JP2004055372A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2004055372A
JP2004055372A JP2002212033A JP2002212033A JP2004055372A JP 2004055372 A JP2004055372 A JP 2004055372A JP 2002212033 A JP2002212033 A JP 2002212033A JP 2002212033 A JP2002212033 A JP 2002212033A JP 2004055372 A JP2004055372 A JP 2004055372A
Authority
JP
Japan
Prior art keywords
plate
ptc element
battery
cap
safety valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002212033A
Other languages
Japanese (ja)
Other versions
JP4244580B2 (en
Inventor
Yukihiro Gotanda
五反田 幸宏
Takeshi Inui
乾 武史
Yasuhiro Suzuki
鈴木 康弘
Toshiyuki Shimizu
清水 敏之
Toshiya Kuwamura
桑村 俊哉
Tetsuya Yano
矢野 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002212033A priority Critical patent/JP4244580B2/en
Publication of JP2004055372A publication Critical patent/JP2004055372A/en
Application granted granted Critical
Publication of JP4244580B2 publication Critical patent/JP4244580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery capable of preventing the occurrence of electrolyte leakage through a stacking surface of a disc plate constituting a sealing plate, a safety valve film, a PTC element and a cap-like terminal plate, and of restraining the degradation of high reliability and a battery characteristic. <P>SOLUTION: The cap-like terminal plate, the PTC element, the safety valve film and the disc plate are integrated with another adjacent element by depositing or welding them to one another, and the part used for welding or depositing them is set liquid-tight. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発電要素を収容した電池ケースの開口部を閉塞すると共に、内部にPTC素子が配置された封口板を備え、この封口板における耐漏液性を向上させた密閉型電池に関する。
【0002】
【従来の技術】
密閉型電池は、高容量を有することから携帯機器の電源に加え、幅広い分野で使用されている。特に、リチウム若しくはその合金からなる負極、非水電解液を用いた密閉型電池(以下、非水電解液電池)は、長期間の保存、使用に対して電池特性の劣化を極めて小さく、且つ使用可能な温度範囲が広いことから、前記機器の電源だけでなく、ガスメータの電源、車載用緊急通報システムの電源といった高い信頼性が容易される分野では必要不可欠な電池である。
【0003】
非水電解液電池は、上述のように高いエネルギー密度を有しており、電池の異状放電、短絡等に起因する安全性の低下を回避するために、PTC素子、及び防爆機能を封口板に備えている。この封口板は、一方の極板に電気的に接続された皿板上に、安全弁膜、PTC素子及びキャップ状の端子板を載置した形態としている。
【0004】
電池の内圧が上昇した場合には、封口板のガス抜き孔の間に配された安全弁膜が上方に膨れ上がる。そして、安全弁膜が所定以上に膨れあがると、キャップ状端子板内側に安全弁膜に対向して備えられた切刃が、安全弁膜を破断し、通気路を形成することで、電池内のガスは安全弁膜の破断部を通り抜け、PTC素子、キャップ状端子板の各ガス抜き孔を通って、電池外部に排出される。
【0005】
また、電池内の温度が上昇した場合には、PTC素子の抵抗値が増大し絶縁体として機能して、キャップ状端子板から電池内にそれ以上の電流が流れ込まないようにされている。
【0006】
【発明が解決しようとする課題】
上述のような構成を有する封口板は、その製造工程で安全弁膜、PTC素子、キャップ状端子板が載置された皿板をシーマ等によりカシメて一体化している。しかし、カシメ時に、皿板は偏心等の不良を起こし易く、また生産性の低下を招いてしまう。さらにカシメ状態の不良は、高温保存時の際に耐漏液性を低下させる主因となっていた。
【0007】
そこで、本発明者らは、皿板、安全弁膜、PTC素子及びキャップ状端子板を載置した封口板を電池ケースの開口部に配置した後、電池ケースの封口により封口板の要素を固定、保持する構成を採用することで、組立工程の容易化、簡素化をはかると同時に、封口板の耐漏液性を向上させることを提案した。
【0008】
この提案に基づく封口板を用いた密閉型電池は、バックアップ用電源の用途として長期間にわたって保存、或いは使用される使用様態、特に高温環境下で長期間保存される使用様態では、皿板上に載置された各要素の積層面間に電解液が侵入することがあり、さらに侵入した電解液がキャップ状端子板のガス抜き孔から電解液が漏液することがあった。
【0009】
本発明の目的は、上述のような封口板の積層面を介した漏液の発生を防止する封口板を備えるものであり、高い信頼性を有するだけでなく、電池特性の劣化も抑制した密閉型電池を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本願の第1の発明に係る密閉型電池は、正極と負極とセパレータおよび電解液からなる発電要素を正、負いずれか一方極の端子を兼ねる電池ケースに収容し、この電池ケースの開口部を他方極の端子をなす封口板で閉塞した構成を有し、さらに前記封口板は、中央部に凸部を有し、かつその上面または側面部にガス抜き孔を設けたキャップ状端子板、このキャップ状端子板の下側に配置され、中央部にガス抜き孔を設けたPTC素子、前記発電要素の一方の電極に接続され、中央部にガス抜き孔を有する皿板、この皿板のガス抜き孔を閉塞し、電池の内圧上昇時に膨脹、破断する機能を有し、前記皿板とPTC素子との間に配される金属製の安全弁膜を備えてなり、前記キャップ状端子板、PTC素子、安全弁膜、及び皿板の要素が隣接する他の要素に対して溶着、あるいは溶接にて一体化する点、且つこの溶接、或いは溶着が施された部位を液密とする点に特徴を有する。
【0011】
このような構成を有する電池は、皿板状に載置された安全弁膜、PTC素子、キャップ状端子板の各積層面、すなわち隣接する要素との接触面に、ハンダ等を用いた溶着、あるいは抵抗溶接やレーザー溶接等の溶接手段により溶着/溶接部位を形成している。これらの部位は、積層面全体を溶着部位とすること、或いは接触面の全周にわたる溶接部位、例えば少なくとも一畝の連続した溶接部位とすることで、液密とされる。これにより、封口板を構成する要素は電気的に接続されているだけでなく、液密性が付与されることで、積層面間への電解液の侵入を阻止し、封口板を介した漏液の発生を確実に抑制するものである。
【0012】
また、本願の第2の発明に係る封口板は、中央部に凸部を有し、かつその上面または側面部にガス抜き孔を設けたキャップ状端子板、このキャップ状端子板の下側に配置され、中央部にガス抜き孔を設けたPTC素子、前記発電要素の一方の電極に接続され、中央部にガス抜き孔を有する皿板、この皿板のガス抜き孔を閉塞し、電池の内圧上昇時に膨脹、破断する機能を有し、前記皿板とPTC素子との間に配される金属と樹脂とのラミネート材からなる安全弁膜を備えてなり、前記PTC素子が前記キャップ状端子板及び皿板に対して溶着、あるいは溶接にて一体化される点、前記安全弁膜が前記PTC素子及び皿板に対して接着される点、及び前記溶接/溶着が施された部位、及び接着が施された部位が液密とされる点に特徴を有する。
【0013】
この第2の発明は、安全弁膜に樹脂ラミネートされた金属薄板を用いており、PTC素子及び皿板で安全弁膜を挟持した形態となっている。安全弁膜は、表面に樹脂ラミネー層が形成されることから、安全弁膜と皿板及びPTC素子との積層面は接着により一体化される。接着には、耐有機電解液性を優れ、樹脂及びPTC素子の主面に配される金属部位、及び皿板との接着性に優れた材料が用いられる。この材料としては、エポキシ系やアクリル系(ホットメルト)接着剤が好ましい。また、安全弁膜は、樹脂ラミネート層の存在により、導電性を有しておらず、通電経路とならない。そこで、導電性を確保するために、PTC素子と皿板とを電気的に接続している。
【0014】
一方、PTC素子は、キャップ状端子板、及び皿板に対してハンダや導電性接着剤等を用いた溶着、あるいは抵抗溶接やレーザー溶接等の手段により溶接されることで、電気的な接続を行うと共に、封口板に液密性を付与している。
【0015】
このような構成によれば、通電経路となる部位の積層面は、溶着或いは溶着部位を形成し、PTC素子とキャップ状端子板及び皿板を一体化しており、且つ樹脂部位と金属部位とを接続する安全弁膜と皿板及びPTC素子との接続部位は、接着により一体化されるために耐漏液性が向上する。さらに通電経路となる部位は溶接、溶着にて電気伝導性を向上させ、通電経路以外の部位を接着剤にて一体化することで、生産性を改善している。
【0016】
また、本願発明に係る上記の各密閉型電池は、前記溶着にクリームハンダを用いるのが好ましい。クリームハンダは、皿板、安全弁膜、PTC素子、キャップ状端子板の積層面に塗布される。そして、皿板状に各要素を配置した後、電気炉や高周波炉等に挿入することでクリームハンダを溶融し、封口板を加圧することで各要素の一体化がなされる。この製造法は、従来の封口板の組立工程と比較すると、クリームハンダの塗布工程、及び塗布されたクリームハンダを溶融させる工程が増加している。しかし、工数の増加が最少に抑えられており、生産の悪化を招くものではない。また、クリームハンダを溶融させる工程において、PTC素子へヒートショックが付加され、PTC素子の抵抗値を下げる効果も得られる。
【0017】
作製された封口板は、クリームハンダによる溶着部位が各要素の積層面間に形成されることで、要素間の接触抵抗が減少しており、従来構成の封口板に比して放電特性を改善する効果も奏する。また、各要素の積層面全体にクリームハンダを塗布することで、溶接部位の面積が最大化され、封口板の液密性を大幅に向上させる効果も得られる。
【0018】
【発明の実施の形態】
以下、本願発明の実施形態を説明する。この実施形態は、上述した第1及び第2の発明を具現化した一例を示したものであり、以下の記載内容に限定するものではない。
【0019】
(第1の実施形態)
第1の実施形態に係る密閉型電池の封口板は、中央部に凸部を有し、上面または側面部にガス抜き孔を設けたキャップ状端子板、このキャップ状端子板の下側に配置され、中央部にガス抜き孔を設けたPTC素子、前記発電要素の一方の電極に接続され、中央部にガス抜き孔を有する皿板、この皿板のガス抜き孔を閉塞し、電池の内圧上昇時に膨脹、破断する機能を有し、前記皿板とPTC素子との間に配される金属製の安全弁膜を備える。
【0020】
皿板は、シート状の鋼板をプレス加工することで所定形状に打ち抜き、中央部に円形或いは方形状のガス抜き孔を打ち抜くことで作成される。さらにプレス加工を施し、中央部を電池ケース側に突出させ、平坦面を形成した形状としても良い。皿板の外周形状は、電池ケースの封口部形状に応じて設定され、厚み方向の形状は封口部位の形状等の種々因子を考慮し、決定される。皿板の下面は、電池ケースの開口部に配置される際に、ケースに収容された正負極板の何れか一方から延出された接続リードを接続する。この時、前記平坦面を形成した皿板では、前記平坦面と皿板の上部に配置される安全弁膜との間に間隙が存在し、接続リードを溶接する際の安全弁膜への熱影響、応力付加の影響を回避できる。
【0021】
安全弁膜は、金属薄板、好ましくはアルミニウム箔からなり、電池の内圧上昇にともなって、上方に膨れる。この時、キャップ状端子板の内頂部に切刃を設けた構成では、切刃によって安全膜が破断され、未設置の構成では、安全弁膜の破断強度を調整することで、電池内圧が所定値以上に上昇しない。また、PTC素子は、上述した皿板と同様に封口部の形状に応じた外周形状に打ち抜かれ、中央部に円形或いは方形状のガス抜き孔を形成し、ドーナツ状とされる。PTC素子は導電性高分子材料の表裏面に金属薄板を一体化した構造を有しており、封口板の他の要素に対して溶着、及び溶接による接続が可能である。
【0022】
キャップ状端子板は、中央部に凸部を有し、上面または側面部にガス抜き孔を設けた形態である。この端子板は、ステンレス鋼板等をプレス加工にて所定の外観形状に打ち抜いた後、さらに中央部を突出させるようにプレス加工を施している。凸部は、封口板の様態に完成した際に、皿板及びPTC素子の中央部に形成したガス抜き孔と連通する様に形状を規定している。また、安全弁膜を切刃にて破断させる構成を採用した場合には、凸部の頂面の一部を、先端が鋭利な形状で折り曲げることで切刃が形成される。
【0023】
上述の様に形成された封口板の各要素は、皿板上に安全弁膜、PTC素子及びキャップ状端子板を載置し、以下に記す方法にて一体化される。
【0024】
第1の方法としては、抵抗溶接を用いた方法である。この方法としては、先ず皿板上に安全弁膜を配置し、両者を抵抗溶接にて一体化する。この抵抗溶接は皿板の中央部に形成されたガス抜き孔の周縁を取り囲む様に連続した溶接部位を形成する。引き続いて、安全弁体上にPTC素子を配置し、上記と同様に抵抗溶接を実施する。この時、安全弁体と皿板は既に抵抗溶接により一体化されており、抵抗溶接による電流はPTC素子と安全弁体との積層面に集中する。この電流集中により生じた発熱にて、PTC素子と安全弁膜の溶接がなされる。同様にPTC素子とキャップ状端子板の間にて抵抗溶接を施すことで接合がなされる。作製された封口板は、各要素の積層面が抵抗溶接にて一体化されており、溶接部位が封口板の外周から中央のガス抜き孔への連通を断っているので、液密性を獲得できる。
【0025】
上記の作製方法に代えて、PTC素子とキャップ状封口板を予め一体化しておき、安全弁膜及び皿板と一体化する方法を採用しても良く、各要素を一体化するのであれば、その順序は問わない。また、安全弁膜と皿板との界面は、安全弁膜によって外部との連通が遮断されていることから、導電性のみを確保する構成としても良い。
【0026】
第2の方法としては、レーザー溶接を用いた方法である。この方法では、レーザー溶接が各要素の積層面の外周縁、或いはガス抜き孔の内周縁に沿って施される。このため、同一径を有する要素を重ね合わせた場合、積層面の縁部は両者の側面部分となる。PTC素子の金属部分、及び安全弁膜は極薄に形成されていることから、側面方向からのレーザー溶接は生産の悪化を来す虞がある。そこで、接続される要素の外周縁、若しくは内周縁の径を相違させることで、前記縁部を一方の要素の積層面上に露呈させ、この部位にレーザー溶接を施すことで、要素を一体化できる。
【0027】
第3の方法としては、クリームハンダを用いる方法である。この方法では、クリームハンダを要素の積層面に塗布した状態で各要素を積層し、加熱及び加圧を施すことによって一体化を行う。
【0028】
本実施形態では、封口板を構成する要素を溶着、溶接する方法として上述した3つの手法を個別に説明した。これらの方法に加えて、超音波や高周波溶着による方法、導電性を有する接着剤(銀系導電性接着剤、Ni系導電性接着剤)を用いる方法や、導電性ペーストや拡散接合による方法を採用しても良い。さらに、要素毎に異なる一体化方法を用いても良い。
【0029】
このように本実施形態に係る封口板は、積層面に液密性を有する。このため、封口板への電解液の侵入を阻止し、封口板を介した漏液の発生を確実に抑制することで、高温保存時などにおける電池の耐漏液性を大幅に向上させることができる。
【0030】
(第2の実施形態)
第2の実施形態に係る密閉型電池の封口板は、キャップ状端子板、PTC素子、皿板に加え、皿板のガス抜き孔を閉塞し、電池の内圧上昇時に膨脹、破断する機能を有し、皿板とPTC素子との間に配される金属と樹脂とのラミネート材からなる安全弁膜を備える。キャップ状端子、PTC素子及び皿板は、第1の実施形態にて適用されるものとほぼ同一であり、その詳細な説明は省略する。本実施形態におけるPTC素子は、前記キャップ状端子板及び皿板に対して溶着、あるいは溶接にて一体化される。一方、安全弁膜は、PTC素子及び皿板に対して接着される。そして、これら溶接/溶着が施された部位、及び接着が施された部位を設けることで、封口板を介した漏液の発生が抑制される。
【0031】
安全弁膜は、皿板及びPTC素子に接する面に接着層を形成し、これらを一体化することで作製される。接着層には、耐有機電解液性に加えて、金属及びラミネート層を形成する樹脂との接着性に優れることが要求される。接着層を形成する接着の例としては、2液混合型のエポキシ樹脂、アクリル系のホットメルト接着剤等が用いられる。
【0032】
一方、PTC素子と皿板及びキャップ状端子板との溶着/溶接は、第1の実施形態と同様の接合方法が適用される。特にクリームハンダを使用する方法では、接着層がハンダ溶融時の熱影響を受け易いことから、耐熱性の低い接着剤を使用する場合には、予め一体化を施しておくのが好ましい。また、熱硬化形の接着剤を用いる場合には、クリームハンダの溶融工程おいて接着層の硬化もなされる。このため、工程の簡素化に加え、一体化が確実になされ、封口板の耐漏液性を一層向上させるものである。
【0033】
また、安全弁膜は表面をラミネート層が形成されているために、皿板とPTC素子との導電性を確保する必要がある。そこで、皿板及びPTC素子に比べて安全弁膜を小径とし、その外周に導電性を確保するためのスペーサーを配置し、一体化することで導電性は確保される。このスペーサーは、キャップ状端子板とPTC素子との一体化と同様に、第1の実施形態と同様の接合方法が適用される。
【0034】
さらに、前記のスペーサーに代えて、皿板に突起を形成し、PTC素子との導電性を確保する構成として良い。この構成は、皿板の主面にPTC素子側に突出した円錐状の突起部が設け、突起によりPTC素子との導電性を確保するものである。この突起は、ガス抜き孔の周縁に沿って、且つ等間隔をおいて設けられた3個以上の円錐状の突起や、複数個の円弧形の突条を設け、突条が円を描く形状とされる。この突起を介して、PTC素子と皿板との抵抗溶接を実施することで、両者の一体化がなされる。
【0035】
【実施例】
以下、本発明の実施例について図面を参照しながら説明する。
【0036】
図1は、本発明に係る密閉型電池の部分断面図である。本発明に係る電池の主たる要素である封口板は、皿板7、安全弁膜6、PTC素子4、キャップ状端子板1の順で載置された構成を有しており、電池ケース10の開口部に配されている。図1から明らかなように、封口板はガスケット8を介してカシメ固定されており、電池ケースを封口している。また、電池ケース10に収容された発電要素の一方極の極板に接続される。本実施例では、正極板に接続されたリード板9は、皿板7の底面に溶接されている。キャップ状端子板1はガス抜き孔2を有している。本実施例では、このガス抜き孔2はキャップ状端子板1の凸部3の上面から側面にかけた部位に形成されたものを用いた。
【0037】
この封口板は、皿板7、安全弁膜6、PTC素子4、キャップ状端子板1の各積層面の全体に、クリームハンダを塗布した後、これを溶融させた状態で、封口板の厚み方向に加圧を施することで得られたものである。得られた封口板は、溶着部位5を介して隣接する要素と接合されており、且つ溶着部位5が積層面の全体に形成されることから、ガスケット8を介して封口板へ達した電解液が、積層面に侵入するのを抑制している。
【0038】
上記の構成を有する封口板を使用し、正極に二酸化マンガン、負極に金属リチウムを用いた円筒形の非水電解液電池を作製した(電池A)。また、比較例として、各要素の一体がなされていない従来構成の封口板を用いた非水電解液電池を作製した(電池B)。尚、作製個数は、300個ずつとした。
【0039】
作製された電池の耐漏液性を検討するために、高温環境下における保存試験を実施した。試験条件は、85℃の高温環境下に1ヶ月間とし、保存後における漏液の発生有無を顕微鏡による目視検査を行った。その結果を(表1)に示す。
【0040】
【表1】

Figure 2004055372
【0041】
(表1)に示したように、高温保存時における耐漏液性を向上させることができた。
【0042】
【発明の効果】
以上のように、本発明の封口板は、電池の高温保存時における耐漏液性を向上させることができるものであり、その工業的価値は大なるものである。
【図面の簡単な説明】
【図1】本実施例における封口板を備えた電池の部分断面図
【符号の説明】
1  キャップ状端子板
2  ガス抜き孔
3  凸部
4  PTC素子
5  溶着部位
6  安全弁膜
7  皿板
8  絶縁パッキング
9  リード板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealed battery in which an opening of a battery case accommodating a power generation element is closed and a sealing plate in which a PTC element is disposed is provided, and the leakage resistance of the sealing plate is improved.
[0002]
[Prior art]
The sealed battery has a high capacity and is used in a wide range of fields in addition to a power source of a portable device. In particular, a sealed battery using a negative electrode made of lithium or an alloy thereof and a non-aqueous electrolyte (hereinafter referred to as a non-aqueous electrolyte battery) has a very small deterioration in battery characteristics for long-term storage and use, and has a low battery life Since the temperature range that can be used is wide, it is an indispensable battery not only in the power supply of the above-mentioned equipment but also in a field where high reliability is easily achieved, such as a power supply of a gas meter and a power supply of an on-board emergency notification system.
[0003]
The non-aqueous electrolyte battery has a high energy density as described above, and a PTC element and an explosion-proof function are provided on the sealing plate in order to avoid a decrease in safety due to abnormal discharge of the battery, short circuit, and the like. Have. The sealing plate has a configuration in which a safety valve membrane, a PTC element, and a cap-shaped terminal plate are placed on a plate plate electrically connected to one of the electrode plates.
[0004]
When the internal pressure of the battery rises, the safety valve membrane disposed between the vent holes of the sealing plate swells upward. When the safety valve membrane swells more than a predetermined amount, the cutting blade provided on the inside of the cap-shaped terminal plate so as to face the safety valve membrane breaks the safety valve membrane and forms a ventilation path, so that gas in the battery is discharged. The gas passes through the break portion of the safety valve membrane, passes through the gas vent holes of the PTC element and the cap-shaped terminal plate, and is discharged to the outside of the battery.
[0005]
Further, when the temperature inside the battery rises, the resistance value of the PTC element increases and functions as an insulator so that no more current flows into the battery from the cap-shaped terminal plate.
[0006]
[Problems to be solved by the invention]
In the sealing plate having the above-described configuration, a plate on which the safety valve film, the PTC element, and the cap-shaped terminal plate are placed is caulked with a seamer or the like in a manufacturing process and integrated. However, at the time of caulking, the plate tends to cause defects such as eccentricity, and the productivity is reduced. Further, the poor crimping state has been the main cause of lowering the liquid leakage resistance during high-temperature storage.
[0007]
Therefore, the present inventors arranged a sealing plate on which a plate plate, a safety valve membrane, a PTC element and a cap-shaped terminal plate were placed in the opening of the battery case, and then fixed the elements of the sealing plate by sealing the battery case. It has been proposed that the adoption of the holding structure facilitates and simplifies the assembling process and also improves the liquid leakage resistance of the sealing plate.
[0008]
A sealed battery using a sealing plate based on this proposal can be stored or used for a long period of time as a backup power supply, especially in a long-term storage under a high temperature environment. The electrolyte may enter between the stacked surfaces of the placed elements, and the electrolyte may leak from the gas vent holes of the cap-shaped terminal plate.
[0009]
An object of the present invention is to provide a sealing plate that prevents the occurrence of liquid leakage through the lamination surface of the sealing plate as described above, and has not only high reliability but also sealing that suppresses deterioration of battery characteristics. Battery is provided.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a sealed battery according to a first aspect of the present invention includes a power generation element including a positive electrode, a negative electrode, a separator, and an electrolytic solution housed in a battery case serving also as a positive or negative terminal. The battery case has a configuration in which an opening is closed by a sealing plate serving as a terminal of the other electrode, and the sealing plate has a convex portion in a central portion, and a gas vent hole in an upper surface or a side surface thereof. , A PTC element arranged below the cap-shaped terminal plate, provided with a gas vent hole in the center, connected to one electrode of the power generating element, and provided with a gas vent hole in the center. A plate having a metal safety valve membrane having a function of closing a gas vent hole of the plate, expanding and breaking when the internal pressure of the battery rises, and disposed between the plate and the PTC element. The cap-shaped terminal plate, PTC element, safety valve , And that the elements of the disc plate are integrated by welding, or welding to the other element adjacent, and has a feature this welding, or welding is applied site to a point to be liquid-tight.
[0011]
A battery having such a configuration is formed by welding using solder or the like to the laminated surface of the safety valve membrane, the PTC element, and the cap-shaped terminal plate placed in a plate shape, that is, the contact surface with the adjacent element, or The welded / welded portion is formed by welding means such as resistance welding or laser welding. These parts are made liquid-tight by making the entire lamination surface a welding part or by making a welding part over the entire circumference of the contact surface, for example, a continuous welding part of at least one ridge. As a result, the elements constituting the sealing plate are not only electrically connected, but also provided with liquid tightness, thereby preventing intrusion of the electrolytic solution between the lamination surfaces, and preventing leakage through the sealing plate. The generation of liquid is surely suppressed.
[0012]
In addition, the sealing plate according to the second invention of the present application has a cap-shaped terminal plate having a convex portion at the center and having a vent hole on the upper surface or side surface thereof, and a cap-shaped terminal plate below the cap-shaped terminal plate. A PTC element arranged and provided with a gas vent hole in the center, a plate connected to one electrode of the power generation element and having a gas vent in the center, and closing the gas vent of the plate to close the battery; It has a function of expanding and breaking when the internal pressure rises, and has a safety valve film made of a laminated material of metal and resin disposed between the plate and the PTC element, and the PTC element is provided with the cap-shaped terminal plate. And the point where the safety valve membrane is bonded to the PTC element and the plate, the point where the welding / welding is performed, and the bonding. It is characterized in that the applied part is liquid-tight.
[0013]
This second invention uses a metal thin plate laminated with resin on the safety valve membrane, and has a configuration in which the safety valve membrane is sandwiched between a PTC element and a dish plate. Since the resin laminating layer is formed on the surface of the safety valve film, the laminated surface of the safety valve film, the plate, and the PTC element is integrated by bonding. For the bonding, a material having excellent resistance to organic electrolyte solution, resin and a metal part disposed on the main surface of the PTC element, and having excellent adhesion to the plate plate is used. As this material, an epoxy or acrylic (hot melt) adhesive is preferable. Further, the safety valve film does not have conductivity and does not serve as a current supply path due to the presence of the resin laminate layer. Therefore, in order to secure conductivity, the PTC element and the plate are electrically connected.
[0014]
On the other hand, the PTC element is electrically connected to the cap-shaped terminal plate and the plate plate by welding using solder, a conductive adhesive, or the like, or by welding such as resistance welding or laser welding. At the same time, the sealing plate is provided with liquid tightness.
[0015]
According to such a configuration, the lamination surface of the portion serving as the power supply path forms a weld or a welded portion, integrates the PTC element with the cap-shaped terminal plate and the plate, and connects the resin portion and the metal portion. The connection part between the safety valve membrane and the plate and the PTC element to be connected is integrated by bonding, so that the liquid leakage resistance is improved. Further, electric conductivity is improved by welding and welding at a portion serving as a current path, and productivity is improved by integrating portions other than the current path with an adhesive.
[0016]
In each of the sealed batteries according to the present invention, it is preferable to use cream solder for the welding. The cream solder is applied to the laminated surface of the plate, the safety valve membrane, the PTC element, and the cap-shaped terminal plate. Then, after arranging the components in a dish shape, the cream solder is melted by inserting the components into an electric furnace, a high-frequency furnace, or the like, and the components are integrated by pressing the sealing plate. In this manufacturing method, the number of steps of applying the cream solder and the step of melting the applied cream solder are increased as compared with the conventional sealing plate assembling step. However, the increase in man-hours is kept to a minimum, which does not lead to deterioration in production. Further, in the step of melting the cream solder, a heat shock is applied to the PTC element, and an effect of lowering the resistance value of the PTC element can be obtained.
[0017]
In the manufactured sealing plate, the contact resistance between the elements is reduced by forming the welded part by cream solder between the laminated surfaces of each element, improving the discharge characteristics compared to the sealing plate of the conventional configuration Also has the effect of doing. In addition, by applying cream solder to the entire lamination surface of each element, the area of the welding portion is maximized, and the effect of greatly improving the liquid tightness of the sealing plate can be obtained.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. This embodiment is an example in which the first and second inventions described above are embodied, and is not limited to the following description.
[0019]
(1st Embodiment)
The sealing plate of the sealed battery according to the first embodiment has a convex portion in the center and a cap-shaped terminal plate provided with a gas vent hole on the upper surface or the side surface, and is disposed below the cap-shaped terminal plate. A PTC element having a vent hole in the center, a plate connected to one electrode of the power generating element and having a vent hole in the center, and closing the vent hole of the plate to prevent the internal pressure of the battery. It has a function of expanding and breaking when ascending, and has a metal safety valve membrane disposed between the plate and the PTC element.
[0020]
The dish plate is formed by stamping a sheet-shaped steel plate into a predetermined shape by pressing, and punching a circular or square gas vent hole in the center. Further, a shape in which a flat surface is formed by performing a press process so that the center portion protrudes toward the battery case side may be employed. The outer peripheral shape of the dish plate is set according to the shape of the sealing portion of the battery case, and the shape in the thickness direction is determined in consideration of various factors such as the shape of the sealing portion. When the lower surface of the plate is placed in the opening of the battery case, a connection lead extending from any one of the positive and negative plates accommodated in the case is connected. At this time, in the flat plate formed with the flat surface, there is a gap between the flat surface and the safety valve film arranged on the upper portion of the flat plate, and a thermal effect on the safety valve film when welding the connection lead, The effect of stress application can be avoided.
[0021]
The safety valve membrane is made of a thin metal plate, preferably an aluminum foil, and swells upward as the internal pressure of the battery increases. At this time, in the configuration in which the cutting edge is provided on the inner top of the cap-shaped terminal plate, the safety film is broken by the cutting edge, and in the configuration where the safety valve is not installed, the breaking pressure of the safety valve film is adjusted so that the internal pressure of the battery becomes a predetermined value. Does not rise above. Further, the PTC element is punched into an outer peripheral shape corresponding to the shape of the sealing portion in the same manner as the above-mentioned dish plate, and has a circular or square gas vent hole in the center portion, and has a donut shape. The PTC element has a structure in which a thin metal plate is integrated on the front and back surfaces of a conductive polymer material, and can be connected to other elements of the sealing plate by welding and welding.
[0022]
The cap-like terminal plate has a form in which a convex portion is provided at a central portion and a gas vent hole is provided at an upper surface or a side surface portion. This terminal plate is formed by stamping a stainless steel plate or the like into a predetermined external shape by press working, and then performing press working so that the center portion is further protruded. The shape of the projection is defined so as to communicate with the gas vent hole formed in the center of the plate and the PTC element when completed in the form of a sealing plate. Further, in the case where a configuration in which the safety valve membrane is broken by the cutting blade is employed, the cutting blade is formed by bending a part of the top surface of the convex portion with a sharp tip.
[0023]
Each element of the sealing plate formed as described above is mounted with a safety valve membrane, a PTC element, and a cap-shaped terminal plate on a plate plate, and is integrated by a method described below.
[0024]
The first method is a method using resistance welding. In this method, a safety valve membrane is first placed on a plate, and the two are integrated by resistance welding. This resistance welding forms a continuous welded portion surrounding the periphery of the vent hole formed in the center of the plate. Subsequently, the PTC element is arranged on the safety valve body, and resistance welding is performed as described above. At this time, the safety valve element and the plate are already integrated by resistance welding, and the current by resistance welding concentrates on the laminated surface of the PTC element and the safety valve element. The heat generated by the current concentration causes welding of the PTC element and the safety valve membrane. Similarly, joining is performed by performing resistance welding between the PTC element and the cap-shaped terminal plate. The sealing plate thus manufactured has liquid-tightness because the laminated surface of each element is integrated by resistance welding and the welded part cuts off the communication from the outer periphery of the sealing plate to the central vent hole. it can.
[0025]
Instead of the above manufacturing method, a method may be adopted in which the PTC element and the cap-shaped sealing plate are integrated in advance and integrated with the safety valve membrane and the plate plate. The order does not matter. Further, since the interface between the safety valve membrane and the plate plate is interrupted by the safety valve membrane from communicating with the outside, only the conductivity may be ensured.
[0026]
A second method is a method using laser welding. In this method, laser welding is performed along the outer peripheral edge of the laminated surface of each element or the inner peripheral edge of the gas vent hole. For this reason, when elements having the same diameter are overlapped, the edge of the lamination surface becomes the side surface of both. Since the metal portion of the PTC element and the safety valve film are formed to be extremely thin, laser welding from the side direction may deteriorate the production. Therefore, by making the diameter of the outer peripheral edge or the inner peripheral edge of the connected element different, the edge is exposed on the lamination surface of one element, and the element is integrated by performing laser welding on this portion. it can.
[0027]
A third method is to use cream solder. In this method, the components are laminated in a state where cream solder is applied to the lamination surface of the components, and the components are integrated by applying heat and pressure.
[0028]
In the present embodiment, the above-described three methods have been individually described as methods for welding and welding elements constituting the sealing plate. In addition to these methods, a method using ultrasonic or high-frequency welding, a method using a conductive adhesive (silver-based conductive adhesive, Ni-based conductive adhesive), a method using a conductive paste or diffusion bonding are used. You may adopt it. Further, a different integration method may be used for each element.
[0029]
Thus, the sealing plate according to the present embodiment has liquid tightness on the lamination surface. Therefore, it is possible to greatly improve the liquid leakage resistance of the battery during high-temperature storage or the like by preventing the intrusion of the electrolyte solution into the sealing plate and reliably suppressing the occurrence of liquid leakage through the sealing plate. .
[0030]
(Second embodiment)
The sealing plate of the sealed battery according to the second embodiment has a function of closing the gas vent hole of the plate in addition to the cap-shaped terminal plate, the PTC element, and the plate, and expanding and breaking when the internal pressure of the battery rises. And a safety valve membrane made of a laminated material of metal and resin disposed between the plate and the PTC element. The cap-shaped terminal, the PTC element, and the plate are substantially the same as those applied in the first embodiment, and a detailed description thereof will be omitted. The PTC element in the present embodiment is integrated with the cap-like terminal plate and the plate plate by welding or welding. On the other hand, the safety valve membrane is adhered to the PTC element and the plate. By providing these welded / welded portions and bonded portions, the occurrence of liquid leakage through the sealing plate is suppressed.
[0031]
The safety valve membrane is formed by forming an adhesive layer on a surface in contact with the plate and the PTC element, and integrating them. The adhesive layer is required to have excellent adhesion to the metal and the resin forming the laminate layer in addition to the resistance to the organic electrolytic solution. As an example of the adhesion for forming the adhesive layer, a two-component mixed type epoxy resin, an acrylic hot melt adhesive, or the like is used.
[0032]
On the other hand, the same joining method as in the first embodiment is applied to the welding / welding of the PTC element to the plate plate and the cap-shaped terminal plate. In particular, in the method using cream solder, since the adhesive layer is easily affected by heat at the time of melting the solder, it is preferable to integrate the adhesive beforehand when using an adhesive having low heat resistance. When a thermosetting adhesive is used, the adhesive layer is also cured in the step of melting the cream solder. Therefore, in addition to the simplification of the process, the integration is reliably performed, and the leakage resistance of the sealing plate is further improved.
[0033]
Further, since the safety valve film has a laminate layer formed on the surface, it is necessary to ensure conductivity between the plate and the PTC element. Therefore, the safety valve membrane is made smaller in diameter than the plate and the PTC element, and a spacer for ensuring conductivity is arranged on the outer periphery of the safety valve membrane, and the safety valve membrane is integrated to secure the conductivity. The same bonding method as that of the first embodiment is applied to this spacer, similarly to the integration of the cap-shaped terminal plate and the PTC element.
[0034]
Further, instead of the spacer, a projection may be formed on the plate to secure conductivity with the PTC element. In this configuration, a conical protrusion protruding toward the PTC element is provided on the main surface of the dish plate, and the protrusion secures conductivity with the PTC element. This projection is provided with three or more conical projections and a plurality of arc-shaped projections provided at equal intervals along the periphery of the gas vent hole, and the projections draw a circle. Shaped. By performing resistance welding between the PTC element and the plate via these projections, the two are integrated.
[0035]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0036]
FIG. 1 is a partial sectional view of a sealed battery according to the present invention. The sealing plate, which is a main element of the battery according to the present invention, has a configuration in which a plate plate 7, a safety valve membrane 6, a PTC element 4, and a cap-shaped terminal plate 1 are placed in this order. It is arranged in the department. As is clear from FIG. 1, the sealing plate is fixed by caulking via a gasket 8 to seal the battery case. In addition, it is connected to one pole plate of the power generation element housed in the battery case 10. In this embodiment, the lead plate 9 connected to the positive electrode plate is welded to the bottom surface of the plate plate 7. The cap-shaped terminal plate 1 has a gas vent hole 2. In the present embodiment, the gas vent hole 2 is formed at a portion extending from the upper surface to the side surface of the convex portion 3 of the cap-shaped terminal plate 1.
[0037]
This sealing plate is applied in a thickness direction of the sealing plate in a state where cream solder is applied to the entire laminated surface of the plate plate 7, the safety valve film 6, the PTC element 4, and the cap-shaped terminal plate 1 and then melted. Obtained by applying pressure to The obtained sealing plate is joined to an adjacent element via the welding portion 5 and the welding solution 5 is formed on the entire laminated surface, so that the electrolytic solution reaching the sealing plate via the gasket 8 However, it suppresses intrusion into the laminated surface.
[0038]
Using the sealing plate having the above configuration, a cylindrical nonaqueous electrolyte battery using manganese dioxide for the positive electrode and lithium metal for the negative electrode was manufactured (battery A). As a comparative example, a nonaqueous electrolyte battery using a sealing plate having a conventional configuration in which the components were not integrated was manufactured (battery B). In addition, the production number was set to 300 pieces.
[0039]
A storage test was performed in a high-temperature environment in order to examine the leakage resistance of the manufactured battery. The test condition was one month in a high-temperature environment of 85 ° C., and a visual inspection with a microscope was performed to determine whether or not leakage occurred after storage. The results are shown in (Table 1).
[0040]
[Table 1]
Figure 2004055372
[0041]
As shown in (Table 1), the liquid leakage resistance during high-temperature storage was able to be improved.
[0042]
【The invention's effect】
As described above, the sealing plate of the present invention can improve the liquid leakage resistance of a battery during storage at high temperatures, and its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a battery provided with a sealing plate in this embodiment.
DESCRIPTION OF SYMBOLS 1 Cap-shaped terminal plate 2 Gas release hole 3 Convex part 4 PTC element 5 Welding part 6 Safety valve membrane 7 Plate plate 8 Insulation packing 9 Lead plate

Claims (3)

正極と負極とセパレータおよび電解液からなる発電要素を正、負いずれか一方極の端子を兼ねる電池ケースに収容し、この電池ケースの開口部を他方極の端子をなす封口板で閉塞した密閉型電池であって、
前記封口板は、中央部に凸部を有し、かつその上面または側面部にガス抜き孔を設けたキャップ状端子板、このキャップ状端子板の下側に配置され、中央部にガス抜き孔を設けたPTC素子、前記発電要素の一方の電極に接続され、中央部にガス抜き孔を有する皿板、この皿板のガス抜き孔を閉塞し、電池の内圧上昇時に膨脹、破断する機能を有し、前記皿板とPTC素子との間に配される金属製の安全弁膜を要素とし、前記キャップ状端子板、PTC素子、安全弁膜、及び皿板が隣接する他の要素に対して溶着、あるいは溶接にて一体化され、且つこの溶接、或いは溶着が施された部位を液密とすることを特徴とする密閉型電池。
A power generation element comprising a positive electrode, a negative electrode, a separator, and an electrolyte is housed in a battery case serving also as a positive or negative terminal, and the opening of the battery case is closed with a sealing plate serving as the other terminal. Battery,
The sealing plate has a convex portion at a central portion, and a cap-shaped terminal plate provided with a gas vent hole on the upper surface or a side portion thereof, is disposed below the cap-shaped terminal plate, and has a gas vent hole at a central portion. A PTC element, a plate connected to one electrode of the power generating element and having a gas vent hole in the center, a function of closing the gas vent hole of the plate and expanding and breaking when the internal pressure of the battery rises. A metal safety valve membrane disposed between the plate and the PTC element as an element, wherein the cap-shaped terminal plate, the PTC element, the safety valve membrane, and the plate are welded to other adjacent elements. A sealed battery characterized by being integrated by welding or by making the portion where the welding or welding is performed liquid-tight.
正極と負極とセパレータおよび電解液からなる発電要素を正、負いずれか一方極の端子を兼ねる電池ケースに収容し、この電池ケースの開口部を他方極の端子をなす封口板で閉塞した密閉型電池であって、
前記封口板は、中央部に凸部を有し、かつその上面または側面部にガス抜き孔を設けたキャップ状端子板、このキャップ状端子板の下側に配置され、中央部にガス抜き孔を設けたPTC素子、前記発電要素の一方の電極に接続され、中央部にガス抜き孔を有する皿板、この皿板のガス抜き孔を閉塞し、電池の内圧上昇時に膨脹、破断する機能を有し、前記皿板とPTC素子との間に配される金属と樹脂とのラミネート材からなる安全弁膜を備えてなり、PTC素子は前記キャップ状端子板及び皿板に対して溶着、あるいは溶接にて一体化され、前記安全弁膜が前記PTC素子及び皿板に対して接着され、前記溶接、溶着が施された部位、及び接着が施された部位を液密とすることを特徴とする密閉型電池。
A power generation element comprising a positive electrode, a negative electrode, a separator, and an electrolyte is housed in a battery case serving also as a positive or negative terminal, and the opening of the battery case is closed with a sealing plate serving as the other terminal. Battery,
The sealing plate has a convex portion at a central portion, and a cap-shaped terminal plate provided with a gas vent hole on the upper surface or a side portion thereof, is disposed below the cap-shaped terminal plate, and has a gas vent hole at a central portion. A PTC element, a plate connected to one electrode of the power generating element and having a gas vent hole in the center, a function of closing the gas vent hole of the plate and expanding and breaking when the internal pressure of the battery rises. A safety valve membrane made of a laminated material of a metal and a resin disposed between the plate and the PTC element. The PTC element is welded or welded to the cap-shaped terminal plate and the plate. Wherein the safety valve membrane is bonded to the PTC element and the plate, and the welded and welded portions and the bonded portions are made liquid-tight. Type battery.
前記溶着がクリームハンダにてなされた請求項1又は2記載の密閉型電池。3. The sealed battery according to claim 1, wherein the welding is performed by cream solder.
JP2002212033A 2002-07-22 2002-07-22 Sealed battery Expired - Fee Related JP4244580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212033A JP4244580B2 (en) 2002-07-22 2002-07-22 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212033A JP4244580B2 (en) 2002-07-22 2002-07-22 Sealed battery

Publications (2)

Publication Number Publication Date
JP2004055372A true JP2004055372A (en) 2004-02-19
JP4244580B2 JP4244580B2 (en) 2009-03-25

Family

ID=31935072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212033A Expired - Fee Related JP4244580B2 (en) 2002-07-22 2002-07-22 Sealed battery

Country Status (1)

Country Link
JP (1) JP4244580B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
CN102694135A (en) * 2011-03-25 2012-09-26 比亚迪股份有限公司 Battery cap assembly and lithium battery
CN110391367A (en) * 2019-08-08 2019-10-29 宁德时代新能源科技股份有限公司 Cap assembly for secondary battery and secondary battery
EP3930064A1 (en) * 2020-06-25 2021-12-29 Samsung SDI Co., Ltd. Rechargeable battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
CN102694135A (en) * 2011-03-25 2012-09-26 比亚迪股份有限公司 Battery cap assembly and lithium battery
CN110391367A (en) * 2019-08-08 2019-10-29 宁德时代新能源科技股份有限公司 Cap assembly for secondary battery and secondary battery
US11949119B2 (en) 2019-08-08 2024-04-02 Contemporary Amperex Technology Co., Limited Cover assembly of secondary battery and secondary battery
EP3930064A1 (en) * 2020-06-25 2021-12-29 Samsung SDI Co., Ltd. Rechargeable battery

Also Published As

Publication number Publication date
JP4244580B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US7351496B2 (en) Battery
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
JP4596289B2 (en) Sealed battery
JP5081932B2 (en) Sealed battery and manufacturing method thereof
KR100890329B1 (en) Lithium rechargeable battery
CN107112492B (en) Electric storage element
JP2006012829A (en) Secondary battery
KR101073891B1 (en) Circular Secondary Battery
KR20180018279A (en) Cap assembly of excellent electrical safety for a secondary battery and the battery inclusive of the same
JP2012190779A (en) Secondary battery including cap assembly with which component is bonded
KR20200141200A (en) Cylindrical Secondary Battery with Multilayered Battery Case And Method of Manufacturing The Same
KR20050123365A (en) Secondary battery
JP2015041526A (en) Method for welding lid body and case body of power storage device
JPH11260334A (en) Explosion-proof sealing plate for sealed battery, manufacture thereof, and sealed battery using the same
JPH08171898A (en) Rectangular electrochemical element equipped with explosion-proof safety device and its manufacture
KR102047542B1 (en) Cap assembly manufacturing method and cap assembly therefor
JP4244580B2 (en) Sealed battery
KR101243529B1 (en) Lithium rechargeable battery
JP3061457B2 (en) Organic electrolyte battery
KR20130034284A (en) Current interrupting device and secondary battery using the same
JP2018032547A (en) Alkali battery and method for manufacturing the same
JP5877724B2 (en) Sealing body for sealed battery, sealed battery and manufacturing method thereof
JP2005123060A (en) Manufacturing method of sealed battery
JP4222820B2 (en) Manufacturing method of battery safety mechanism
KR101726937B1 (en) Cap assembly for a secondary battery and the battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R151 Written notification of patent or utility model registration

Ref document number: 4244580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees