部材を機械的及び/又は電気的に接合した接合体であって、
有機鎖殻で被覆された金属超微粒子を溶媒に混入・分散した液状又はペースト状の接合媒体を前記部材の被接合部間に接触・介在させ焼成することによって得られる、厚さを部材の幅(接合ラップ長さ)に対応させて一定の値以下に設定した接合層を介して前記部材を接合したことを特徴とする接合体。
A joined body obtained by mechanically and / or electrically joining two or more members,
The thickness of the member is determined by contacting and interposing a liquid or paste-like joining medium in which ultrafine metal particles coated with an organic chain shell is mixed and dispersed in a solvent between the joined portions of the member and firing the member. A joined body, wherein the members are joined via a joining layer set to be equal to or less than a predetermined value in accordance with (joining wrap length).
前記接合層は、部材に外荷重が負荷したときに該接合層に荷重が集中しても該接合層での損傷や破壊が起こり難くなるように構成されていることを特徴とする請求項5記載の接合体。6. The bonding layer according to claim 5, wherein when an external load is applied to the member, even if a load is concentrated on the bonding layer, damage or destruction of the bonding layer hardly occurs. The conjugate of the above. 前記接合層の厚さtは、前記部材の幅(接合ラップ長さ)をλとした時、
t≦ 0.0849λ
に設定されていることを特徴とする請求項5または6記載の接合体。
The thickness t of the bonding layer is defined assuming that the width (bonding wrap length) of the member is λ.
t ≦ 0.0849λ
The joined body according to claim 5, wherein:
前記金属超微粒子は、銀を含む有機錯体を非酸化性雰囲気で加熱するか、又は還元剤によって還元することによって製造した銀超微粒子であることを特徴とする請求項5乃至7のいずれかに記載の接合体。The metal ultrafine particle is a silver ultrafine particle produced by heating an organic complex containing silver in a non-oxidizing atmosphere or reducing it with a reducing agent. The conjugate of the above. 前記銀超微粒子は、その大きさが5nm程度のクラスタ状をなしていることを特徴とする請求項8記載の接合体。9. The joined body according to claim 8, wherein the ultrafine silver particles have a cluster shape with a size of about 5 nm.
JP2002218981A 2002-07-26 2002-07-26 Joint method and joint body Pending JP2004058088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218981A JP2004058088A (en) 2002-07-26 2002-07-26 Joint method and joint body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218981A JP2004058088A (en) 2002-07-26 2002-07-26 Joint method and joint body

Publications (2)

Publication Number Publication Date
JP2004058088A true JP2004058088A (en) 2004-02-26
JP2004058088A5 JP2004058088A5 (en) 2005-08-25

Family

ID=31939994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218981A Pending JP2004058088A (en) 2002-07-26 2002-07-26 Joint method and joint body

Country Status (1)

Country Link
JP (1) JP2004058088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2006073550A (en) * 2004-08-31 2006-03-16 Toshiba Corp Bonding member and its manufacturing method
KR20140125417A (en) * 2012-02-08 2014-10-28 크레인 일렉트로닉스, 아이엔씨. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
CN113053783A (en) * 2021-02-07 2021-06-29 深圳市星欣磊实业有限公司 Composite die for sintering metal shell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2006073550A (en) * 2004-08-31 2006-03-16 Toshiba Corp Bonding member and its manufacturing method
KR20140125417A (en) * 2012-02-08 2014-10-28 크레인 일렉트로닉스, 아이엔씨. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
JP2015508235A (en) * 2012-02-08 2015-03-16 クレーン エレクトロニクス、インコーポレーテッド Multilayer electronic device assembly and method for embedding electrical circuit elements in a three-dimensional module
US9888568B2 (en) 2012-02-08 2018-02-06 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
KR102103196B1 (en) 2012-02-08 2020-04-22 크레인 일렉트로닉스, 아이엔씨. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
US11172572B2 (en) 2012-02-08 2021-11-09 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
CN113053783A (en) * 2021-02-07 2021-06-29 深圳市星欣磊实业有限公司 Composite die for sintering metal shell
CN113053783B (en) * 2021-02-07 2022-09-13 深圳市星欣磊实业有限公司 Composite die for sintering metal shell

Similar Documents

Publication Publication Date Title
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
KR100548114B1 (en) Solder foil and semiconductor device and electronic device
JP3045956B2 (en) Metal bond forming method
KR100629826B1 (en) Compound and circuit device using the same
JP2004130371A (en) Joined body
JP4539980B2 (en) Semiconductor device and manufacturing method thereof
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
TW201343310A (en) Bonding method, bond structure, and manufacturing method for same
JP4722751B2 (en) Powder solder material and bonding material
JP2008004651A (en) Bonding material using anisotropic fine particles
TW200425436A (en) Lead free alloys for column/ball grid arrays, organic interposers and passive component assembly
US7923289B2 (en) Process for fabricating a semiconductor package
JP4672576B2 (en) Electronic device and manufacturing method thereof
US8550327B2 (en) Clad solder thermal interface material
JP4022139B2 (en) Electronic device, electronic device mounting method, and electronic device manufacturing method
JP2005093826A (en) Connection structure using conductive adhesive and manufacturing method therefor
US6214131B1 (en) Mixed solder pastes for low-temperature soldering process
JP2004058088A (en) Joint method and joint body
JP4432541B2 (en) Electronics
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
EP3621767B1 (en) Solder material and method for die attachment
JP2016087691A (en) Pb-FREE SOLDER AND ELECTRONIC PARTS BUILT-IN MODULE
JP4010717B2 (en) Electrical contact joining method
JP6936595B2 (en) Semiconductor device
EP3257109B1 (en) Electrical connection tape

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016