JP2004055368A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
JP2004055368A
JP2004055368A JP2002211994A JP2002211994A JP2004055368A JP 2004055368 A JP2004055368 A JP 2004055368A JP 2002211994 A JP2002211994 A JP 2002211994A JP 2002211994 A JP2002211994 A JP 2002211994A JP 2004055368 A JP2004055368 A JP 2004055368A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
electrolyte
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002211994A
Other languages
Japanese (ja)
Inventor
Itaru Shibata
柴田 格
Naoki Hara
原 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002211994A priority Critical patent/JP2004055368A/en
Publication of JP2004055368A publication Critical patent/JP2004055368A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce internal resistance by forming electrodes and an electrolyte into thin films, and to miniaturize a fuel cell by increasing an electrode area per unit volume. <P>SOLUTION: This solid electrolyte fuel cell is provided with a metallic tube-like body 2 having an inside diameter of 1 mm, an outside diameter of 2 mm and a length of 20 mm and composed by forming a metallic fine wire W formed of Ni-16Cr-8Fe alloy having a diameter of 0.2 mm into a coil spring-like shape at a wire interval of 50 μm. The tube-like body 2 is covered with a battery element 6 composed by stacking the fuel electrode 3 formed of Ni-YSZ and having a film thickness of 100 μm, the electrolyte 4 formed of YSZ and having a film thickness of 30 μm, and the air electrode 5 formed of SSC and having a film thickness of 40 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、2つの電極、すなわち、燃料極(アノード)と空気極(カソード)とで固体酸化物電解質を挟持する構成を発電要素として有し、燃料極側に水素やメタンなどの炭化水素系燃料ガスを流すと共に、空気極側に酸素や空気などの酸化性ガスを流して発電する固体電解質型燃料電池セルに関するものである。
【0002】
【従来の技術】
従来の固体酸化物型燃料電池セルとしては、電解質材料粉を高密度に焼結してなる緻密電解質体の表裏にスクリーン印刷などで燃料極および空気極を形成した構成をなして、電解質を発電要素の支持部材として使用するようにした電解質支持型セルや、電極材料粉を焼結してなる多孔質電極体の上に電解質層および電極層をスクリーン印刷などによつて順次積層した構成をなして、多孔質電極体を発電要素の支持部材として使用するようにした電極支持型セルがある。
【0003】
また、気孔率が板厚方向に異なるセラミックス電極材料粉の焼結体からなる多孔質電極基板が、特開平9−50812号および特開2000−200614号にそれぞれ記載されているほか、支持部材としての多孔質金属基体を具備し、この多孔質金属基体に燃料極,電解質および空気極からなる発電要素を溶射法にて製膜した構成をなすセルが報告されている(“Plasma Sprayed Thin−Film SOFC for Reduced Operating Temperature”,Fuel Cells Bulletin,pp597−600,2000)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した電解質支持型セルおよび電極支持型セルでは、いずれも機械的強度を持たせる都合上、電解質や電極体の肉厚を大きくしなくてはならず(電解質の場合おおよそ数百μm〜数mm、電極体の場合おおよそ数mm以上)、その結果、電解質部分や電極部分の内部抵抗が増加してしまうという問題があるうえ、電極支持型セルでは、燃料ガスまたは酸化性ガスの通気性や拡散性に難があるという問題も有していた。
【0005】
また、通気性を改善した特開平9−50812号および特開2000−200614号に示された多孔質セラミックス電極基板は、電気伝導性や脆性の面で問題があり、加えて、インターコネクタおよびガス流路部材を上記各セルとは別個に設置する必要があることから、固体酸化物型燃料電池の小型化の障害となっていた。
【0006】
さらに、多孔質金属基体を具備したセルでは、この多孔質金属基体をセル下部燃料極へのガス流路として使用せずに、凹状断面を有するプレートを用いる必要があるため、セルの小型化を図ることができず、これらの問題を解決することが従来の課題となっていた。
【0007】
【発明の目的】
本発明は、上記した従来の課題に着目してなされたもので、電極および電解質の薄膜化を図って内部抵抗の低減を実現すると共に、単位体積あたりの電極面積を広くして小型化をも実現することが可能である固体電解質型燃料電池セルを提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、コイルスプリング状に成形してなる金属製管状体を電池要素で被覆することで、電極および電解質の薄膜化が図られると共に、単位体積あたりの電極面積が広がることを見出すに至った。
【0009】
すなわち、本発明に係わる固体電解質型燃料電池セルは、金属製細線をコイルスプリング状に成形してなる金属製管状体を備え、この金属製管状体を一方の電極,電解質および他方の電極を積層してなる電池要素で被覆した構成としたことを特徴としており、この固体電解質型燃料電池セルの構成を前述した従来の課題を解決するための手段としている。
【0010】
【発明の効果】
本発明に係わる固体電解質型燃料電池セルによれば、金属製細線をコイルスプリング状に成形してなる金属製管状体を電池要素の支持体としていることから、燃料極,空気極および電解質からなる電池要素を薄膜化することができ、その結果、膜厚方向のセル内部抵抗を低減することが可能であり、加えて、良好なガス通気性およびガス拡散性が得られ、一方の電極を燃料極とし他方の電極を空気極とした場合において、金属製管状体に一方の電極を接触させれば、管状体内には燃料ガスを供給することができ、また、金属製管状体に他方の電極を接触させれば、管状体内には空気を供給することができ、すなわち、金属製管状体をガス流路部材とすることで単位体積あたりの電極面積を拡げることができ、したがって、固体電解質型燃料電池を小型化することが可能になるという非常に優れた効果がもたらされる。
【0011】
【発明の実施の形態】
本発明に係わる固体電解質型燃料電池セルにおいて、金属製細線をコイルスプリング状に成形してなる金属製管状体を電池要素の支持体とすることで、燃料極,空気極および電解質からなる電池要素をそれ自体では自立できなくなる程度に薄膜化でき、その結果、セルの内部抵抗が低減すると共に、膜厚方向での集電がなされることとなる。
【0012】
本発明に係わる固体電解質型燃料電池セルにおいて、金属製管状体/一方の電極/電解質/他方の電極、あるいは、金属製管状体/他方の電極/電解質/一方の電極/他の支持体の構成を採用することができる。
【0013】
この場合、一方の電極を燃料極とし他方の電極を空気極とすると、金属製管状体に一方の電極を接触させれば、管状体内には燃料ガスを供給することができ、また、金属製管状体に他方の電極を接触させれば、管状体内には空気を供給することができ、すなわち、金属製管状体にガス流路部材を兼用させることで、固体電解質型燃料電池の小型化が図られることとなる。
【0014】
また、本発明に係わる固体電解質型燃料電池セルにおいて、電解質の膜厚を50μm以下とすることが望ましく、このように電解質の膜厚を50μm以下とすることで、従来の電極支持型セルに比べて、厚みを少なくとも1/20以下に減らすことができ、電解質部分の内部電気抵抗を単純に1/20に減らすことができる。
【0015】
さらに、本発明に係わる固体電解質型燃料電池セルにおいて、一方の電極および他方の電極のうちの少なくともいずれかの電極の膜厚を500μm以下とすることが望ましく、このように電極の膜厚を500μm以下とすることで、従来の電極支持型セルに比べて、厚みを少なくとも1/20以下に減らすことができ、電極部分の内部電気抵抗を単純に1/20に減らすことができる。
【0016】
上記電極および電解質は、PVD,CVD,溶射,スクリーン印刷,スプレーコート,メッキ,電気泳動法,ゾル・ゲル法などの各種成膜方法を採用することができる。
【0017】
さらにまた、本発明に係わる固体電解質型燃料電池セルにおいて、金属製細線をコイルスプリング状に成形してなる金属製管状体を電池要素の支持体とすることで、ガス通気性およびガス拡散性が得られることとなり、この金属製管状体に密着設置される一方の電極(あるいは他方の電極)から集電できることとなる、すなわち、金属製管状体が集電部材を兼ねることとなって、固体電解質型燃料電池の小型化が図られることとなる。
【0018】
金属製細線をコイルスプリング状に成形してなる金属製管状体において、金属製細線の線の間隔が1μm以下であると、電池要素へのガスの供給が阻害され、一方、金属製細線の線の間隔が100μm以上であると、薄膜の電池要素を形成することができないため、金属製細線の線の間隔を1μm以上でかつ100μm以下とすることが望ましい。
【0019】
また、金属製管状体を構成する金属製細線の線径を0.05〜0.5mmとすることで、支持部材としての強度、インターコネクタとしての電気伝導性および基体としての成形性を確保することができる。
【0020】
さらに、金属製管状体を構成する金属製細線は、Ni,Ni−Cr合金,Fe−Cr合金およびCu,W,Mo,Ta,Tiの各単体ならびにCu,W,Mo,Ta,Tiを含む合金から任意に選択される材料からなっていることが望ましく、これら以外の金属材料では、燃料ガスおよび酸化性ガスが作り出す還元雰囲気および酸化雰囲気に対して十分な耐性を得ることができない。
【0021】
さらにまた、金属製細線をコイルスプリング状に成形してなる金属製管状体は成形が容易であり、その断面形態は円形状に限らず、矩形状や三角形状とすることが可能であるほか、多様な断面形態を採用することが可能であり、加えて、この金属製管状体は、平面的に渦巻き状に成形したり、設置状況に応じてらせん状に成形したりすることが可能である。
【0022】
なお、固体電解質型燃料電池セルにおいて、燃料ガスとしてメタノール,天然ガス,ガソリンなどの炭化水素系ガスを使用するため、燃料極側に設置する多孔質金属基体には、燃料ガス中に含まれる硫黄などに犯されないものを使用する必要があり、また、酸化性ガスとして酸素ガスあるいは空気を使用するため、空気極側に設置される多孔質金属基体には、酸化性ガス中で酸化されないものを使用する必要があることは言うまでもない。
【0023】
【実施例】
以下、本発明を図面に基づいて説明する。
【0024】
[実施例1]
図1〜図4は本発明に係わる固体電解質型燃料電池セルの一実施例を示している。
【0025】
図1〜図3に示すように、この固体電解質型燃料電池セル1は、金属製細線Wをコイルスプリング状に成形してなる金属製管状体2を備えていると共に、一方の電極としての燃料極3,電解質4および他方の電極としての空気極5を積層してなる電池要素6を備えており、この電池要素6は、燃料極3を電解質4に接触させた状態で金属製管状体2に被覆してある。
【0026】
この場合、金属製細線Wに線径が0.2mmのNi−16Cr−8Fe合金からなる線材を用い、この金属製細線Wを線間隔50μmでコイルして、内径1mm,外径2mm,長さ20mmの金属製管状体2を成形し、図4にも示すように、この金属製管状体2の両端にはパイプ部2a,2aを配置した。
【0027】
また、電解質4の材料にはYSZを用いて、スプレーコート法により膜厚30μmに成膜した。
【0028】
さらに、一方の電極としての燃料極3の材料にはNi−YSZを用いて、印刷により膜厚100μmに成膜し、他方の電極としての空気極5の材料にはSSCを用いて、スプレーコート法により膜厚40μmに成膜した。
【0029】
上記したように、この実施例による固体電解質型燃料電池セル1では、金属製細線Wをコイルスプリング状に成形してなる金属製管状体2を電池要素6の支持体としたため、電池要素6を薄膜化することができ、その結果、膜厚方向のセル内部抵抗を低減し得ることとなる。
【0030】
加えて、良好なガス通気性およびガス拡散性が得られることとなって、この実施例のように、金属製管状体2に燃料極3を接触させて、金属製管状体2にガス流路部材を兼用させることで、単位体積あたりの電極面積を拡げることができ、したがって、固体電解質型燃料電池の小型化が図られることとなる。
【0031】
また、この実施例による固体電解質型燃料電池セル1では、電解質4の膜厚を30μmとしているので、従来の電極支持型セルに比べて厚みが少なくとも1/20以下に減り、電解質4の部分の内部電気抵抗が単純に1/20に減ることとなり、さらに、燃料極3の膜厚を100μmとしていると共に、空気極5の膜厚を40μmとしているので、従来の電極支持型セルに比べて厚みが少なくとも1/20以下に減り、電極3,5の部分の内部電気抵抗が単純に1/20に減ることとなる。
【0032】
さらにまた、この実施例による固体電解質型燃料電池セル1では、金属製細線Wの線径を0.2mmとしていると共に、線間隔を50μmとしているので、支持部材としての強度、インターコネクタとしての電気伝導性および基体としての成形性を確保することができ、加えて、電池要素6へのガスの供給が阻害されたり、電池要素6の薄膜化が図られなかったりすることが回避されることとなる。
【0033】
[実施例2]
この実施例に係わる固体電解質型燃料電池セルでは、金属製細線Wに線径が0.3mmのNiからなる線材を用い、この金属製細線Wを線間隔20μmでコイルして、内径1mm,外径2mm,長さ15mmの金属製管状体2を成形した。
【0034】
また、電解質4の材料にはSDCを用いて、スパッタ法により膜厚4μmに成膜し、一方の電極としての燃料極3の材料にはNi−SDCを用いて、グリーンシート法により膜厚300μmに成膜し、他方の電極としての空気極5の材料にはSSCを用い、スパッタ法により膜厚5μmに成膜した。
【0035】
上記したように、この実施例においても、電池要素6を薄膜化することができるので、膜厚方向のセル内部抵抗を低減し得ることとなり、加えて、この実施例のように、金属製管状体2にガス流路部材を兼用させることで、固体電解質型燃料電池の小型化が図られることとなる。
【0036】
また、この実施例による固体電解質型燃料電池セル1では、電解質4の膜厚を4μmとしているので、従来の電極支持型セルに比べて電解質4の部分の内部電気抵抗が単純に1/20に減り、燃料極3の膜厚を300μmとしていると共に、空気極5の膜厚を5μmとしているので、従来の電極支持型セルに比べて電極部分の内部電気抵抗が単純に1/20に減ることとなる。
【0037】
さらに、この実施例による固体電解質型燃料電池セル1では、金属製細線Wの線径を0.3mmとしていると共に、線間隔を20μmとしているので、実施例1と同じく、支持部材としての強度、インターコネクタとしての電気伝導性および基体としての成形性を確保することができるうえ、電池要素6への円滑なガスの供給および電池要素6の薄膜化が図られることとなる。
【0038】
[実施例3]
この実施例に係わる固体電解質型燃料電池セルでは、金属製細線Wに線径が0.08mmのNiからなる線材を用い、この金属製細線Wを線間隔20μmでコイルして、内径0.8mm,外径1.5mm,長さ15mmの金属製管状体2を成形した。
【0039】
また、電解質4の材料にはYSZを用いて、スプレーコート法により膜厚8μmに成膜し、一方の電極としての燃料極3の材料にはNi−SDCを用いて、グリーンシート法により膜厚300μmに成膜し、他方の電極としての空気極5の材料にはSSCを用い、スプレーコート法により膜厚10μmに成膜した。
【0040】
上記したように、この実施例においても、電池要素6を薄膜化することができ、したがって、膜厚方向のセル内部抵抗を低減し得ることとなるのに加えて、この実施例のように、金属製管状体2にガス流路部材を兼用させることで、固体電解質型燃料電池の小型化が図られることとなる。
【0041】
また、この実施例による固体電解質型燃料電池セル1では、電解質4の膜厚を8μmとしているので、従来の電極支持型セルに比べて電解質4の部分の内部電気抵抗が単純に1/20に減り、燃料極3の膜厚を300μmとしていると共に、空気極5の膜厚を10μmとしているので、従来の電極支持型セルに比べて電極部分の内部電気抵抗が単純に1/20に減ることとなる。
【0042】
さらに、この実施例による固体電解質型燃料電池セル1では、金属製細線Wの線径を0.08mmとしていると共に、線間隔を20μmとしているので、実施例1,2と同じく、支持部材としての強度、インターコネクタとしての電気伝導性および基体としての成形性を確保することができるうえ、電池要素6への円滑なガスの供給および電池要素6の薄膜化が図られることとなる。
【0043】
[実施例4]
図5に示すように、この実施例に係わる固体電解質型燃料電池セル11では、金属製細線Wに線径が0.3mmのNiからなる線材を用い、この金属製細線Wを線間隔20μmでコイルして、内径1mm,外径2mm,長さ200mmの金属製管状体2を渦巻状に成形した。また、電池要素6の構成は、実施例3と同じにした。
【0044】
この実施例においても、電池要素6を薄膜化することができ、したがって、膜厚方向のセル内部抵抗を低減し得ることとなるのに加えて、この実施例のように、渦巻状をなす金属製管状体2の内部に燃料ガスを通し、金属製管状体2の外側に空気を流すことで、固体電解質型燃料電池の小型化が図られることとなる。
【0045】
また、この実施例による固体電解質型燃料電池セル11においても、従来の電極支持型セルに比べて電解質4の部分の内部電気抵抗が単純に1/20に減ると共に、従来の電極支持型セルに比べて電極部分の内部電気抵抗が単純に1/20に減り、さらに、実施例1〜3と同様に、支持部材としての強度、インターコネクタとしての電気伝導性および基体としての成形性を確保することができるうえ、電池要素6への円滑なガスの供給および電池要素6の薄膜化が図られることとなる。
【0046】
上記した実施例1〜4の仕様を表1にまとめて示す。
【0047】
【表1】

Figure 2004055368
【0048】
上記した実施例では、金属製管状体2の断面形態が円形状をなす場合を示したが、これに限定されるものではなく、例えば、金属製管状体2の断面が、図6に示すように矩形状をなしていたり、図7に示すように三角形状をなしていたりしてもよい。
【0049】
また、上記した実施例4では、金属製管状体2が平面的に渦巻き状をなしている場合を示したが、これに限定されるものではなく、例えば、設置状況に応じてらせん状に成形したりすることも可能である。
【0050】
本発明に係わる固体電解質型燃料電池セルの詳細な構成は、上記した実施例に限定されるものではない。
【図面の簡単な説明】
【図1】本発明に係わる固体電解質型燃料電池セルの一実施例を示す部分断面説明図である。
【図2】図1に示した固体電解質型燃料電池セルの正面説明図である。
【図3】図1に示した固体電解質型燃料電池セルの断面説明図である。
【図4】図1に示した固体電解質型燃料電池セルの金属製管状体を示す正面説明図である。
【図5】本発明に係わる固体電解質型燃料電池セルの他の実施例を示す正面説明図である。
【図6】本発明に係わる固体電解質型燃料電池セルの他の断面形態を示す断面説明図である。
【図7】本発明に係わる固体電解質型燃料電池セルのさらに他の断面形態を示す断面説明図である。
【符号の説明】
1,11 固体電解質型燃料電池セル
2 金属製管状体セル板
3 燃料極(一方の電極)
4 電解質
5 空気極(他方の電極)
6 電池要素
W 金属製細線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has, as a power generation element, a configuration in which a solid oxide electrolyte is sandwiched between two electrodes, that is, a fuel electrode (anode) and an air electrode (cathode), and a hydrocarbon-based material such as hydrogen or methane is provided on the fuel electrode side. The present invention relates to a solid oxide fuel cell that generates an electric power by flowing an oxidizing gas such as oxygen or air to the air electrode side while flowing a fuel gas.
[0002]
[Prior art]
A conventional solid oxide fuel cell has a structure in which a fuel electrode and an air electrode are formed by screen printing on the front and back of a dense electrolyte body obtained by sintering electrolyte material powder at high density to generate electrolyte. An electrolyte-supported cell used as a support member for an element, and a structure in which an electrolyte layer and an electrode layer are sequentially laminated by screen printing or the like on a porous electrode body obtained by sintering electrode material powder. There is an electrode support type cell in which a porous electrode body is used as a support member of a power generation element.
[0003]
Further, a porous electrode substrate made of a sintered body of a ceramic electrode material powder having a porosity different in the thickness direction is described in JP-A-9-50812 and JP-2000-200014, respectively. A cell having a structure in which a power generating element including a fuel electrode, an electrolyte, and an air electrode is formed into a film by a thermal spraying method on the porous metal substrate ("Plasma Sprayed Thin-Film") has been reported. SOFC for Reduced Operating Temperature ", Fuel Cells Bulletin, pp 597-600, 2000).
[0004]
[Problems to be solved by the invention]
However, in the above-described electrolyte-supported cell and electrode-supported cell, the thickness of the electrolyte or the electrode body must be increased in order to impart mechanical strength (in the case of the electrolyte, approximately several hundred μm to (Several mm, approximately several mm or more in the case of the electrode body). As a result, there is a problem that the internal resistance of the electrolyte part and the electrode part increases. Also, there was a problem that there was difficulty in diffusibility.
[0005]
Further, the porous ceramic electrode substrates disclosed in JP-A-9-50812 and JP-A-2000-200614 having improved air permeability have problems in terms of electrical conductivity and brittleness. Since the flow path member needs to be provided separately from each of the above cells, it has been an obstacle to downsizing the solid oxide fuel cell.
[0006]
Further, in a cell having a porous metal substrate, it is necessary to use a plate having a concave cross section without using the porous metal substrate as a gas flow path to a fuel electrode below the cell. It was not possible to solve these problems, and it was a conventional problem to solve these problems.
[0007]
[Object of the invention]
The present invention has been made in view of the above-mentioned conventional problems, and realizes a reduction in internal resistance by reducing the thickness of electrodes and an electrolyte, and also achieves a reduction in size by increasing the electrode area per unit volume. It is an object of the present invention to provide a solid oxide fuel cell that can be realized.
[0008]
[Means for Solving the Problems]
As a result of extensive studies by the present inventors, by coating a metal tubular body formed into a coil spring shape with a battery element, the electrodes and the electrolyte can be made thinner, and the electrode area per unit volume increases. I came to that.
[0009]
That is, the solid oxide fuel cell unit according to the present invention includes a metal tubular body formed by forming a thin metal wire into a coil spring shape, and the metal tubular body is laminated with one electrode, an electrolyte, and the other electrode. The solid electrolyte fuel cell unit is a means for solving the above-mentioned conventional problems.
[0010]
【The invention's effect】
According to the solid oxide fuel cell of the present invention, since the metal tubular body formed by shaping a thin metal wire into a coil spring shape is used as a support for the battery element, it is composed of a fuel electrode, an air electrode and an electrolyte. The battery element can be made thinner, and as a result, the internal resistance of the cell in the film thickness direction can be reduced.In addition, good gas permeability and gas diffusion can be obtained, and one of the electrodes can be used as a fuel. When one electrode is brought into contact with the metal tubular body when the other electrode is an air electrode and the other electrode is an air electrode, a fuel gas can be supplied into the tubular body, and the other electrode is attached to the metal tubular body. , Air can be supplied into the tubular body, that is, by using a metal tubular body as a gas flow path member, the electrode area per unit volume can be increased, and therefore, the solid electrolyte type Fuel electricity The results are very excellent effect that it is possible to miniaturize.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the solid oxide fuel cell according to the present invention, a battery element comprising a fuel electrode, an air electrode and an electrolyte is formed by using a metal tubular body formed by shaping a thin metal wire into a coil spring shape as a support for the battery element. Can be reduced in thickness to such an extent that the cell itself cannot become independent, as a result, the internal resistance of the cell is reduced and current is collected in the film thickness direction.
[0012]
In the solid oxide fuel cell according to the present invention, the configuration of the metal tubular body / one electrode / electrolyte / the other electrode, or the metal tubular body / the other electrode / electrolyte / one electrode / the other support Can be adopted.
[0013]
In this case, when one electrode is a fuel electrode and the other electrode is an air electrode, if one electrode is brought into contact with a metal tubular body, a fuel gas can be supplied into the tubular body, and If the other electrode is brought into contact with the tubular body, air can be supplied into the tubular body.In other words, by using a metal tubular body as a gas flow path member, the size of the solid oxide fuel cell can be reduced. Will be planned.
[0014]
Further, in the solid oxide fuel cell according to the present invention, it is desirable that the thickness of the electrolyte be 50 μm or less, and by setting the thickness of the electrolyte to 50 μm or less as compared with the conventional electrode-supported cell. Thus, the thickness can be reduced to at least 1/20 or less, and the internal electric resistance of the electrolyte portion can be simply reduced to 1/20.
[0015]
Further, in the solid oxide fuel cell device according to the present invention, it is desirable that the thickness of at least one of the one electrode and the other electrode is not more than 500 μm, and thus the thickness of the electrode is not more than 500 μm. By setting the thickness as below, the thickness can be reduced to at least 1/20 or less and the internal electric resistance of the electrode portion can be simply reduced to 1/20 as compared with the conventional electrode-supporting cell.
[0016]
For the electrodes and the electrolyte, various film forming methods such as PVD, CVD, thermal spraying, screen printing, spray coating, plating, electrophoresis, and sol-gel method can be adopted.
[0017]
Still further, in the solid oxide fuel cell unit according to the present invention, gas permeability and gas diffusivity are improved by using a metal tubular body formed by forming a thin metal wire into a coil spring shape as a support of the battery element. As a result, current can be collected from one of the electrodes (or the other electrode) closely attached to the metal tubular body. That is, the metal tubular body also serves as a current collecting member, and the solid electrolyte is formed. The size of the fuel cell can be reduced.
[0018]
In a metal tubular body formed by shaping a thin metal wire into a coil spring shape, if the interval between the thin metal wires is 1 μm or less, supply of gas to the battery element is hindered. If the distance is 100 μm or more, a thin-film battery element cannot be formed. Therefore, it is desirable that the distance between the thin metal wires is 1 μm or more and 100 μm or less.
[0019]
Further, by setting the diameter of the thin metal wire constituting the metal tubular body to 0.05 to 0.5 mm, the strength as the support member, the electrical conductivity as the interconnector, and the moldability as the base are ensured. be able to.
[0020]
Further, the thin metal wires constituting the metal tubular body include Ni, Ni—Cr alloy, Fe—Cr alloy, each of Cu, W, Mo, Ta, and Ti alone, and Cu, W, Mo, Ta, and Ti. It is desirable that the material be made of a material arbitrarily selected from alloys. Metal materials other than these materials cannot provide sufficient resistance to the reducing atmosphere and the oxidizing atmosphere created by the fuel gas and the oxidizing gas.
[0021]
Furthermore, a metal tubular body formed by shaping a thin metal wire into a coil spring shape is easy to mold, and its cross-sectional shape is not limited to a circular shape, and can be rectangular or triangular. Various cross-sectional forms can be adopted, and in addition, the metal tubular body can be formed into a spiral shape in a plane or a spiral shape according to the installation situation. .
[0022]
In the solid oxide fuel cell, since a hydrocarbon-based gas such as methanol, natural gas, or gasoline is used as a fuel gas, the porous metal substrate provided on the fuel electrode side includes sulfur contained in the fuel gas. It is necessary to use a material that is not violated by, for example, oxygen gas or air as the oxidizing gas. Needless to say, it needs to be used.
[0023]
【Example】
Hereinafter, the present invention will be described with reference to the drawings.
[0024]
[Example 1]
1 to 4 show an embodiment of a solid oxide fuel cell according to the present invention.
[0025]
As shown in FIGS. 1 to 3, the solid oxide fuel cell 1 includes a metal tubular body 2 formed by shaping a metal thin wire W into a coil spring shape, and a fuel as one electrode. A battery element 6 is formed by laminating an electrode 3, an electrolyte 4 and an air electrode 5 as the other electrode. The battery element 6 has a metal tubular body 2 with a fuel electrode 3 in contact with the electrolyte 4. Coated.
[0026]
In this case, a wire made of a Ni-16Cr-8Fe alloy having a wire diameter of 0.2 mm is used as the thin metal wire W, and the thin metal wire W is coiled at a line interval of 50 μm to form an inner diameter of 1 mm, an outer diameter of 2 mm, and a length of 1 mm. A 20 mm metal tubular body 2 was formed, and as shown in FIG. 4, pipe portions 2 a, 2 a were arranged at both ends of the metallic tubular body 2.
[0027]
In addition, YSZ was used as a material for the electrolyte 4 and a film was formed to a thickness of 30 μm by a spray coating method.
[0028]
Further, the material of the fuel electrode 3 as one electrode is formed by printing using Ni-YSZ to a film thickness of 100 μm, and the material of the air electrode 5 as the other electrode is spray-coated using SSC. The film was formed to a film thickness of 40 μm by the method.
[0029]
As described above, in the solid oxide fuel cell unit 1 according to this embodiment, the metal tubular body 2 formed by shaping the metal thin wire W into a coil spring shape is used as the support of the battery element 6. As a result, the cell internal resistance in the film thickness direction can be reduced.
[0030]
In addition, good gas permeability and gas diffusivity can be obtained, and as in this embodiment, the fuel electrode 3 is brought into contact with the metal tubular body 2 and the gas flow passage is formed in the metal tubular body 2. By also using the member, the electrode area per unit volume can be increased, and thus the size of the solid oxide fuel cell can be reduced.
[0031]
Further, in the solid oxide fuel cell 1 according to this embodiment, since the thickness of the electrolyte 4 is 30 μm, the thickness is reduced to at least 1/20 or less as compared with the conventional electrode-supported cell, and the portion of the electrolyte 4 is reduced. The internal electric resistance is simply reduced to 1/20, and the thickness of the fuel electrode 3 is set to 100 μm and the thickness of the air electrode 5 is set to 40 μm. Is reduced to at least 1/20 or less, and the internal electric resistance of the portions of the electrodes 3 and 5 is simply reduced to 1/20.
[0032]
Further, in the solid oxide fuel cell unit 1 according to this embodiment, the wire diameter of the thin metal wire W is 0.2 mm and the line interval is 50 μm, so that the strength as the supporting member and the electric power as the interconnector are improved. Conductivity and moldability as a base can be ensured, and in addition, it is possible to prevent gas supply to the battery element 6 from being hindered and the battery element 6 from being made thinner. Become.
[0033]
[Example 2]
In the solid oxide fuel cell device according to this embodiment, a wire made of Ni having a wire diameter of 0.3 mm is used as the thin metal wire W, and the thin metal wire W is coiled at a line interval of 20 μm to form an inner diameter of 1 mm. A metal tubular body 2 having a diameter of 2 mm and a length of 15 mm was formed.
[0034]
Also, a film having a thickness of 4 μm is formed by sputtering using SDC as the material of the electrolyte 4, and a film thickness of 300 μm is formed by using a green sheet method using Ni-SDC as the material of the fuel electrode 3 as one electrode. And a film having a thickness of 5 μm was formed by a sputtering method using SSC as a material of the air electrode 5 as the other electrode.
[0035]
As described above, also in this embodiment, the battery element 6 can be made thinner, so that the internal resistance of the cell in the film thickness direction can be reduced. By using the body 2 as a gas flow path member, the size of the solid oxide fuel cell can be reduced.
[0036]
Further, in the solid oxide fuel cell 1 according to this embodiment, since the thickness of the electrolyte 4 is 4 μm, the internal electric resistance of the electrolyte 4 is simply reduced to 1/20 as compared with the conventional electrode-supported cell. Since the thickness of the fuel electrode 3 is set to 300 μm and the thickness of the air electrode 5 is set to 5 μm, the internal electric resistance of the electrode portion is simply reduced to 1/20 as compared with the conventional electrode-supported cell. It becomes.
[0037]
Furthermore, in the solid oxide fuel cell unit 1 according to the present embodiment, the wire diameter of the thin metal wire W is 0.3 mm and the line interval is 20 μm. The electrical conductivity as an interconnector and the moldability as a substrate can be ensured, and a smooth supply of gas to the battery element 6 and a reduction in the thickness of the battery element 6 can be achieved.
[0038]
[Example 3]
In the solid oxide fuel cell device according to this embodiment, a wire made of Ni having a wire diameter of 0.08 mm is used as the thin metal wire W, and the thin metal wire W is coiled at a line interval of 20 μm to form an inner diameter of 0.8 mm. A metal tubular body 2 having an outer diameter of 1.5 mm and a length of 15 mm was formed.
[0039]
Also, a film is formed to a thickness of 8 μm by spray coating using YSZ as a material of the electrolyte 4, and a Ni—SDC is used as a material of the fuel electrode 3 as one electrode, and a film is formed by a green sheet method. A film was formed to a thickness of 300 μm, and SSC was used as a material of the air electrode 5 as the other electrode, and a film was formed to a thickness of 10 μm by a spray coating method.
[0040]
As described above, also in this embodiment, the battery element 6 can be made thinner, so that the cell internal resistance in the film thickness direction can be reduced. In addition, as in this embodiment, By making the metal tubular body 2 also serve as a gas flow path member, the size of the solid oxide fuel cell can be reduced.
[0041]
Further, in the solid oxide fuel cell 1 according to this embodiment, since the thickness of the electrolyte 4 is set to 8 μm, the internal electric resistance of the electrolyte 4 is simply reduced to 1/20 as compared with the conventional electrode-supported cell. Since the thickness of the fuel electrode 3 is 300 μm and the thickness of the air electrode 5 is 10 μm, the internal electric resistance of the electrode portion is simply reduced to 1/20 as compared with the conventional electrode-supported cell. It becomes.
[0042]
Furthermore, in the solid oxide fuel cell unit 1 according to this embodiment, the wire diameter of the thin metal wire W is 0.08 mm and the line interval is 20 μm. Strength, electrical conductivity as an interconnector, and moldability as a base can be ensured, and a smooth gas supply to the battery element 6 and a reduction in the thickness of the battery element 6 can be achieved.
[0043]
[Example 4]
As shown in FIG. 5, in the solid oxide fuel cell unit 11 according to this embodiment, a wire made of Ni having a wire diameter of 0.3 mm is used for the thin metal wire W, and the thin metal wire W is formed at a line interval of 20 μm. By coiling, a metal tubular body 2 having an inner diameter of 1 mm, an outer diameter of 2 mm, and a length of 200 mm was formed into a spiral shape. The configuration of the battery element 6 was the same as that of the third embodiment.
[0044]
Also in this embodiment, the battery element 6 can be made thinner, so that the internal resistance of the cell in the film thickness direction can be reduced. By passing the fuel gas through the inside of the tubular body 2 and flowing the air outside the tubular body 2, the size of the solid oxide fuel cell can be reduced.
[0045]
Also, in the solid oxide fuel cell 11 according to this embodiment, the internal electric resistance of the portion of the electrolyte 4 is simply reduced to 1/20 as compared with the conventional electrode support type cell, and the conventional electrode support type cell is used. In comparison, the internal electric resistance of the electrode portion is simply reduced to 1/20, and the strength as the support member, the electric conductivity as the interconnector, and the moldability as the base are ensured, as in Examples 1 to 3. In addition to this, smooth supply of gas to the battery element 6 and thinning of the battery element 6 can be achieved.
[0046]
Table 1 summarizes the specifications of Examples 1 to 4 described above.
[0047]
[Table 1]
Figure 2004055368
[0048]
In the above-described embodiment, the case where the cross-sectional form of the metal tubular body 2 is circular has been described. However, the present invention is not limited to this. For example, the cross section of the metal tubular body 2 is as shown in FIG. May have a rectangular shape or a triangular shape as shown in FIG.
[0049]
Further, in the above-described fourth embodiment, the case where the metal tubular body 2 has a spiral shape in a plane is shown. However, the present invention is not limited to this. It is also possible to do.
[0050]
The detailed configuration of the solid oxide fuel cell according to the present invention is not limited to the above-described embodiment.
[Brief description of the drawings]
FIG. 1 is a partially sectional explanatory view showing one embodiment of a solid oxide fuel cell according to the present invention.
FIG. 2 is an explanatory front view of the solid oxide fuel cell device shown in FIG.
FIG. 3 is an explanatory sectional view of the solid oxide fuel cell device shown in FIG. 1;
FIG. 4 is an explanatory front view showing a metal tubular body of the solid oxide fuel cell unit shown in FIG. 1;
FIG. 5 is an explanatory front view showing another embodiment of the solid oxide fuel cell according to the present invention.
FIG. 6 is a cross-sectional explanatory view showing another cross-sectional form of the solid oxide fuel cell according to the present invention.
FIG. 7 is an explanatory sectional view showing still another sectional form of the solid oxide fuel cell according to the present invention.
[Explanation of symbols]
1,11 solid oxide fuel cell 2 metal tubular cell plate 3 fuel electrode (one electrode)
4 electrolyte 5 air electrode (the other electrode)
6 Battery element W Metal wire

Claims (7)

金属製細線をコイルスプリング状に成形してなる金属製管状体を備え、この金属製管状体を一方の電極,電解質および他方の電極を積層してなる電池要素で被覆したことを特徴とする固体電解質型燃料電池セル。A solid body comprising: a metal tubular body formed by shaping a thin metal wire into a coil spring shape; and covering the metal tubular body with a battery element formed by laminating one electrode, an electrolyte, and the other electrode. Electrolyte fuel cell. 金属製細線は、Ni,Ni−Cr合金,Fe−Cr合金およびCu,W,Mo,Ta,Tiの各単体ならびにCu,W,Mo,Ta,Tiを含む合金から任意に選択される材料からなっている請求項1に記載の固体電解質型燃料電池セル。The thin metal wire is made of a material arbitrarily selected from Ni, Ni-Cr alloy, Fe-Cr alloy, Cu, W, Mo, Ta and Ti alone and an alloy containing Cu, W, Mo, Ta and Ti. The solid oxide fuel cell according to claim 1, wherein: 電解質の膜厚を50μm以下とした請求項1または2に記載の固体電解質型燃料電池セル。3. The solid oxide fuel cell according to claim 1, wherein the thickness of the electrolyte is 50 μm or less. 一方の電極および他方の電極のうちの少なくともいずれかの電極の膜厚を500μm以下とした請求項1ないし3のいずれかに記載の固体電解質型燃料電池セル。4. The solid oxide fuel cell according to claim 1, wherein at least one of the one electrode and the other electrode has a thickness of 500 μm or less. 金属製細線の線の間隔を1μm以上でかつ100μm以下とした請求項1ないし4のいずれかに記載の固体電解質型燃料電池セル。The solid oxide fuel cell according to any one of claims 1 to 4, wherein an interval between the thin metal wires is 1 µm or more and 100 µm or less. 金属製細線の線径を0.05mm以上でかつ0.5mmとした請求項1ないし5のいずれかに記載の固体電解質型燃料電池セル。The solid oxide fuel cell according to any one of claims 1 to 5, wherein the diameter of the thin metal wire is 0.05 mm or more and 0.5 mm. 電池要素で被覆した金属製管状体が渦巻き状あるいはらせん状に形成してある請求項1ないし6のいずれかに記載の固体電解質型燃料電池セル。The solid oxide fuel cell according to any one of claims 1 to 6, wherein the metal tubular body covered with the battery element is formed in a spiral or spiral shape.
JP2002211994A 2002-07-22 2002-07-22 Solid electrolyte fuel cell Pending JP2004055368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211994A JP2004055368A (en) 2002-07-22 2002-07-22 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211994A JP2004055368A (en) 2002-07-22 2002-07-22 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2004055368A true JP2004055368A (en) 2004-02-19

Family

ID=31935041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211994A Pending JP2004055368A (en) 2002-07-22 2002-07-22 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2004055368A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139955A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006139966A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
WO2006083037A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly for hollow fuel cell and hollow fuel cell
JP2006216415A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly for tube type fuel cell, and tube type fuel cell
WO2007005675A1 (en) 2005-06-30 2007-01-11 Ut-Battelle, Llc Tubular solid oxide fuel cell current collector
JP2007134180A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Fuel cell
JP2007273194A (en) * 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Solid oxide fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139955A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2006139966A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Solid oxide fuel cell
WO2006083037A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly for hollow fuel cell and hollow fuel cell
JP2006216415A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly for tube type fuel cell, and tube type fuel cell
US8283084B2 (en) 2005-02-04 2012-10-09 Toyota Jidosha Kabushiki Kaisha Hollow-shaped membrane electrode assembly for fuel cell and hollow-type fuel cell
WO2007005675A1 (en) 2005-06-30 2007-01-11 Ut-Battelle, Llc Tubular solid oxide fuel cell current collector
AU2006265842B2 (en) * 2005-06-30 2010-03-04 Worldwide Energy, Inc. Of Delaware Tubular solid oxide fuel cell current collector
US7758993B2 (en) 2005-06-30 2010-07-20 Worldwide Energy, Inc. Of Delaware Tubular solid oxide fuel cell current collector
RU2402116C2 (en) * 2005-06-30 2010-10-20 Уорлдвайд Энерджи Инк. оф Делавэр Current collector of tubular hard-oxide fuel element
JP2007134180A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Fuel cell
JP4687406B2 (en) * 2005-11-10 2011-05-25 トヨタ自動車株式会社 Fuel cell
JP2007273194A (en) * 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JP3768500B2 (en) Fuel cell with embedded current collector
US6893760B2 (en) Solid oxide fuel cell
US7186475B2 (en) Unit cell for solid oxide electrolyte type fuel cell and related manufacturing method
JP4811622B2 (en) Solid oxide fuel cell
JP3734027B2 (en) Single cell for solid oxide fuel cell
JP4824916B2 (en) Current collector supported fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP2003115301A (en) Single cell for fuel cell and solid electrolyte-type fuel cell
JP2002334706A (en) Cell element layer base and cell plate for solid electrolyte type fuel cell
JP2012528426A (en) Oxide-ceramic high temperature fuel cell
JP2004055368A (en) Solid electrolyte fuel cell
JP2010199058A (en) Reaction device and manufacturing method of same
JP2008016248A (en) Solid electrolyte fuel cell unit, and stack thereof
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
US20130171539A1 (en) Tubular solid oxide fuel cell module and method of manufacturing the same
JP2006107936A (en) Interconnector for planar solid oxide fuel cell
JP2017188437A (en) Electrochemical cell
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JP6507291B1 (en) Metal member for electrochemical cell, and electrochemical cell assembly using the same
JP2003308854A (en) Solid oxide fuel cell and its manufacturing method
JP6507290B1 (en) Metal member for electrochemical cell, and electrochemical cell assembly using the same
JP6554586B1 (en) Metal member for electrochemical cell, and electrochemical cell assembly using the same
JP5873947B1 (en) Zygote
JPH0237669A (en) Fuel cell of solid electrolyte type
JP6554588B1 (en) Metal member for electrochemical cell, and electrochemical cell assembly using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811