JP2004056976A - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
JP2004056976A
JP2004056976A JP2002214752A JP2002214752A JP2004056976A JP 2004056976 A JP2004056976 A JP 2004056976A JP 2002214752 A JP2002214752 A JP 2002214752A JP 2002214752 A JP2002214752 A JP 2002214752A JP 2004056976 A JP2004056976 A JP 2004056976A
Authority
JP
Japan
Prior art keywords
phase
voltage
absolute value
voltage reference
addition result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002214752A
Other languages
Japanese (ja)
Other versions
JP4203278B2 (en
Inventor
Hiromitsu Suzuki
鈴木 寛充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002214752A priority Critical patent/JP4203278B2/en
Publication of JP2004056976A publication Critical patent/JP2004056976A/en
Application granted granted Critical
Publication of JP4203278B2 publication Critical patent/JP4203278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion apparatus which alleviates an influence of surge voltage generated from the apparatus to an insulation of a motor by a relatively simple control means. <P>SOLUTION: The power conversion apparatus includes a carrier generator circuit 4 for generating a carrier wave, a control circuit 3 receiving a speed reference Sr for comparing a speed signal Sf of a motor 7 with the reference Sr to generate a three-phase voltage reference Vr, a line voltage limit processing circuit 8 receiving the reference Vr and having an arithmetic means for obtaining a correction three-phase voltage reference Vc in which a pulse width applied to a line voltage does not become a predetermined value or less, and a control means having a comparator 5 for comparing the carrier wave with the correction three-phase voltage reference to generate an element gate pulse command Gp. A firing pulse is supplied to a switching element 6 of an inverter 2 of the apparatus according to the output of the comparator 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電力変換装置に係り、特に電力変換装置が発生するサージ電圧による負荷への影響を軽減するようにした電力変換装置に関する。
【0002】
【従来の技術】
近年、インバータ装置のPWM制御技術の進歩は目覚しく、これを用いて電動機を駆動することは当たり前のごとく行われるようになってきた。しかしながら、いわゆる電圧型と呼ばれるインバータ装置は、スイッチング素子のオン・オフを行う度に出力にサージ電圧が発生し、電動機の絶縁を脅かすという問題も顕在化してきている。
【0003】
インバータ装置のPWM波形を得る場合、得ようとする相電圧波形に対応した三相電圧基準が一般的に用いられ、この三相電圧基準とキャリア波とを比較してスイッチング素子の点弧パルスを得ている。図10はこの三相電圧基準の波形を示したものである。いま、図10に破線で示した領域、すなわち、U相電圧基準とV相電圧基準の差が0となる近傍における点弧パルスを考えると、U相素子点弧パルス波形、V相素子点弧パルス波形、およびそのとき負荷7に印加される線間電圧パルス波形はそれぞれ図11(a)、図11(b)、図11(c)に示すようになる。
【0004】
ところで任意の二つの相電圧基準値の差が0近傍の場合、図11(c)の中央部に示すような幅の狭いパルス状の線間電圧パルスが電動機に印加されていた。これは、図10の破線部のPWMパルス生成を考えた場合、U相電圧基準は最大値近くから零近くまで向かうため、U相素子点弧パルスは図11(a)に示すような広幅パルスから狭幅パルスへと推移し、逆にV相電圧基準が零近くから最大値近くまで向かう時、V相素子点弧パルスは、図11(b)のように狭幅パルスから広幅パルスへと推移するため、U相とV相の差である線間電圧パルスは図11(C)のように狭幅パルスとなるためである。
【0005】
図12はこの幅の狭い線間電圧パルスの周波数と、駆動する電動機あるいは接続ケーブルのインダクタンスやキャパシタンス分などの回路条件で決まるインピーダンスが共振した場合の電圧波形を示したものである。この共振現象が発生すると、狭幅パルスの立下りと回路条件で決まる過渡電圧のアンダーシュートの立下りのタイミングが一致するため、図12に示したように、線間電圧に大きな負側サージ電圧が発生する。
【0006】
尚、特開平9−84360号公報の図7に記載されているようなPWMパルス制御技術が知られているが、この技術は相電圧が零近傍の時のオンパルスに一定のリミットを設け、スイッチング素子を保護することを目的とした制御技術であり、電動機に印加されるサージ電圧の低減については何ら考慮されていない。
【0007】
【発明が解決しようとする課題】
上述したように、負側サージ電圧の発生により、駆動される電動機の絶縁劣化、損傷が発生し、場合によっては絶縁破壊による焼損などに至る恐れがあった。これを防止するため、電動機の絶縁強度を強化することが考えられるが、その場合には電動機の外形の大型化やコストの増加などの問題があった。
【0008】
尚、一般に前述したインピーダンスは小さいので、共振を起こし悪影響を及ぼすパルス幅は、数十マイクロ秒以下と狭いのが普通である。
【0009】
本発明は以上の点に鑑みてなされたものであり、サージ電圧による電動機絶縁の影響を軽減するようにした電力変換装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の電力変換装置は、直流電力を任意の周波数の交流電力に変換するインバータと、前記インバータの内部スイッチング素子を制御する制御部とから構成され、前記制御部は、キャリア波を生成するキャリア発生手段と、三相電圧基準を作り出す基準生成手段と、この基準生成手段による三相電圧基準を受け、線間電圧に印加されるパルス幅が一定の値以下にならないような補正三相電圧基準を得る演算手段を備えた線間電圧リミット処理手段と、前記補正三相電圧基準と前記キャリア波を比較して前記スイッチング素子へのゲートパルス指令を生成するコンパレータとを備えたことを特徴とする。
【0011】
本発明によれば、比較的簡単な制御手段により、電力変換装置が発生するサージ電圧が電動機絶縁へ与える影響を軽減するようにした電力変換装置を提供することができる。
【0012】
【発明の実施の形態】
(第1の実施の形態)
以下に本発明による電力変換装置の第1の実施の形態を図1乃至図3及び図10乃至図11を参照して説明する。
【0013】
図1は、本発明の電力変換装置のブロック構成図である。図1に示すように、電力変換装置の主回路部Aは直流電源装置1と、直流電圧を任意の周波数の交流電力に変換するインバータ2とから構成される。インバータ2の主回路にはスイッチング素子6が使用されており、その出力は電動機7に給電されている。
【0014】
次に、電力変換装置の制御部Bの構成を説明する。制御回路3には、電動機7の速度センサSSからの速度検出信号Sfと速度基準Srとを比較するいわゆるフィードバック制御に基づいて三相電圧基準Vrを生成する機能がある。この三相電圧基準Vrを線間電圧リミット処理回路8で受け、補正三相電圧基準Vcをコンパレータ5に出力する。このコンパレータ5は、前記補正三相電圧基準Vcとキャリア発生回路4の出力であるキャリア波Cwとを比較して前記インバータ2のスイッチング素子6のゲートパルス指令Gpを生成する。
【0015】
以上の図1の構成における動作について以下説明する。制御回路3の出力である三相電圧基準Vrは、図10に示したような正弦波であるが、これを線間電圧リミット処理回路8に通すことにより、線間電圧が零となる近傍で補正をかけ、補正三相電圧基準Vcを得るようにしている。ここで得られる補正三相電圧基準Vcとキャリア発生回路4の出力であるキャリア波Cwとをコンパレータ5で比較して得られるスイッチング素子6のゲートパルス指令Gpには、インバータ2の出力の線間電圧が零近傍の時の狭い幅のパルスは無く、一定幅以上のパルスが得られるようになる。すなわち、リミット処理回路8は、図11(c)の中央部に示したような幅の狭いパルスを出力しないように、すなわち一定幅以下のパルスは出力しないように作用している。以下この線間電圧リミット処理回路8の内部の具体動作を、図1とともに図2のフローチャート及び図3の電圧波形を用いて説明する。
【0016】
図2は本発明の第1の実施の形態における線間電圧リミット処理回路8の演算動作を示すフローチャートである。図1における制御回路3が生成するU相、V相、及びW相の三相電圧基準Vrの中で、その値が中間の相を求め、これを中間相とする(ST1)。次に前記中間相と同符号である相を求め、これを同符号相とする(ST2)。次いで中間相の電圧基準が正か負かで場合分けする(ST3)。中間相の電圧基準が正の場合は、同符号相から電圧マージンを引いた値と中間相の値を比較し(ST4)、中間相の方が大きければ中間相の電圧基準を同符号相から電圧マージンを引いた値に補正する(ST5)。ステップST4で中間相の方が小さければ補正は行わない。一方、中間相の電圧基準が負の場合は、同符号相に電圧マージンを加えた値と、中間相の値を比較し(ST6)、中間相の方が小さければ中間相の電圧基準を同符号相に電圧マージンを加えた値に補正する(ST7)。ステップST6で中間相の方が大きければ補正は行わない。
【0017】
図3は本発明の第1の実施の形態における三相電圧基準Vr及び補正三相電圧基準Vcの波形図である。すなわち、図2のフローチャートに従って演算処理を行うと、線間電圧リミット処理回路8の入力である三相電圧基準Vrを補正三相電圧基準Vcの波形に置き換えることができる。斜線部分は任意の二相の相電圧基準の差、すなわち線間電圧が0近傍になるのを防止するための電圧マージンである。中間相の値がこの電圧マージン内に入った場合、すなわち、斜線部の領域を横切った時は、この電圧マージンを本来の電圧基準に加算した値が中間相の補正電圧基準となる。
【0018】
このような処理を行った結果得られるV相の補正電圧基準の波形Vc(V相)を図3の太線で示す。尚、図を見易くするため、補正電圧基準はV相のみを太線で示した。
【0019】
これにより、任意の二相の相電圧基準の差が0近傍になることを防止可能であり、その結果、線間電圧パルスが狭く出力されることを防止でき、負側サージ電圧が抑制され、電動機絶縁への影響を軽減することができる。
【0020】
尚、図1では、直流電源装置1の図を電池の記号で示してあるが、これは商用交流電源からコンバータ回路を介して得たものでも何ら差し支えない。
【0021】
また、図1に記載の実施の形態では、速度検出信号Sfは電動機Mの速度検出器SSから得られるものとしたが、これは電動機の入力電流などから演算された推定信号を用いても良い。
【0022】
(第2の実施の形態)
次に、本発明による電力変換装置の第2の実施の形態について、図1、図4および図5を用いて説明する。
【0023】
図4は本発明による電力変換装置の第2の実施の形態における線間電圧リミット処理回路8内部での演算処理をフローチャートにしたものである。第一の実施の形態との違いは、中間相の電圧基準が正の場合(ST3)、中間相に電圧マージンを加えた値と、同符号相の値を比較し(ST8)、同符号相の方が小さければ同符号相の電圧基準を中間相に電圧マージンを加えた値に補正する(ST9)点、また、中間相の電圧基準が負の場合、中間相から電圧マージンを引いた値と、同符号相の値を比較し(ST10)、同符号相の方が大きければ同符号相の電圧基準を中間相から電圧マージンを引いた値に補正する(ST11)ようにした点である。尚、ステップST8で同符号相の方が大きい場合、またステップST10で同符号相の方が小さい場合は補正は行わない。
【0024】
図5は本発明の第2の実施の形態における三相電圧基準Vr及び補正三相電圧基準Vcの波形図である。すなわち、図4のフローチャートに従った演算処理を行うことによって、線間電圧リミット処理回路8の入力である三相電圧基準Vrを補正三相電圧基準Vcの波形に置き換えることができる。尚、図4においてもV相の補正電圧基準Vc(V相)のみを太線で示した。
【0025】
このようにしても、第1の実施の形態と同様、線間電圧パルスが狭く出力されることを防止でき、負側サージ電圧の抑制を図ることができ、電動機絶縁への影響を軽減できる。
【0026】
(第3の実施の形態)
次に、本発明による電力変換装置の第3の実施の形態について、図1、図6および図7を用いて説明する。
【0027】
図6は本発明による電力変換装置の第3の実施の形態における線間電圧リミット処理回路8内部での演算処理をフローチャートにしたものである。まず制御回路3が生成する三相電圧基準Vrの中で任意の一相を基準相とする。その基準相の値の絶対値が三相電圧基準Vrの中で最大であるかどうか判定する(ST12)。最大の場合は三相電圧基準Vrの中で絶対値が中間の相を求め(ST13)、基準相と中間相以外の残りの一相を最小相とする(ST14)。次に中間相の値が正か負かを判定(ST15)し、正ならば中間相から電圧マージンを引いた値が最小相の値よりも小さいかを判定し(ST16)、小さければ最小相の電圧基準を中間相から電圧マージンを引いた値に補正する(ST17)。ステップST16で中間相から電圧マージンを引いた値が最小相の値よりも大きければ、補正は行わない。前記ステップST15における判定で中間相が負であった場合は、中間相に電圧マージンを加えた値が最小相の値よりも大きいかを判定(ST18)し、大きければ最小相の電圧基準を中間相に電圧マージンを加えた値に補正する(ST19)。ステップST18で中間相に電圧マージンを加えた値が最小相の値よりも小さければ、補正は行なわない。
【0028】
一方ステップST12における判定で基準相の値の絶対値が三相電圧基準Vrの中で最大でなかった場合、基準相の絶対値が三相電圧基準Vrの中で最小であるか判定する(ST20)。最小の場合は三相電圧基準Vrの中で絶対値が中間の相を求め(ST21)、基準相の値が正か負かを判定する(ST22)。基準相の値が正の場合、基準相に電圧マージンを加えた値が中間相よりも大きいか否かを判定し(ST23)、大きければ中間相の電圧基準を基準相に電圧マージンを加えた値に補正する(ST24)。ステップST23で基準相に電圧マージンを加えた値が中間相よりも小さければ、補正は行わない。ST22における判定で基準相が負の場合は、基準相から電圧マージンを引いた値が中間相の値よりも小さいか否かを判定し(ST25)、小さければ中間相の電圧基準を基準相から電圧マージンを引いた値に補正する(ST26)。ステップST25で基準相から電圧マージンを引いた値が中間相の値よりも大きければ、補正は行わない。
【0029】
次にステップST20における判定で基準相の値の絶対値が三相電圧基準Vrの中で最小でなかった場合、三相電圧基準Vrの中で絶対値が最小の相を求め(ST27)、基準相の値が正か負かを判定する(ST28)。正であれば基準相から電圧マージンを引いた値と最小相の値とを比較判定し(ST29)、小さければ最小相の電圧基準を基準相から電圧マージンを引いた値に補正する(ST30)。
【0030】
ステップST29で基準相から電圧マージンを引いた値の方が最小相よりも大きければ、補正は行わない。ST28における判定で基準相が負であった場合は、基準相に電圧マージンを加えた値が最小相の値よりも大きいかを判定し(ST31)、大きければ最小相の電圧基準を基準相に電圧マージンを加えた値に補正する(ST32)。ステップST31で基準相に電圧マージンを加えた値が最小相の値よりも小さければ、補正は行わない。
【0031】
図7は本発明の第3の実施の形態における三相電圧基準Vr及び補正三相電圧基準Vcの波形図である。すなわち、図6のフローチャートに従った演算処理を行うと、線間電圧リミット処理回路8の入力である三相電圧基準Vrは補正三相電圧基準Vcの波形に置き換えられる。ここでもV相の補正電圧基準Vc(V相)のみを太線で示した。
【0032】
このようにすれば線間電圧パルスが狭く出力されることを防止でき、第1、第2の実施の形態と同様に負側サージ電圧の抑制を図ることができ、電動機絶縁への影響を軽減できる。
【0033】
(第4の実施の形態)
更に、本発明による電力変換装置の第4の実施の形態について、図1、図8および図9を用いて説明する。
【0034】
図8は本発明による電力変換装置の第4の実施の形態における線間電圧リミット処理回路8内部での演算処理をフローチャートにしたものである。第3の実施の形態との違いはステップST33において最小相の値が負の場合、最小相から電圧マージンを引いた値が中間相よりも小さいか否かを判定し(ST34)、小さい場合は中間相の電圧基準を最小相からに電圧マージンを引いた値に補正する(ST35)点、並びに、ステップST33の判定において最小相の値が正の場合、最小相に電圧マージンを加えた値が中間相の値よりも大きいかを判定し(ST36)、大きい場合は中間相の電圧基準を最小相に電圧マージンを加えた値に補正する(ST37)点である。ステップST34で最小相から電圧マージンを引いた値が中間相よりも大きい場合、またステップST36で最小相に電圧マージンを加えた値が中間相の値よりも小さい場合は、補正は行わない。
【0035】
図9は本発明の第4の実施の形態における三相電圧基準Vr及び補正三相電圧基準Vcの波形図である。すなわち、図8のフローチャートに従って演算処理を行うと、線間電圧リミット処理回路8の入力である三相電圧基準Vrは補正三相電圧基準Vcの波形に置き換えられる。ここでもV相の補正電圧基準Vc(V相)のみを太線で示した。
【0036】
この場合も線間電圧パルスが短く出力されることを防止でき、負側サージ電圧の抑制を図ることができ、電動機絶縁への影響を軽減できる。
【0037】
【発明の効果】
以上説明したように本発明によれば、比較的簡単な制御手段により、電力変換装置が発生するサージ電圧による電動機絶縁への影響を軽減し得る電力変換装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の電力変換装置のブロック構成図。
【図2】本発明の第1の実施の形態における線間電圧リミット処理回路の動作を示すフローチャート。
【図3】本発明の第1の実施の形態における三相電圧基準及び補正三相電圧基準の波形図。
【図4】本発明の第2の実施の形態における線間電圧リミット処理回路の動作を示すフローチャート。
【図5】本発明の第2の実施の形態における三相電圧基準及び補正三相電圧基準の波形図。
【図6】本発明の第3の実施の形態における線間電圧リミット処理回路の動作を示すフローチャート。
【図7】本発明の第3の実施の形態における三相電圧基準及び補正三相電圧基準の波形図。
【図8】本発明の第4の実施の形態における線間電圧リミット処理回路の動作を示すフローチャート。
【図9】本発明の第4の実施の形態における三相電圧基準及び補正三相電圧基準の波形図。
【図10】三相電圧基準の波形図。
【図11】素子点弧パルスと線間電圧パルスの波形図。
【図12】負側サージ電圧を説明する波形図。
【符号の説明】
1 直流電源装置
2 インバータ
3 制御回路
4 キャリア発生回路
5 コンパレータ
6 スイッチング素子
7 電動機
8 線間電圧リミット処理回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power converter, and more particularly to a power converter configured to reduce an influence on a load due to a surge voltage generated by the power converter.
[0002]
[Prior art]
In recent years, the PWM control technology of the inverter device has been remarkably advanced, and the driving of the electric motor using the PWM control technology has been commonly performed. However, in the inverter device of the so-called voltage type, a surge voltage is generated in the output every time the switching element is turned on and off, and the problem that the insulation of the motor is threatened has also become apparent.
[0003]
When a PWM waveform of an inverter device is obtained, a three-phase voltage reference corresponding to a phase voltage waveform to be obtained is generally used, and the three-phase voltage reference is compared with a carrier wave to generate an ignition pulse of a switching element. It has gained. FIG. 10 shows a waveform based on the three-phase voltage. Now, considering a firing pulse in a region indicated by a broken line in FIG. 10, that is, in a vicinity where the difference between the U-phase voltage reference and the V-phase voltage reference is 0, the U-phase element firing pulse waveform and the V-phase element firing The pulse waveform and the line voltage pulse waveform applied to the load 7 at that time are as shown in FIGS. 11 (a), 11 (b) and 11 (c), respectively.
[0004]
By the way, when the difference between any two phase voltage reference values is close to 0, a narrow pulse-like line voltage pulse as shown in the center of FIG. 11C has been applied to the motor. This is because, considering the generation of the PWM pulse indicated by the broken line in FIG. 10, the U-phase voltage reference goes from near the maximum value to near zero, so that the U-phase element firing pulse is a wide pulse as shown in FIG. When the V-phase voltage reference goes from near zero to near the maximum value, the V-phase element firing pulse changes from a narrow pulse to a wide pulse as shown in FIG. This is because the line voltage pulse, which is the difference between the U phase and the V phase, becomes a narrow pulse as shown in FIG.
[0005]
FIG. 12 shows a voltage waveform when the frequency of the narrow line voltage pulse and the impedance determined by circuit conditions such as inductance and capacitance of the driving motor or the connection cable resonate. When this resonance phenomenon occurs, the falling timing of the narrow pulse and the falling timing of the undershoot of the transient voltage determined by the circuit conditions coincide with each other. Therefore, as shown in FIG. Occurs.
[0006]
A PWM pulse control technique as shown in FIG. 7 of Japanese Patent Application Laid-Open No. 9-84360 is known. In this technique, a certain limit is set on an on-pulse when a phase voltage is near zero, and switching is performed. This is a control technique for protecting the element, and no consideration is given to reduction of the surge voltage applied to the electric motor.
[0007]
[Problems to be solved by the invention]
As described above, the generation of the negative-side surge voltage causes insulation deterioration and damage of the driven motor, and in some cases, may lead to burnout due to dielectric breakdown. In order to prevent this, it is conceivable to enhance the insulation strength of the motor, but in that case, there are problems such as an increase in the outer shape of the motor and an increase in cost.
[0008]
Since the above-mentioned impedance is generally small, the pulse width that causes resonance and adversely affects the pulse width is usually as small as several tens of microseconds or less.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to provide a power conversion device that reduces the influence of electric motor insulation due to a surge voltage.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a power converter according to the present invention includes: an inverter that converts DC power into AC power having an arbitrary frequency; and a control unit that controls an internal switching element of the inverter. A carrier generating means for generating a carrier wave, a reference generating means for generating a three-phase voltage reference, and a pulse width applied to the line voltage does not fall below a certain value when the three-phase voltage reference is received by the reference generating means. A line voltage limit processing unit including a calculation unit that obtains such a corrected three-phase voltage reference, and a comparator that compares the corrected three-phase voltage reference with the carrier wave and generates a gate pulse command to the switching element. It is characterized by having.
[0011]
ADVANTAGE OF THE INVENTION According to this invention, the power converter which can reduce the influence which the surge voltage which a power converter produces | generates on motor insulation by comparatively simple control means can be provided.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
Hereinafter, a first embodiment of a power converter according to the present invention will be described with reference to FIGS. 1 to 3 and FIGS.
[0013]
FIG. 1 is a block diagram of the power converter of the present invention. As shown in FIG. 1, the main circuit section A of the power conversion device includes a DC power supply device 1 and an inverter 2 that converts a DC voltage into AC power having an arbitrary frequency. A switching element 6 is used in a main circuit of the inverter 2, and an output thereof is supplied to a motor 7.
[0014]
Next, the configuration of the control unit B of the power converter will be described. The control circuit 3 has a function of generating a three-phase voltage reference Vr based on so-called feedback control in which a speed detection signal Sf from the speed sensor SS of the electric motor 7 is compared with a speed reference Sr. The line voltage limit processing circuit 8 receives the three-phase voltage reference Vr, and outputs a corrected three-phase voltage reference Vc to the comparator 5. The comparator 5 compares the corrected three-phase voltage reference Vc with a carrier wave Cw output from the carrier generation circuit 4 to generate a gate pulse command Gp for the switching element 6 of the inverter 2.
[0015]
The operation in the configuration of FIG. 1 described above will be described below. The three-phase voltage reference Vr, which is the output of the control circuit 3, is a sine wave as shown in FIG. 10, which is passed through the line voltage limit processing circuit 8 so that the line voltage becomes close to zero. The correction is performed to obtain a corrected three-phase voltage reference Vc. The gate pulse command Gp of the switching element 6 obtained by comparing the corrected three-phase voltage reference Vc obtained here and the carrier wave Cw output from the carrier generation circuit 4 with the comparator 5 has a line-to-line output of the inverter 2. When the voltage is near zero, there is no narrow pulse, and a pulse having a certain width or more can be obtained. That is, the limit processing circuit 8 operates so as not to output a pulse having a narrow width as shown in the center of FIG. 11C, that is, not to output a pulse having a certain width or less. Hereinafter, a specific operation inside the line voltage limit processing circuit 8 will be described with reference to the flowchart of FIG. 2 together with FIG. 1 and the voltage waveforms of FIG.
[0016]
FIG. 2 is a flowchart showing the operation of the line voltage limit processing circuit 8 according to the first embodiment of the present invention. Among the three-phase voltage references Vr of the U-phase, V-phase, and W-phase generated by the control circuit 3 in FIG. 1, a phase whose value is intermediate is determined, and this is set as an intermediate phase (ST1). Next, a phase having the same sign as that of the intermediate phase is obtained, and is set as the same sign phase (ST2). Next, a case is classified depending on whether the voltage reference of the intermediate phase is positive or negative (ST3). When the voltage reference of the intermediate phase is positive, the value obtained by subtracting the voltage margin from the same code phase is compared with the value of the intermediate phase (ST4). If the intermediate phase is larger, the voltage reference of the intermediate phase is changed from the same code phase. Correction is made to a value obtained by subtracting the voltage margin (ST5). If the intermediate phase is smaller in step ST4, no correction is performed. On the other hand, when the voltage reference of the intermediate phase is negative, the value obtained by adding the voltage margin to the same sign phase is compared with the value of the intermediate phase (ST6). If the intermediate phase is smaller, the voltage reference of the intermediate phase is the same. Correction is made to a value obtained by adding a voltage margin to the code phase (ST7). If the intermediate phase is larger in step ST6, no correction is performed.
[0017]
FIG. 3 is a waveform diagram of the three-phase voltage reference Vr and the corrected three-phase voltage reference Vc according to the first embodiment of the present invention. That is, when the arithmetic processing is performed according to the flowchart of FIG. 2, the three-phase voltage reference Vr, which is the input of the line voltage limit processing circuit 8, can be replaced with the waveform of the corrected three-phase voltage reference Vc. A hatched portion is a voltage margin for preventing a difference between arbitrary two-phase voltage references, that is, a line voltage from becoming close to zero. When the value of the intermediate phase falls within this voltage margin, that is, when the value crosses the shaded area, the value obtained by adding this voltage margin to the original voltage reference becomes the correction voltage reference of the intermediate phase.
[0018]
The waveform Vc (V-phase) of the V-phase correction voltage reference obtained as a result of performing such processing is shown by the thick line in FIG. In order to make the drawing easier to see, only the V phase is indicated by a thick line for the correction voltage reference.
[0019]
Thereby, it is possible to prevent the difference between the arbitrary two-phase voltage references from becoming close to 0, and as a result, it is possible to prevent the line voltage pulse from being output narrowly, and to suppress the negative side surge voltage, The effect on motor insulation can be reduced.
[0020]
In FIG. 1, the illustration of the DC power supply 1 is indicated by a symbol of a battery, but this may be obtained from a commercial AC power supply via a converter circuit.
[0021]
Further, in the embodiment shown in FIG. 1, the speed detection signal Sf is obtained from the speed detector SS of the electric motor M, but may be an estimated signal calculated from the input current of the electric motor or the like. .
[0022]
(Second embodiment)
Next, a second embodiment of the power converter according to the present invention will be described with reference to FIG. 1, FIG. 4 and FIG.
[0023]
FIG. 4 is a flowchart showing the arithmetic processing inside the line voltage limit processing circuit 8 in the second embodiment of the power converter according to the present invention. The difference from the first embodiment is that when the voltage reference of the intermediate phase is positive (ST3), the value obtained by adding the voltage margin to the intermediate phase is compared with the value of the same code phase (ST8). Is smaller, the voltage reference of the same sign phase is corrected to a value obtained by adding a voltage margin to the intermediate phase (ST9). If the voltage reference of the intermediate phase is negative, a value obtained by subtracting the voltage margin from the intermediate phase And the value of the same code phase is compared (ST10), and if the same code phase is larger, the voltage reference of the same code phase is corrected to a value obtained by subtracting the voltage margin from the intermediate phase (ST11). . If the same code phase is larger in step ST8, and if the same code phase is smaller in step ST10, no correction is performed.
[0024]
FIG. 5 is a waveform diagram of the three-phase voltage reference Vr and the corrected three-phase voltage reference Vc according to the second embodiment of the present invention. That is, by performing the arithmetic processing according to the flowchart of FIG. 4, the three-phase voltage reference Vr which is the input of the line voltage limit processing circuit 8 can be replaced with the corrected three-phase voltage reference Vc waveform. In FIG. 4, only the V-phase correction voltage reference Vc (V-phase) is indicated by a thick line.
[0025]
Also in this case, similarly to the first embodiment, it is possible to prevent the line voltage pulse from being output narrowly, suppress the negative side surge voltage, and reduce the influence on the motor insulation.
[0026]
(Third embodiment)
Next, a third embodiment of the power converter according to the present invention will be described with reference to FIGS. 1, 6, and 7. FIG.
[0027]
FIG. 6 is a flowchart showing the arithmetic processing inside the line voltage limit processing circuit 8 in the third embodiment of the power converter according to the present invention. First, an arbitrary one of the three-phase voltage references Vr generated by the control circuit 3 is set as a reference phase. It is determined whether or not the absolute value of the reference phase value is the largest among the three-phase voltage references Vr (ST12). In the maximum case, the phase whose absolute value is intermediate in the three-phase voltage reference Vr is determined (ST13), and the remaining one phase other than the reference phase and the intermediate phase is set as the minimum phase (ST14). Next, it is determined whether the value of the intermediate phase is positive or negative (ST15). If it is positive, it is determined whether the value obtained by subtracting the voltage margin from the intermediate phase is smaller than the value of the minimum phase (ST16). Is corrected to a value obtained by subtracting the voltage margin from the intermediate phase (ST17). If the value obtained by subtracting the voltage margin from the intermediate phase in step ST16 is larger than the value of the minimum phase, no correction is performed. If it is determined in step ST15 that the intermediate phase is negative, it is determined whether the value obtained by adding the voltage margin to the intermediate phase is larger than the value of the minimum phase (ST18). The phase is corrected to a value obtained by adding a voltage margin (ST19). If the value obtained by adding the voltage margin to the intermediate phase in step ST18 is smaller than the value of the minimum phase, no correction is performed.
[0028]
On the other hand, when the absolute value of the value of the reference phase is not the maximum value in the three-phase voltage reference Vr in the determination in step ST12, it is determined whether the absolute value of the reference phase is the minimum in the three-phase voltage reference Vr (ST20). ). If the value is the minimum, a phase whose absolute value is intermediate in the three-phase voltage reference Vr is obtained (ST21), and it is determined whether the value of the reference phase is positive or negative (ST22). If the value of the reference phase is positive, it is determined whether or not the value obtained by adding the voltage margin to the reference phase is larger than the intermediate phase (ST23). If the value is larger, the voltage margin of the intermediate phase is added to the reference phase. The value is corrected to a value (ST24). If the value obtained by adding the voltage margin to the reference phase in step ST23 is smaller than the intermediate phase, no correction is performed. If the reference phase is negative in the determination in ST22, it is determined whether or not a value obtained by subtracting the voltage margin from the reference phase is smaller than the value of the intermediate phase (ST25). The value is corrected to a value obtained by subtracting the voltage margin (ST26). If the value obtained by subtracting the voltage margin from the reference phase in step ST25 is larger than the value of the intermediate phase, no correction is performed.
[0029]
Next, when the absolute value of the value of the reference phase is not the minimum value among the three-phase voltage references Vr in the determination in step ST20, the phase having the minimum absolute value among the three-phase voltage references Vr is determined (ST27). It is determined whether the value of the phase is positive or negative (ST28). If it is positive, the value obtained by subtracting the voltage margin from the reference phase is compared with the value of the minimum phase (ST29), and if it is smaller, the voltage reference of the minimum phase is corrected to a value obtained by subtracting the voltage margin from the reference phase (ST30). .
[0030]
If the value obtained by subtracting the voltage margin from the reference phase in step ST29 is larger than the minimum phase, no correction is performed. If the reference phase is negative in the determination in ST28, it is determined whether the value obtained by adding the voltage margin to the reference phase is larger than the value of the minimum phase (ST31). The value is corrected to a value obtained by adding the voltage margin (ST32). If the value obtained by adding the voltage margin to the reference phase in step ST31 is smaller than the value of the minimum phase, no correction is performed.
[0031]
FIG. 7 is a waveform diagram of the three-phase voltage reference Vr and the corrected three-phase voltage reference Vc according to the third embodiment of the present invention. That is, when the arithmetic processing according to the flowchart of FIG. 6 is performed, the three-phase voltage reference Vr which is the input of the line voltage limit processing circuit 8 is replaced with the waveform of the corrected three-phase voltage reference Vc. Here, only the V-phase correction voltage reference Vc (V-phase) is shown by a thick line.
[0032]
In this way, it is possible to prevent the line voltage pulse from being output narrowly, to suppress the negative side surge voltage similarly to the first and second embodiments, and to reduce the influence on the motor insulation. it can.
[0033]
(Fourth embodiment)
Further, a fourth embodiment of the power converter according to the present invention will be described with reference to FIGS. 1, 8, and 9. FIG.
[0034]
FIG. 8 is a flowchart showing the arithmetic processing inside the line voltage limit processing circuit 8 in the fourth embodiment of the power converter according to the present invention. The difference from the third embodiment is that if the value of the minimum phase is negative in step ST33, it is determined whether or not the value obtained by subtracting the voltage margin from the minimum phase is smaller than the intermediate phase (ST34). The point where the voltage reference of the intermediate phase is corrected to a value obtained by subtracting the voltage margin from the minimum phase (ST35), and when the value of the minimum phase is positive in the determination in step ST33, the value obtained by adding the voltage margin to the minimum phase is It is determined whether the value is larger than the value of the intermediate phase (ST36). If the value is larger, the voltage reference of the intermediate phase is corrected to a value obtained by adding a voltage margin to the minimum phase (ST37). If the value obtained by subtracting the voltage margin from the minimum phase is larger than the intermediate phase in step ST34, and if the value obtained by adding the voltage margin to the minimum phase is smaller than the value of the intermediate phase in step ST36, no correction is performed.
[0035]
FIG. 9 is a waveform diagram of the three-phase voltage reference Vr and the corrected three-phase voltage reference Vc according to the fourth embodiment of the present invention. That is, when the arithmetic processing is performed according to the flowchart of FIG. 8, the three-phase voltage reference Vr which is the input of the line voltage limit processing circuit 8 is replaced with the waveform of the corrected three-phase voltage reference Vc. Here, only the V-phase correction voltage reference Vc (V-phase) is shown by a thick line.
[0036]
Also in this case, it is possible to prevent the line voltage pulse from being output short, suppress the negative side surge voltage, and reduce the influence on the motor insulation.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a power conversion device that can reduce the influence of a surge voltage generated by the power conversion device on motor insulation with relatively simple control means.
[Brief description of the drawings]
FIG. 1 is a block diagram of a power converter according to the present invention.
FIG. 2 is a flowchart showing the operation of the line voltage limit processing circuit according to the first embodiment of the present invention.
FIG. 3 is a waveform diagram of a three-phase voltage reference and a corrected three-phase voltage reference according to the first embodiment of the present invention.
FIG. 4 is a flowchart illustrating an operation of a line voltage limit processing circuit according to a second embodiment of the present invention.
FIG. 5 is a waveform diagram of a three-phase voltage reference and a corrected three-phase voltage reference according to the second embodiment of the present invention.
FIG. 6 is a flowchart illustrating an operation of a line voltage limit processing circuit according to a third embodiment of the present invention.
FIG. 7 is a waveform diagram of a three-phase voltage reference and a corrected three-phase voltage reference according to the third embodiment of the present invention.
FIG. 8 is a flowchart illustrating an operation of a line voltage limit processing circuit according to a fourth embodiment of the present invention.
FIG. 9 is a waveform diagram of a three-phase voltage reference and a corrected three-phase voltage reference according to the fourth embodiment of the present invention.
FIG. 10 is a waveform diagram based on a three-phase voltage.
FIG. 11 is a waveform diagram of an element firing pulse and a line voltage pulse.
FIG. 12 is a waveform diagram illustrating a negative-side surge voltage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Inverter 3 Control circuit 4 Carrier generation circuit 5 Comparator 6 Switching element 7 Motor 8 Line voltage limit processing circuit

Claims (5)

直流電力を任意の周波数の交流電力に変換するインバータと、
前記インバータの内部スイッチング素子を制御する制御部と
から構成され、
前記制御部は、
キャリア波を生成するキャリア発生手段と、
三相電圧基準を作り出す基準生成手段と、
この基準生成手段による三相電圧基準を受け、線間電圧に印加されるパルス幅が一定の値以下にならないような補正三相電圧基準を得る演算手段を備えた線間電圧リミット処理手段と、
前記補正三相電圧基準と前記キャリア波を比較して前記スイッチング素子へのゲートパルス指令を生成するコンパレータとを
備えたことを特徴とする電力変換装置。
An inverter that converts DC power into AC power of any frequency;
A control unit for controlling an internal switching element of the inverter,
The control unit includes:
Carrier generating means for generating a carrier wave;
A reference generating means for generating a three-phase voltage reference;
A line voltage limit processing unit including a calculation unit that receives a three-phase voltage reference by the reference generation unit and obtains a corrected three-phase voltage reference such that a pulse width applied to the line voltage does not fall below a certain value;
A power converter, comprising: a comparator that compares the corrected three-phase voltage reference with the carrier wave and generates a gate pulse command to the switching element.
前記演算手段を、前記三相電圧基準のうち電圧基準が中間の値である中間相を基準とし、この中間相と同符号な電圧基準を持つ同符号相に対して絶対値が小さくなる方向へ電圧マージンを加算し、この加算結果と前記中間相の電圧基準を比較し、前記中間相の電圧基準の絶対値が前記加算結果の絶対値よりも大きい場合には、前記加算結果を前記中間相の補正電圧基準とするようにしたことを特徴とする請求項1記載の電力変換装置。The arithmetic means is based on an intermediate phase whose voltage reference is an intermediate value among the three-phase voltage references, and in a direction in which the absolute value becomes smaller with respect to the same code phase having the same voltage reference as the intermediate phase. A voltage margin is added, and the addition result is compared with the voltage reference of the intermediate phase. If the absolute value of the voltage reference of the intermediate phase is larger than the absolute value of the addition result, the addition result is compared with the intermediate phase. 2. The power converter according to claim 1, wherein the correction voltage is used as a reference. 前記演算手段を、前記三相電圧基準のうち電圧基準が中間の値である中間相を基準とし、この中間相の絶対値が大きくなる方向へ電圧マージンを加算し、この中間相と同符号な電圧基準を持つ同符号相の電圧基準と前記加算結果を比較し、この中間相の電圧基準の絶対値が前記加算結果の絶対値よりも小さい場合には、前記加算結果を同符号相の補正電圧基準とするようにしたことを特徴とする請求項1記載の電力変換装置。The arithmetic means may be configured such that a voltage margin is added in a direction in which an absolute value of the intermediate phase is increased with reference to an intermediate phase in which the voltage reference is an intermediate value among the three-phase voltage references. The voltage reference of the same code phase having a voltage reference is compared with the addition result. If the absolute value of the voltage reference of the intermediate phase is smaller than the absolute value of the addition result, the addition result is corrected for the same code phase. The power converter according to claim 1, wherein the power converter is used as a voltage reference. 前記演算手段を、前記三相電圧基準のうち任意の一相を基準相とし、前記基準相が前記三相電圧基準のうち絶対値が最大である場合には、前記三相電圧基準のうち絶対値が中間である中間相に対して絶対値が小さくなる方向に電圧マージンを加算し、前記三相電圧基準のうち絶対値が最小である最小相の電圧基準値と前記加算結果を比較し、前記最小相の電圧基準の絶対値が前記加算結果の絶対値よりも大きい場合は前記加算結果を最小相の補正電圧基準とし、また、
前記基準相が前記三相電圧基準のうち絶対値が最小である場合には、前記基準相に対して絶対値が大きくなる方向に電圧マージンを加算し、前記三相電圧基準のうち絶対値が中間である中間相の電圧基準と前記加算結果を比較し、前記中間相の電圧基準の絶対値が前記加算結果の絶対値よりも小さい場合は前記加算結果を中間相の補正電圧基準とし、また、
前記基準相が前記三相電圧基準のうち絶対値が中間である場合には、前記基準相に対して絶対値が小さくなる方向に電圧マージンを加算し、前記三相電圧基準のうち絶対値が最小である最小相の電圧基準と前記加算結果を比較し、前記最小相の電圧基準の絶対値が前記加算結果の絶対値よりも大きい場合は前記加算結果を最小相の補正電圧基準とするようにしたことを特徴とする請求項1記載の電力変換装置。
The calculating means may use any one of the three-phase voltage references as a reference phase, and when the reference phase has the largest absolute value among the three-phase voltage references, The voltage margin is added in a direction in which the absolute value becomes smaller with respect to the intermediate phase whose value is intermediate, and the sum of the three-phase voltage references is compared with the minimum phase voltage reference value whose absolute value is the smallest, When the absolute value of the minimum-phase voltage reference is larger than the absolute value of the addition result, the addition result is used as the minimum-phase correction voltage reference, and
When the reference phase has the smallest absolute value among the three-phase voltage references, a voltage margin is added in a direction in which the absolute value increases with respect to the reference phase, and the absolute value of the three-phase voltage reference is Comparing the voltage result of the intermediate phase which is an intermediate and the addition result, and when the absolute value of the voltage reference of the intermediate phase is smaller than the absolute value of the addition result, the addition result is used as the correction voltage reference of the intermediate phase; and ,
When the reference phase has an intermediate absolute value among the three-phase voltage references, a voltage margin is added in a direction in which the absolute value is smaller than the reference phase, and the absolute value of the three-phase voltage reference is The minimum phase voltage reference which is the minimum is compared with the addition result, and if the absolute value of the minimum phase voltage reference is larger than the absolute value of the addition result, the addition result is used as the minimum phase correction voltage reference. The power converter according to claim 1, wherein
前記演算手段を、三相電圧基準のうち任意の一相を基準相とし、前記基準相が前記三相電圧基準のうち絶対値が最大である場合には、前記三相電圧基準のうち絶対値が中間である中間相に対して絶対値が大きくなる方向に電圧マージンを加算し、前記三相電圧基準のうち絶対値が最小である最小相の電圧基準と前記加算結果を比較し、前記最小相の電圧基準の絶対値が前記加算結果の絶対値よりも小さい場合は前記加算結果を残り一相の補正電圧基準とし、また、
前記基準相が前記三相電圧基準のうち絶対値が最小である場合には、前記基準相に対して絶対値が大きくなる方向に電圧マージンを加算し、前記三相電圧基準のうち絶対値が中間である中間相の電圧基準と前記加算結果を比較し、前記中間相の電圧基準の絶対値が前記加算結果の絶対値よりも小さい場合は前記加算結果を中間相の補正電圧基準とし、また、
前記基準相が前記三相電圧基準のうち絶対値が中間である場合には、前記基準相に対して絶対値が小さくなる方向に電圧マージンを加算し、前記三相電圧基準のうち絶対値が最小である最小相の電圧基準と前記加算結果を比較し、前記最小相の電圧基準の絶対値が前記加算結果の絶対値よりも大きい場合は前記加算結果を最小相の補正電圧基準とするようにしたことを特徴とする請求項1記載の電力変換装置。
The calculating means may use any one of the three-phase voltage references as a reference phase, and when the reference phase has the maximum absolute value among the three-phase voltage references, the absolute value of the three-phase voltage reference A voltage margin is added in a direction in which an absolute value becomes larger with respect to an intermediate phase in the middle, and the sum of the three phase voltage references is compared with a minimum phase voltage reference whose absolute value is the smallest. When the absolute value of the phase voltage reference is smaller than the absolute value of the addition result, the addition result is used as a remaining one-phase correction voltage reference, and
When the reference phase has the smallest absolute value among the three-phase voltage references, a voltage margin is added in a direction in which the absolute value increases with respect to the reference phase, and the absolute value of the three-phase voltage reference is Comparing the voltage result of the intermediate phase which is an intermediate and the addition result, and when the absolute value of the voltage reference of the intermediate phase is smaller than the absolute value of the addition result, the addition result is used as the correction voltage reference of the intermediate phase; and ,
When the reference phase has an intermediate absolute value among the three-phase voltage references, a voltage margin is added in a direction in which the absolute value is smaller than the reference phase, and the absolute value of the three-phase voltage reference is The minimum phase voltage reference which is the minimum is compared with the addition result, and if the absolute value of the minimum phase voltage reference is larger than the absolute value of the addition result, the addition result is used as the minimum phase correction voltage reference. The power converter according to claim 1, wherein
JP2002214752A 2002-07-24 2002-07-24 Power converter Expired - Fee Related JP4203278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214752A JP4203278B2 (en) 2002-07-24 2002-07-24 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214752A JP4203278B2 (en) 2002-07-24 2002-07-24 Power converter

Publications (2)

Publication Number Publication Date
JP2004056976A true JP2004056976A (en) 2004-02-19
JP4203278B2 JP4203278B2 (en) 2008-12-24

Family

ID=31936962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214752A Expired - Fee Related JP4203278B2 (en) 2002-07-24 2002-07-24 Power converter

Country Status (1)

Country Link
JP (1) JP4203278B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295649A (en) * 2006-04-21 2007-11-08 Meidensha Corp Variable spped drive device of motor
WO2017064756A1 (en) * 2015-10-13 2017-04-20 三菱電機株式会社 Ac rotating machine control device and electric power steering device equipped with same
JP2018117435A (en) * 2017-01-17 2018-07-26 ダイキン工業株式会社 Inverter control device
JPWO2018131093A1 (en) * 2017-01-11 2019-04-11 三菱電機株式会社 Motor control device
WO2020235101A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295649A (en) * 2006-04-21 2007-11-08 Meidensha Corp Variable spped drive device of motor
WO2017064756A1 (en) * 2015-10-13 2017-04-20 三菱電機株式会社 Ac rotating machine control device and electric power steering device equipped with same
JPWO2017064756A1 (en) * 2015-10-13 2017-11-30 三菱電機株式会社 AC rotating machine control device and electric power steering device including the same
JPWO2018131093A1 (en) * 2017-01-11 2019-04-11 三菱電機株式会社 Motor control device
JP2018117435A (en) * 2017-01-17 2018-07-26 ダイキン工業株式会社 Inverter control device
WO2020235101A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Power conversion device

Also Published As

Publication number Publication date
JP4203278B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US8710781B2 (en) Power conversion device and method for controlling thereof
US6329781B1 (en) Control apparatus of synchronous motors
JP4007268B2 (en) Wind power generator
US6058035A (en) Method and apparatus for supplying AC power to commercial power line by using sunlight
TW200924366A (en) Matrix converter
WO2019180763A1 (en) Power conversion device and rotary machine driving system
JPH0746855A (en) Two phase pwm controller for inverter
GB2421090A (en) Voltage source inverter control method
JP4203278B2 (en) Power converter
US11677309B2 (en) Inverter device
JP2002300800A (en) Power converter
US4654572A (en) Load-commutated inverter for operating synchronous motor
JP2003309975A (en) Pwm cycloconverter and control method therefor
EP3764535B1 (en) Power conversion control method and power conversion control device
JP3299417B2 (en) Inverter device
EP2011225B1 (en) Motor control
JPH07163189A (en) Pwm controller for motor
CN112567620B (en) Inverter device
JP2922941B2 (en) Control method of pulse width modulation type inverter
JP2712418B2 (en) Pulse width modulation type inverter device
JP2001178141A (en) Power converter unit
US20230216438A1 (en) Double winding electric machine assembly
JP2008109790A (en) Power conversion apparatus
KR19990047300A (en) Motor Drive Control
JP2023104788A (en) Electric motor control method and electric motor control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Ref document number: 4203278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees