JP2004056907A - Synchronous machine - Google Patents

Synchronous machine Download PDF

Info

Publication number
JP2004056907A
JP2004056907A JP2002210350A JP2002210350A JP2004056907A JP 2004056907 A JP2004056907 A JP 2004056907A JP 2002210350 A JP2002210350 A JP 2002210350A JP 2002210350 A JP2002210350 A JP 2002210350A JP 2004056907 A JP2004056907 A JP 2004056907A
Authority
JP
Japan
Prior art keywords
yoke
stator
teeth
boundary
synchronous machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002210350A
Other languages
Japanese (ja)
Other versions
JP3950378B2 (en
Inventor
Keisuke Fujisaki
藤崎 敬介
Masato Enozono
榎園 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002210350A priority Critical patent/JP3950378B2/en
Publication of JP2004056907A publication Critical patent/JP2004056907A/en
Application granted granted Critical
Publication of JP3950378B2 publication Critical patent/JP3950378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synchronous machine which reduces the magnetic reluctance and iron loss of a stator where a yoke is divided in circumferential direction and which can enhance the strength of the stator. <P>SOLUTION: This synchronous machine is one where a plurality of stators equipped with yokes and teeth are stacked and fixed in the thickness direction, and the above yoke is divided in the circumferential direction. Besides, the boundary between the divided yokes and the center shaft in the diametrical direction provided with the above teeth are offset in a range of 10mm or under. Preferably, the stators different in the direction of offset should be stacked alternately. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ヨークとティースとを備えたステータを複数枚、厚さ方向に積層・固定して用いる同期機に関する。具体的には、ステータに配置される積層体に電磁鋼板を用いた永久磁石同期機に関する。
【0002】
【従来の技術】
永久磁石同期機は、ステータ(固定子)に電流を流すことにより発生する磁場が、ロータ(回転子)に埋め込まれた永久磁石に働いて、ロータが回転する同期機であって、保守性、制御性、耐環境性に優れ、高効率、高力率運転が可能なモータとして産業・民生家電分野を問わず広く用いられている。この場合、電気エネルギーを同期機に流して、回転駆動力を得るようにするのが同期電動機であり、逆に、同期機を回転させて電気エネルギーを同期機より取り出す場合は、同期発電機となる。ここでは、両者を想定し、あわせて、同期機としている、両者の構造は基本的には同じなので、以下詳細説明では、同期電動機の例を中心に説明する。
【0003】
図7および図8は、従来の同期機の断面を示しており、ヨーク1およびティース2からなるステータ7の中心に、ロータ8が配置されている。
ロータ8には永久磁石9が埋め込まれており、ステータ7に三相交流を流すことにより発生する磁場が、この永久磁石9に働くことによりロータ8が回転する。
従来、同期機のステータは、鉄損を低減するために無方向性電磁鋼板(NO)を積層することにより作られていた。
無方向性電磁鋼板は、図5に示すように、鋼板表面のどの方向にも一様な比透磁率を有する鋼板であって、比較的鉄損の小さい材料として広く用いられているが、長時間連続運転する同期機のステータに用いる材料としては十分な磁気特性が得られていなかった。
【0004】
同期機に用いられる電磁鋼板の種類については、特開平7−67272号公報に、ステータのティースとヨークとを分割する構造とし、ヨークには円周方向を磁化容易方向とする方向性電磁鋼板(GO)を用い、ティースには径方向を磁化容易方向とする方向性電磁鋼板を用いることにより鉄損を低減する方法が開示されている。
【0005】
しかし、この従来技術は、図7に示すように、ヨークが周方向に分割されており、その分割されたヨークの境界がティースとティースの間に位置していた。
そのため、ティースから隣のティースに磁束が流れる場合に、ティースとヨークの境界、ヨーク同士の境界、ヨークと隣のティースとの境界の3つの境界を磁束が通過することになる。
【0006】
これらの境界およびステータ同士の積層部は、溶接またはカシメ、または、ボルト締めによって接合されているが、物理的に一体でなく、しかも接合部分に応力が集中するなどの理由から、磁束がこの境界部分を通過する際の磁気抵抗が大きくなり、モータの鉄損が大きくなるという問題点があった。
また、前述の境界が同じ位置にあるステータを積層すると、他の部分に比べて強度が低い境界部が1箇所に集中するため、積層したステータの強度が低下するという問題点があった。
さらに、前述の境界が同じ位置にあるステータを積層すると、切断する際に、切断部が垂れ下がって下層の鋼板と導通する現象が生じて、渦電流が増加し、結果的に鉄損が増加するという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明は、前記のような従来技術の問題点を解決し、ヨークが周方向に分割されているステータの磁気抵抗と鉄損を低減し、また、ステータの強度を向上させることができる同期機を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、ヨークの分割箇所をティースの取り付け位置から周方向にオフセットさせることにより、積層したときにヨークの境界が重ならないようにし、また、前記境界および積層部を接着剤により固定することにより、磁気抵抗と鉄損を低減するとともに、ステータの強度を向上することができる同期機を提供するものであり、その要旨は特許請求の範囲に記載した通りの下記内容である。
【0009】
(1)ヨークとティースとを備えたステータを複数枚、厚さ方向に積層・固定して用いる同期機であって、前記ヨークが周方向に分割されており、かつ、該分割されたヨークの境界と前記ティースが設けられている径方向の中心軸とを10mm以下の範囲でオフセットさせることを特徴とする同期機。
(2)前記オフセットの方向が異なるステータを交互に積層することを特徴とする(1)に記載の同期機。
(3)ヨークとティースとを備えたステータを複数枚、厚さ方向に積層・固定して用いる同期機であって、該ヨークが周方向に分割されており、該分割されたヨークの境界および、該ヨークと前記ティースとの境界を接着剤にて固定した前記ステータの両面に接着剤を塗布して積層することを特徴とする同期機。
【0010】
【発明の実施の形態】
本発明の実施の形態を、図1乃至図6を用いて詳細に説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態であるステータ(固定子)の構造を示す図である。
ステータは、外周部分のヨーク1と、コイルが巻き回されるティース2とから主に構成され、ヨーク1とティース2がロータの周囲に円周状に配置されている。
【0011】
ヨーク1は周方向に分割されており、かつ、該分割されたヨークの境界3をティース2が設けられている周方向の位置から10mm以内の範囲でオフセットさせており、図1中のδがオフセット量を示している。
分割されたヨークの境界3をティース2が設けられている周方向の位置から10mm以内の範囲でオフセットさせることにより、磁束がティース2から隣のティース2に流れる場合に、ティース2からヨーク4への境界4と、ヨーク4から隣のティース2への境界4の2つの境界しか通過しないので、従来に比べて通過する境界の数が1つ減少しており、その分、磁気抵抗と鉄損を低減することができる。
ここに、オフセット量を10mm以内としたのは、オフセット量を10mm超とすると、ヨークの境界3を通過する磁束が増加して、磁気抵抗の低減効果が少なくなるからである。
【0012】
また、ティース2からヨーク4に流れる磁束は、ティース2の付け根で2方向に分岐するので、本実施例のように、この分岐点にヨークの切れ目があった方が、磁束の流れがスムースである。
さらに、このヨーク1およびティース2は、方向性電磁鋼板(GO)とし、このヨーク1を構成する方向性電磁鋼板の磁化容易方向をステータの周方向(図1の矢印で示す中心方向)とし、ティース2の磁化容易方向をステータの径方向とすることにより、ティースを流れる磁束を隣接するティース2に流れにくくし、ロータ8に流れる磁束を多くすることができ、その結果、ステータにおける鉄損を低減することができる。
ここに、方向性電磁鋼板は、磁化容易方向が特定の方向である電磁鋼板であり、磁化容易方向については無方向性電磁鋼板より優れた磁気特性を有する。
【0013】
<第2の実施形態>
図2は、本発明の第2の実施形態であるステータ(固定子)の構造を示す図である。
ステータを構成するヨーク1およびティース2の構造は、第1の実施形態と同様であるが、ヨーク1の境界とティース2の径方向の中心軸とのオフセットの方向が異なるAパターンとBパターンを設けている。
Aパターンは、ヨーク1の境界がティース2の径方向の中心軸に対して図2の右方向にδだけオフセットしており、Bパターンは、右方向にδだけオフセットしている。
【0014】
このオフセットにより、ティース2とヨーク1との境界4の傾きは図2のように左右で異なっている。
すなわち、Aパターンでは、右側の境界の傾きθ2より、左側における境界の傾きθ1の方が大きくなっている。(θ1>θ2)
一方、Bパターンでは、右側の境界の傾きθ2より、左側における境界の傾きθ1の方が小さくなっている。(θ1<θ2)
このように、境界のパターンが異なるステータを、図3のように交互に積層すれば、他の部分に比べて機械的強度が小さい境界部が上下に重なり合う箇所を少なくすることができ、その結果、ステータの機械的強度を向上させることができる。
【0015】
また、境界部の重なりが少なくなることにより、積層したステータを切断する場合に、切断部の垂れ下がりによって、下層の鋼板との導電の発生を低減することができるので、渦電流の発生と、それに伴う鉄損の増加を抑制することができる。
なお、本実施形態では、AパターンとBパターンの2種類のパターンとしているが、3種以上のパターンとしてもよく、また、左右のオフセット量を異なる値としてもよい。
【0016】
<第3の実施形態>
図3は、本発明の第3の実施形態であるステータ(固定子)の構造を示す図である。
図3のように、境界の位置が異なるステータの両面に接着剤5を塗布して交互に積層することにより、比較的強度が小さい境界部が重なり合わないようにしてステータの機械的強度を向上させることができる。
なお、接着剤の種類は問わないが、接合作業効率を高めるために、乾燥しやすい瞬間接着剤を用いることが好ましい。
また、分割されたヨークの境界3および、ヨーク1とティース2との境界4を接着剤にて面支持により固定するので支持部の応力が分散されるので、従来のように溶接、カシメ、ボルト締めなどによる局所的な応力集中が発生せず、磁気抵抗の増加とそれに伴う鉄損の増加を抑制することができる。
【0017】
図4乃至図6は、本発明に用いる電磁鋼板の特性について示す図である。
図4は、方向性電磁鋼板の磁化容易方向の説明図である。
方向性電磁鋼板は圧延方向であるRD(Rolling Direction)が磁化容易方向となる。
【0018】
図5は、無方向性電磁鋼板の比透磁率(μ)の特性を示す図である。
無方向性電磁鋼板は、どの方向にも等しい磁気特性を有するが、方向性電磁鋼板および二方向性電磁鋼板に比べて比透磁率(μ)の値は低い。
図6は、方向性電磁鋼板の比透磁率(μ)の特性を示す図である。
方向性電磁鋼板は、圧延方向の比透磁率(μ)の値が大きく、その他の方向は無方向性電磁鋼板と同等である。
【0019】
【発明の効果】
本発明によれば、ヨークの分割箇所をティースの取り付け位置から周方向にオフセットさせることにより、積層したときにヨークの境界が重ならないようにし、また、前記境界および積層部を接着剤により固定することにより、磁気抵抗と鉄損を低減するとともに、ステータの強度を向上することができる同期機を提供できるなど、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態であるステータ(固定子)の構造を示す図である。
【図2】本発明の第2の実施形態であるステータ(固定子)の構造を示す図である。
【図3】本発明の第3の実施形態であるステータ(固定子)の構造を示す図である。
【図4】方向性電磁鋼板の磁化容易方向の説明図である。
【図5】無方向性電磁鋼板の比透磁率(μ)の特性を示す図である。
【図6】方向性電磁鋼板の比透磁率(μ)の特性を示す図である。
【図7】従来の同期機の断面図である。
【図8】従来の同期機の断面図である。
【符号の説明】
1 :ヨーク、
2 : ティース、
3 : ヨークの境界、
4 :ティースとヨークとの境界、
5 :接着剤、
7 :ステータ(固定子)、
8 :ロータ(回転子)、
9 :永久磁石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a synchronous machine that uses a plurality of stators each including a yoke and teeth, which are stacked and fixed in a thickness direction. Specifically, the present invention relates to a permanent magnet synchronous machine using an electromagnetic steel sheet for a laminate disposed on a stator.
[0002]
[Prior art]
A permanent magnet synchronous machine is a synchronous machine in which a magnetic field generated by flowing an electric current through a stator (stator) acts on a permanent magnet embedded in a rotor (rotor) to rotate the rotor. As a motor with excellent controllability and environmental resistance, capable of high efficiency and high power factor operation, it is widely used in both industrial and consumer electronics fields. In this case, it is a synchronous motor that causes electric energy to flow through the synchronous machine to obtain a rotational driving force. Conversely, when the synchronous machine is rotated to extract electric energy from the synchronous machine, a synchronous generator is used. Become. Here, both are assumed to be a synchronous machine. Since the structures of the two are basically the same, in the following detailed description, an example of a synchronous motor will be mainly described.
[0003]
FIGS. 7 and 8 show a cross section of a conventional synchronous machine, in which a rotor 8 is arranged at the center of a stator 7 composed of a yoke 1 and teeth 2.
A permanent magnet 9 is embedded in the rotor 8, and a magnetic field generated by flowing a three-phase alternating current through the stator 7 acts on the permanent magnet 9 to rotate the rotor 8.
Conventionally, a stator of a synchronous machine has been manufactured by laminating non-oriented electrical steel sheets (NO) in order to reduce iron loss.
As shown in FIG. 5, the non-oriented electrical steel sheet is a steel sheet having a uniform relative magnetic permeability in any direction on the surface of the steel sheet, and is widely used as a material having relatively small iron loss. Sufficient magnetic properties have not been obtained as a material for the stator of a synchronous machine that operates continuously for a long time.
[0004]
Japanese Patent Application Laid-Open No. 7-67272 discloses a type of magnetic steel sheet used in a synchronous machine, which has a structure in which teeth and a yoke of a stator are divided, and the yoke has a directional magnetic steel sheet whose circumferential direction is an easy magnetization direction. A method for reducing iron loss by using a grain-oriented electrical steel sheet using GO) and using the radial direction as the direction of easy magnetization for the teeth is disclosed.
[0005]
However, in this conventional technique, as shown in FIG. 7, the yoke is divided in the circumferential direction, and the boundary of the divided yoke is located between the teeth.
Therefore, when a magnetic flux flows from a tooth to an adjacent tooth, the magnetic flux passes through three boundaries of a boundary between the tooth and the yoke, a boundary between the yokes, and a boundary between the yoke and the adjacent tooth.
[0006]
These boundaries and the laminated portions of the stators are joined by welding, caulking, or bolting. However, magnetic flux is not applied to these boundaries because they are not physically integrated and stress concentrates on the joints. There is a problem in that the magnetic resistance when passing through the portion increases, and the iron loss of the motor increases.
Further, when stators having the above-mentioned boundaries at the same position are stacked, a boundary portion having lower strength than at other portions is concentrated at one place, so that the strength of the stacked stators is reduced.
Furthermore, when stacking stators having the same boundary at the same position as described above, when cutting, a phenomenon occurs in which the cut portion hangs down and conducts to the lower steel sheet, eddy current increases, and as a result, iron loss increases There was a problem.
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention solves the above-described problems of the prior art, and reduces a magnetic resistance and iron loss of a stator in which a yoke is divided in a circumferential direction, and can improve the strength of the stator. The task is to provide
[0008]
[Means for Solving the Problems]
According to the present invention, by dividing the yoke dividing portion from the tooth attachment position in the circumferential direction, the boundaries of the yokes are prevented from overlapping when laminating, and the boundary and the laminated portion are fixed by an adhesive. The present invention provides a synchronous machine capable of reducing the magnetic resistance and the iron loss and improving the strength of the stator. The gist of the present invention is as described below.
[0009]
(1) A synchronous machine in which a plurality of stators each having a yoke and teeth are stacked and fixed in a thickness direction, wherein the yoke is divided in a circumferential direction, and the divided yoke is A synchronous machine characterized in that a boundary and a radial center axis where the teeth are provided are offset within a range of 10 mm or less.
(2) The synchronous machine according to (1), wherein stators having different offset directions are alternately stacked.
(3) A synchronous machine in which a plurality of stators each including a yoke and teeth are stacked and fixed in a thickness direction, wherein the yoke is divided in a circumferential direction, and a boundary between the divided yokes and A synchronous machine characterized in that an adhesive is applied on both surfaces of the stator in which a boundary between the yoke and the teeth is fixed with an adhesive, and the stator is laminated.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in detail with reference to FIGS.
<First embodiment>
FIG. 1 is a diagram showing a structure of a stator (stator) according to a first embodiment of the present invention.
The stator mainly includes a yoke 1 in an outer peripheral portion and a tooth 2 around which a coil is wound. The yoke 1 and the tooth 2 are circumferentially arranged around the rotor.
[0011]
The yoke 1 is divided in the circumferential direction, and the boundary 3 of the divided yoke is offset within a range of 10 mm or less from the circumferential position where the teeth 2 are provided, and δ in FIG. This shows the offset amount.
By offsetting the boundary 3 between the divided yokes within a range of 10 mm or less from the circumferential position where the teeth 2 are provided, when the magnetic flux flows from the teeth 2 to the adjacent teeth 2, the magnetic flux flows from the teeth 2 to the yoke 4. 2 and the boundary 4 from the yoke 4 to the adjacent teeth 2 only pass through, so that the number of passing boundaries is reduced by one as compared with the prior art, and the magnetic resistance and iron loss Can be reduced.
Here, the reason why the offset amount is within 10 mm is that if the offset amount exceeds 10 mm, the magnetic flux passing through the boundary 3 of the yoke increases and the effect of reducing the magnetic resistance decreases.
[0012]
Further, since the magnetic flux flowing from the teeth 2 to the yoke 4 branches in two directions at the base of the teeth 2, the flow of the magnetic flux is smoother if there is a break in the yoke at this branch point as in this embodiment. is there.
Further, the yoke 1 and the teeth 2 are made of a grain-oriented electrical steel sheet (GO), and the direction of easy magnetization of the grain-oriented electrical steel sheet constituting the yoke 1 is set as the circumferential direction of the stator (the center direction indicated by the arrow in FIG. 1). By setting the direction of easy magnetization of the teeth 2 to the radial direction of the stator, the magnetic flux flowing through the teeth is less likely to flow to the adjacent teeth 2 and the magnetic flux flowing through the rotor 8 can be increased. As a result, iron loss in the stator can be reduced. Can be reduced.
Here, the grain-oriented electrical steel sheet is an electrical steel sheet in which the direction of easy magnetization is a specific direction, and has a magnetic property superior to that of the non-oriented electrical steel sheet in the direction of easy magnetization.
[0013]
<Second embodiment>
FIG. 2 is a diagram illustrating a structure of a stator (stator) according to a second embodiment of the present invention.
The structures of the yoke 1 and the teeth 2 constituting the stator are the same as those of the first embodiment, but the A pattern and the B pattern are different in the direction of offset between the boundary of the yoke 1 and the radial center axis of the teeth 2. Provided.
In the pattern A, the boundary of the yoke 1 is offset by δ to the right in FIG. 2 with respect to the radial center axis of the teeth 2, and in the pattern B, it is offset by δ to the right.
[0014]
Due to this offset, the inclination of the boundary 4 between the teeth 2 and the yoke 1 is different between the left and right as shown in FIG.
That is, in the pattern A, the inclination θ1 of the boundary on the left side is larger than the inclination θ2 of the boundary on the right side. (Θ1> θ2)
On the other hand, in the B pattern, the inclination θ1 of the boundary on the left side is smaller than the inclination θ2 of the boundary on the right side. (Θ1 <θ2)
As described above, if the stators having different boundary patterns are alternately stacked as shown in FIG. 3, it is possible to reduce the number of portions where the boundary portions having lower mechanical strengths overlap vertically than other portions, and as a result, In addition, the mechanical strength of the stator can be improved.
[0015]
Also, by reducing the overlap of the boundary portions, when cutting the laminated stator, it is possible to reduce the occurrence of conduction with the lower steel plate by dripping of the cut portion, so that the generation of eddy current and the The accompanying increase in iron loss can be suppressed.
In the present embodiment, two types of patterns, the A pattern and the B pattern, are used. However, three or more types of patterns may be used, and the left and right offset amounts may be different values.
[0016]
<Third embodiment>
FIG. 3 is a diagram illustrating a structure of a stator (stator) according to a third embodiment of the present invention.
As shown in FIG. 3, the adhesive 5 is applied to both surfaces of the stator having different boundary positions and alternately laminated, so that the relatively low-strength boundaries do not overlap, thereby improving the mechanical strength of the stator. Can be done.
Although the type of the adhesive is not limited, it is preferable to use an instantaneous adhesive that is easy to dry in order to increase the joining work efficiency.
Also, since the boundary 3 of the divided yoke and the boundary 4 between the yoke 1 and the teeth 2 are fixed by surface support with an adhesive, the stress of the supporting portion is dispersed, so that welding, caulking, and bolting are performed as in the related art. Local stress concentration due to tightening or the like does not occur, and an increase in magnetic resistance and an accompanying increase in iron loss can be suppressed.
[0017]
4 to 6 are diagrams showing characteristics of the electromagnetic steel sheet used in the present invention.
FIG. 4 is an explanatory diagram of the direction of easy magnetization of the grain-oriented electrical steel sheet.
In the grain-oriented electrical steel sheet, RD (Rolling Direction), which is the rolling direction, is the direction of easy magnetization.
[0018]
FIG. 5 is a diagram showing characteristics of the relative magnetic permeability (μ) of the non-oriented electrical steel sheet.
The non-oriented electrical steel sheet has the same magnetic properties in any direction, but has a lower relative magnetic permeability (μ) than the grain-oriented electrical steel sheet and the bidirectional electrical steel sheet.
FIG. 6 is a diagram showing characteristics of the relative magnetic permeability (μ) of the grain-oriented electrical steel sheet.
The grain-oriented electrical steel sheet has a large value of the relative magnetic permeability (μ R ) in the rolling direction, and the other directions are equivalent to the non-oriented electrical steel sheet.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the division | segmentation part of a yoke is offset from the attachment position of a tooth in the circumferential direction, so that the boundary of a yoke does not overlap at the time of lamination, and the said boundary and a laminated part are fixed with an adhesive. As a result, it is possible to provide a synchronous machine that can reduce the magnetic resistance and the iron loss and improve the strength of the stator.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a stator (stator) according to a first embodiment of the present invention.
FIG. 2 is a view illustrating a structure of a stator (stator) according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a structure of a stator (stator) according to a third embodiment of the present invention.
FIG. 4 is an explanatory diagram of an easy magnetization direction of a grain-oriented electrical steel sheet.
FIG. 5 is a diagram showing characteristics of relative magnetic permeability (μ) of a non-oriented electrical steel sheet.
FIG. 6 is a diagram showing characteristics of relative magnetic permeability (μ) of a grain-oriented electrical steel sheet.
FIG. 7 is a sectional view of a conventional synchronous machine.
FIG. 8 is a sectional view of a conventional synchronous machine.
[Explanation of symbols]
1: York,
2: Teeth,
3: Border of York,
4: The boundary between the teeth and the yoke,
5: adhesive,
7: Stator (stator),
8: rotor (rotor),
9: Permanent magnet

Claims (3)

ヨークとティースとを備えたステータを複数枚、厚さ方向に積層・固定して用いる同期機であって、前記ヨークが周方向に分割されており、かつ、該分割されたヨークの境界と前記ティースが設けられている径方向の中心軸とを10mm以下の範囲でオフセットさせることを特徴とする同期機。A synchronous machine using a plurality of stators each including a yoke and teeth, stacked and fixed in a thickness direction, wherein the yoke is divided in a circumferential direction, and a boundary between the divided yoke and the boundary. A synchronous machine characterized by offsetting a radial center axis provided with teeth within a range of 10 mm or less. 前記オフセットの方向が異なるステータを交互に積層することを特徴とする請求項1に記載の同期機。The synchronous machine according to claim 1, wherein stators having different offset directions are alternately stacked. ヨークとティースとを備えたステータを複数枚、厚さ方向に積層・固定して用いる同期機であって、該ヨークが周方向に分割されており、該分割されたヨークの境界および、該ヨークと前記ティースとの境界を接着剤にて固定した前記ステータの両面に接着剤を塗布して積層することを特徴とする同期機。A synchronous machine using a plurality of stators each having a yoke and teeth stacked and fixed in a thickness direction, wherein the yoke is divided in a circumferential direction, and a boundary between the divided yokes and the yoke is provided. A synchronous machine characterized in that an adhesive is applied and laminated on both sides of the stator in which a boundary between the stator and the teeth is fixed with an adhesive.
JP2002210350A 2002-07-19 2002-07-19 Synchronous machine Expired - Lifetime JP3950378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210350A JP3950378B2 (en) 2002-07-19 2002-07-19 Synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210350A JP3950378B2 (en) 2002-07-19 2002-07-19 Synchronous machine

Publications (2)

Publication Number Publication Date
JP2004056907A true JP2004056907A (en) 2004-02-19
JP3950378B2 JP3950378B2 (en) 2007-08-01

Family

ID=31933875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210350A Expired - Lifetime JP3950378B2 (en) 2002-07-19 2002-07-19 Synchronous machine

Country Status (1)

Country Link
JP (1) JP3950378B2 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864822B2 (en) 2003-06-06 2011-01-04 The General Hospital Corporation Process and apparatus for a wavelength tuning source
JP2011244675A (en) * 2010-05-21 2011-12-01 Ihi Corp Manufacturing method of split stator and split stator
USRE44042E1 (en) 2004-09-10 2013-03-05 The General Hospital Corporation System and method for optical coherence imaging
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US8965487B2 (en) 2004-08-24 2015-02-24 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
USRE45512E1 (en) 2004-09-29 2015-05-12 The General Hospital Corporation System and method for optical coherence imaging
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9087368B2 (en) 2006-01-19 2015-07-21 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US9173572B2 (en) 2008-05-07 2015-11-03 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US9226660B2 (en) 2004-08-06 2016-01-05 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
US9254102B2 (en) 2004-08-24 2016-02-09 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9377290B2 (en) 2003-10-27 2016-06-28 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
WO2020054469A1 (en) * 2018-09-12 2020-03-19 パナソニックIpマネジメント株式会社 Stator, and motor using same
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US7864822B2 (en) 2003-06-06 2011-01-04 The General Hospital Corporation Process and apparatus for a wavelength tuning source
USRE47675E1 (en) 2003-06-06 2019-10-29 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US9377290B2 (en) 2003-10-27 2016-06-28 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9226660B2 (en) 2004-08-06 2016-01-05 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US8965487B2 (en) 2004-08-24 2015-02-24 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
US9254102B2 (en) 2004-08-24 2016-02-09 The General Hospital Corporation Method and apparatus for imaging of vessel segments
USRE44042E1 (en) 2004-09-10 2013-03-05 The General Hospital Corporation System and method for optical coherence imaging
USRE45512E1 (en) 2004-09-29 2015-05-12 The General Hospital Corporation System and method for optical coherence imaging
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US9304121B2 (en) 2005-09-29 2016-04-05 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US9513276B2 (en) 2005-09-29 2016-12-06 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9791317B2 (en) 2006-01-19 2017-10-17 The General Hospital Corporation Spectrally-encoded endoscopy techniques and methods
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9087368B2 (en) 2006-01-19 2015-07-21 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US9186067B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9777053B2 (en) 2006-02-08 2017-10-03 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US9173572B2 (en) 2008-05-07 2015-11-03 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
JP2011244675A (en) * 2010-05-21 2011-12-01 Ihi Corp Manufacturing method of split stator and split stator
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
WO2020054469A1 (en) * 2018-09-12 2020-03-19 パナソニックIpマネジメント株式会社 Stator, and motor using same

Also Published As

Publication number Publication date
JP3950378B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP2004056907A (en) Synchronous machine
JP6766679B2 (en) Rotating electric machine
JP3906882B2 (en) Permanent magnet motor
JP4007339B2 (en) AC motor and its control device
JP4926107B2 (en) Rotating electric machine
JP3906883B2 (en) Permanent magnet motor
EP2865079B1 (en) Variable magnetic flux-type rotary electric machine
JP5736861B2 (en) Rotating electrical machine rotor
WO2002031947A1 (en) Electric motor
WO2007072707A1 (en) Electric motor and its rotor, and magnetic core for the rotor
JP6083467B2 (en) Permanent magnet embedded rotary electric machine
JP4984347B2 (en) Electric motor
JP2017112705A (en) Permanent magnet type rotary electric machine and method for manufacturing the same
JPH1189134A (en) Permanent magnet type motor
WO2019187205A1 (en) Rotary electric machine
JP2004236495A (en) Exciter and synchronizer using it
JP6711082B2 (en) Rotating electric machine
JP2007236067A (en) Rotary electric machine and stator iron core thereof
JP3818338B2 (en) Permanent magnet motor
JP2011193627A (en) Rotor core and rotary electric machine
JP2014082834A (en) Rotor and rotary electric machine having the same
JP2002136074A (en) Rotor core
JP2005057816A (en) Field machine and synchronous machine employing it
JP2004242495A (en) Exciter, field machine, and synchronous machine employing the same
JP2004254354A (en) Reluctance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R151 Written notification of patent or utility model registration

Ref document number: 3950378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term