JP2004055294A - Secondary battery equipped with current bypass circuit - Google Patents

Secondary battery equipped with current bypass circuit Download PDF

Info

Publication number
JP2004055294A
JP2004055294A JP2002209896A JP2002209896A JP2004055294A JP 2004055294 A JP2004055294 A JP 2004055294A JP 2002209896 A JP2002209896 A JP 2002209896A JP 2002209896 A JP2002209896 A JP 2002209896A JP 2004055294 A JP2004055294 A JP 2004055294A
Authority
JP
Japan
Prior art keywords
bypass circuit
secondary battery
current
current bypass
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002209896A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Fukuzawa
福沢 達弘
Osamu Shimamura
嶋村 修
Koichi Nemoto
根本 好一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002209896A priority Critical patent/JP2004055294A/en
Publication of JP2004055294A publication Critical patent/JP2004055294A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery producing an optimum charging environment. <P>SOLUTION: In the secondary battery formed by connecting a plurality of unit batteries 40 in series, a bypass circuit element 50 connecting a positive electrode and a negative electrode by bypassing an electrolyte interposed between the positive electrode and the negative electrode in a case where the voltage of the unit batteries 40 exceeds a specified value is connected to between the positive electrode and the negative electrode of the unit batteries 40. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、最適な充電環境を自ら作り出すことができる電流バイパス回路を備えた二次電池に関する。
【0002】
【従来の技術】
近年、電気自動車の開発が盛んになるにつれて、充電可能な二次電池の開発も活発になってきている。二次電池の中でも、特に、リチウム電池は、小型、軽量、高エネルギー密度といった特徴をもつ高性能の電池であるため、電気自動車に搭載する電池としてふさわしい。
【0003】
その中でもバイポーラ型のリチウム電池は、1つの発電要素である単電池が多数直列に積層された構造を有している。したがって、充電は多数の単電池が直列に接続された状態で行われることになる。バイポーラ電池以外にも、単電池を多数直列に積層または接続した構造の電池が存在するが、この電池も充電は単電池が直列に接続された状態で行われる。なお、この明細書に記載されている単電池とは、1つの電池を構成する個々の発電要素を指している。
【0004】
【発明が解決しようとする課題】
このように、バイポーラ電池内部では複数の単電池が直列に接続されているので、各単電池の電池容量や内部抵抗などの電池特性にばらつきがあると、充電をするとき、各単電池が均一に充電できないという問題がある。
【0005】
例えば、リチウム電池の場合、最大充電電圧を4.2Vと厳格に規定し、充電時にリチウム電池端子間の電圧がこの最大充電電圧に達したら即座に充電を終了する。
【0006】
ところが、各単電池の電池容量にばらつきがある場合、電池容量の小さい単電池が満充電状態に達しても、その単電池よりも電池容量の大きい単電池はまだ不足充電状態にある。このような状態になっていても、バイポーラ電池端子間の電圧が最大充電電圧に達していなければ充電は継続されるため、電池容量の小さな単電池は過充電状態になってしまう。
【0007】
また、単電池の内部抵抗にばらつきがある場合、すべての単電池に同じ大きさの充電電流が流れるため、内部抵抗の大きな単電池の充電電圧はその単電池よりも内部抵抗の小さな単電池の充電電圧よりも大きくなる。したがって、単電池ごとにまちまちの充電状態となってしまう。
【0008】
通常、リチウム電池の最適な充電電圧範囲は±0.1V程度と非常に狭い範囲に定められているので、各単電池に許される充電電圧のばらつきは非常に小さい。単電池の電池容量や内部抵抗が均一になるように、正負電極の塗布厚や集電体、固体電解質の厚みを高精度で制御するなど製造段階での工夫も行われているが、現時点では各単電池の電池特性を完全に均一化することは難しい。
【0009】
本発明は、以上のような従来の技術の問題点を解消するために成されたものであり、単電池の電池容量、内部抵抗などの電池特性の不均一を吸収し、最適な充電環境を自ら作り出すことができ、電池寿命を延ばすことができる、電流バイパス回路を備えた二次電池の提供を目的とする。
【0010】
【課題を解決するための手段】
上記した課題を解決し、目的を達成するため、本発明にかかる電流バイパス回路を備えた二次電池は、複数の単電池を直列に接続してなる二次電池であって、前記単電池の正極と負極との間に、前記単電池の電圧が規定値を超えた場合に、前記正極と負極との間に介在する電解質をバイパスして前記正極と負極とを接続する電流バイパス回路を接続している。
【0011】
充電時、単電池の充電電圧が規定値を超えると、バイパス回路は単電池を構成する電解質をバイパスして、その単電池の正極と負極とを直接接続する。このため、単電池の充電電圧が規定値に達した時点でその単電池の充電が終了する。
【0012】
このように、単電池の過充電防止を目的とした充電電流バイパス回路を設置すると、満充電側で各単電池の充電状態をそろえることができ、充電状態のバラツキにより一部の単電池が過充電状態になることを防ぐことができる。
【0013】
【発明の効果】
本発明の電流バイパス回路を備えた二次電池によれば、単電池の電圧が規定値を超えた場合に電解質をバイパスするようにしたので、単電池の電池容量、内部抵抗などの電池特性がばらついていても、二次電池を構成する単電池の充電状態をそろえることができる。
【0014】
【発明の実施の形態】
以下に添付図面を参照して、本発明にかかる電流バイパス回路を備えた二次電池の好適な実施の形態を詳細に説明する。本実施の形態においては、バイポーラリチウムイオン二次電池を例に挙げて説明する。
【0015】
図1から図7は、電流バイパス回路を備えたバイポーラリチウムイオン二次電池の内部構造の説明に供する図である。本発明にかかるバイポーラリチウムイオン二次電池には、図1に示すような断面構造を有するバイポーラ電極10が用いられる。バイポーラ電極10には、集電体12の一方の面に正極14が形成され他方の面に負極16が形成されている。また、バイポーラ電極10には、集電体12の上部に電流バイパス回路素子50が形成されている。
【0016】
正極14は、集電体12を構成する厚さ20μm程度のSUS箔の片面に正極スラリーを塗布し、熱重合によって硬化させて形成する。正極スラリーは、正極活物質としてリチウム‐遷移金属複合化物、たとえばLiMn、LiCoO、LiNiOまたはこれらの遷移金属の一部を他の元素により置換したものを、導電助剤としてアセチレンブラックを、ポリマーとしてポリエチレンオキシド(PEO)を、支持塩としてLi(CSONを、スラリー粘度調整媒体としてNMPを、重合開始剤としてAIBNをそれぞれ所定の比率で混合して作成する。
【0017】
負極16は、正極14を塗布したSUS箔の反対面に負極スラリーを塗布し、熱重合によって硬化させて形成する。負極スラリーは、負極活物質としてハードカーボン、グラファイト、カーボンまたはリチウム‐遷移金属複合化物、たとえばLiTi12を、導電助剤としてアセチレンブラックを、ポリマーとしてポリエチレンオキシド(PEO)を、支持塩としてLi(CSONを、スラリー粘度調整媒体としてNMPを、重合開始剤としてAIBNをそれぞれ所定の比率で混合して作成する。正極14、負極16に以上のような材料を用いるのは、これらの材料は反応性、サイクル耐久性に優れ、低コストだからである。
【0018】
正極14、負極16にこれらの材料を採用したのは、これらの材料は反応性が良好で、充放電のサイクル耐久性に優れ、しかも低コストだからである。したがって、これらの材料を用いたバイポーラリチウムイオン二次電池は、出力特性に優れ、しかも安価なものとなる。
【0019】
集電体12のそれぞれの面に正極14と負極16とが形成されると、正極14と負極16の外表面に電解質膜を形成する。
【0020】
本発明にかかるバイポーラリチウムイオン二次電池には、図1および図2に示すように、集電体12の上部に電流バイパス回路素子50が形成される。電流バイパス回路素子50は、等価的には図3に示すようにツェナーダイオード52と抵抗器54とを直列に接続した回路である。電流バイパス回路素子50は、公知の半導体製造技術を用いて集電体12に直接形成しても良いし、あらかじめ作成しておいた電流バイパス回路素子50を集電体12に導電性接着剤で取り付けても良い。
【0021】
バイポーラ電極10は、バイポーラリチウムイオン二次電池を作成する際に積層されるが、電流バイパス回路素子50は、積層された2つの集電体の間隔と同一寸法の厚さになるように形成する。
【0022】
電流バイパス回路素子50は、ツェナー電圧を超えたときに充電時の電流をバイパスさせるものであるから、抵抗器54を集電体12の正極14が形成されている面に取り付ける。
【0023】
なお、本実施の形態では、電流バイパス回路素子50をツェナーダイオード52と抵抗器54とを直列に接続した回路としたが、ツェナーダイオードだけで構成しても良い。しかし、電流バイパス回路素子50が電流をバイパスしたときには、バイポーラリチウムイオン二次電池の充電電流が増加するので、電流バイパス回路素子50に過大な電流が流れないように、その電流の増加をある程度抑えることができる抵抗器54を持つほうが好ましい。なお、抵抗器の抵抗値は、電流バイパス回路素子50に流れる電流が過大にならないような大きさが選択される。
【0024】
上述のような構成を有する複数のバイポーラ電極10は、図4に示すように、それぞれの正極14と負極16が電解質20を挟んで対向するように積層される。
電解質20には、ゲル電解質または真性ポリマー電解質のいずれかを用いることができる。真性ポリマー電解質としては、たとえばPEO、PPOおよびこれらの共重合体を使用することができる。ゲル電解質または真性ポリマー電解質のいずれかを用いると、液漏れの心配がなく、電解質に液体を用いた場合に比較して、簡易な構成でバイポーラリチウムイオン二次電池を形成できる。ゲル電解質または真性ポリマー電解質といった固体状の高分子を用いると、液絡の問題が生じないため、信頼性が高く、出力特性に優れた二次電池を構成することができる。
【0025】
電流バイパス回路素子50は正極14、負極16および電解質20を合計した厚さに形成してあるので、電流バイパス回路素子50のツェナーダイオード52はバイポーラ電極10を積層する過程で隣の集電体12に接触する。バイポーラ電極10を積層するときにツェナーダイオード52が接触する方の集電体12に導電性接着剤を塗布しておけば、電池の製造時、バイポーラ電極10を積層して行くだけで、電流バイパス回路素子50を2つの集電体12間に接続することができる。つまりバイポーラ電極10の積層と同時に電流バイパス回路素子50が接続されることになる。したがって、電流バイパス回路素子50は一方の集電体12の正極14と他方の集電体12の負極16を接続することになる。
【0026】
このように、バイポーラ電極10を積層するだけで、集電体12の間で電流バイパス回路素子50を接続できるようにすると、電流バイパス回路素子50を二次電池内部に容易に収めることができ、二次電池の大きさを変えずに、二次電池の充電状態を制御する機能を盛り込むことができる。
【0027】
以上のように、バイポーラ電極10を、電解質20を介在させて5極直列に接続し、封止材60で包装すると、電池内に電流バイパス回路素子50が組み込まれた図5に示すような層構造のバイポーラリチウムイオン二次電池100となる。したがって、電流バイパス回路素子50は封止材60の内部で正極14と負極16とに接続されることになり、コンパクトな構成の電池にすることができる。なお、バイポーラリチウムイオン二次電池100の−端子となる集電体70には、一方の面にだけ負極16を形成し、その+端子となる集電体80には、一方の面にだけ正極14を形成する。
【0028】
図5に示されるバイポーラリチウムイオン二次電池100の層構造において、図6に示すように、2つの集電体12には負極16‐電解質20‐正極14の層構造が形成されるが、この明細書ではこの層構造を単電池層30と称する。また、集電体12‐単電池層30‐集電体12で1つの発電要素となるが、この発電要素は、バイポーラリチウムイオン二次電池100を構成するさらに小さな電池であると考えることができるので、この明細書ではこの発電要素を単電池40と称する。
【0029】
図6に示したように層構造の名称を付すると、図5に示されるバイポーラリチウムイオン二次電池100は、図7の等価回路に示されるように、複数の単電池が直列に接続された電池と考えることができる。電流バイパス回路素子50は、すべての単電池40に対して個々に設けられ、電流バイパス回路素子50は、個々の単電池40の電圧がツェナーダイオード52で規定されるツェナー電圧を超えたときに、単電池40を通過する充電時の電流をバイパスする。
【0030】
以上のように構成されたバイポーラリチウムイオン二次電池100の充電時の動作について図7を参照しながら説明する。バイポーラリチウムイオン二次電池100を充電するときには、図示されていない充電器の+端子をバイポーラリチウムイオン二次電池100の+端子に、充電器の‐端子をバイポーラリチウムイオン二次電池100の‐端子にそれぞれ接続する。充電器がバイポーラリチウムイオン二次電池100の±両端子に印加する充電電圧は、たとえば個々の単電池40の充電電圧が4.0Vに設定されているとすれば、4.0(単電池1個の充電電圧)×5(バイポーラリチウムイオン二次電池100が有する単電池40の個数)=20.0Vである。
【0031】
充電器がバイポーラリチウムイオン二次電池100に接続され、充電電圧が印加されると、すべての単電池には、バイポーラリチウムイオン二次電池100の内部抵抗で決まる同一の電流が流れる。たとえば、5つの単電池40の内部抵抗がR、R、R、R、Rであるとすると、バイポーラリチウムイオン二次電池100の内部抵抗Rは、R+R+R+R+Rになる。この場合、充電器によって印加される充電電圧をVとすると、すべての単電池40には、I=V/(R+R+R+R+R)の充電電流が流れる。単電池40はこの充電電流によって充電される。
【0032】
上記の場合、各単電池40の内部抵抗の大きさにばらつきがあるので、単電池40ごとに印加される充電電圧が異なってくる。たとえば、Rの抵抗値を持つ単電池40には、IRVの充電電圧が、Rの抵抗値を持つ単電池40には、IRVの充電電圧が、それぞれ印加されることになる。したがって、充電状態は単電池40によってまちまちになる。
【0033】
なお、各単電池40と並列に電流バイパス回路素子50が接続されているが、電流バイパス回路素子50ではツェナーダイオード52が導通を阻止する方向に接続されている。充電が開始された当初は、各単電池40の充電電圧がツェナー電圧(電流バイパス回路素子50のツェナーダイオードが導通する電圧)にまでは達しないため、電流バイパス回路素子50に電流はほとんど流れない。
【0034】
充電が進むと各単電池40の端子間電圧が上昇するが、その電圧がツェナー電圧を超えると、電流バイパス回路素子50のツェナーダイオードが導通して単電池40に流れる電流をバイパスさせる。たとえば、ツェナー電圧が4.0Vのツェナーダイオード52を用いると、端子間電圧が4.0Vになった時点でその単電池40の充電が終わる。
【0035】
端子間電圧が充電電圧に達した単電池40は自動的に充電が終了され、すべての電流バイパス回路素子50が単電池40をバイパスした時点でバイポーラリチウムイオン二次電池100の充電が終了する。なお、すべての単電池40がバイパスされた状態では、直列に接続された5つの電流バイパス回路素子50に充電器から供給される電流が流れるが、このときの電流は、ツェナーダイオード52と直列に接続されている抵抗器51によって制限される。
【0036】
以上のように、本発明にかかる電流バイパス回路を備えた二次電池では、単電池の充電電圧が規定値を超えると電流バイパス回路が動作して充電を終了させるので、単電池の電池容量、内部抵抗などの電池特性が不均一であっても、均一で最適な充電環境を自ら作り出すことができる。単電池ごとに偏った充電状態とはならず、均一な充電ができるので、電池としての寿命が向上し、信頼性の高い電池となる。
【0037】
以上の実施の形態では、電流バイパス回路素子50を、封止材60の内部で正極14と負極16に取り付けた場合を説明したが、図8に示すように、電流バイパス回路素子50を封止材60の外部に設けるようにしても良い。この場合には、図に示すように、集電体12の一部を封止材60から露出させ、封止材60の外側から集電体12間に電流バイパス回路素子50を後付する。
【0038】
このように、電流バイパス回路素子50を電池の外側から後付けできるようにすれば、電流バイパス回路素子50の大きさや形状の自由度が増し、簡易かつ安価にその回路を構成することができる。また、要求される機能に応じた回路を構成することも可能になる。
【0039】
たとえば、電流パイパス回路50を、上記のようにツェナーダイオードのみ、またはツェナーダイオードと抵抗器の直列回路によって形成するのではなく、図9に示すように、さらに電圧検出素子56を内蔵させても良い。電圧検出素子56はコンパレータを含む回路素子であり、ツェナーダイオード52と抵抗器54の直列回路の端子電圧を充電終止電圧と比較して信号を出力する。単電池40の充電が進み、その端子間電圧が上昇して充電終止電圧に達するとツェナーダイオード52が導通する。この導通によって単電池40への充電は終了するが、ツェナーダイオード52と抵抗器54の直列回路の端子間電圧は充電終止電圧が保たれる。電圧検出素子56は、充電終止電圧に達すると電圧検出素子56に内蔵されているコンパレータから信号が出力される。コンパレータからの信号は、充電器が備える図示しない充電制御素子に向けて出力される。充電器は、この信号によって、バイポーラリチウムイオン二次電池100を構成するすべての単電池40の充電が終了したか否かを判断することができ、すべての単電池40の充電の終了が確認できたら(すべての電圧検出素子56から信号が出力されていることが確認できたら)、充電器の動作を自動的に停止させることができる。
【0040】
図10は、上記の実施の形態のように、すべての単電池40ごとに電流パイパス回路50を設けるのではなく、バイポーラリチウムイオン二次電池100の内部において、2つの直列に接続された単電池40Aに対して1つの電流バイパス回路素子50Aを設けたものである。このように、2つの単電池40に対して1つの電流バイパス回路を設けるようにすると、必要な電流バイパス回路素子50Aの数がすべての単電池40ごとに設けたときの1/2になるので、コストダウンを図ることができる。
【0041】
なお、上記の例では、2つの単電池40に対して1つの電流バイパス回路素子50Aを設けたが、これに限られず、3個単位、4個単位といったように、バイポーラリチウムイオン二次電池100が備える単電池の任意個数のまとまりに対して個々に設けることも可能である。
【0042】
図11は、バイポーラリチウムイオン二次電池100の外部において、2つのグループに分けた単電池群のそれぞれのグループに電流バイパス回路素子50Bを設けたものである。
【0043】
何個の単電池に対して1つの電流バイパス回路を設けるか、または電流バイパス回路を電池の内部に設けるのか、外部に設けるのかといった選択は、バイポーラリチウムイオン二次電池100を構成する単電池の電池特性のばらつき具合、要求される電池性能の程度を勘案して決める。
【0044】
本発明にかかるバイポーラリチウムイオン二次電池100は、複数直並列接続され、図12に示すように、組電池200として、車両の床下部に搭載される。この組電池200は、電気自動車またはハイブリッド電気自動車の駆動用電源として使用される。なお、組電池200の設置場所は、床下部に限らずにエンジンルーム内、または天井内部にも設置可能である。
【0045】
本発明にかかるバイポーラリチウムイオン二次電池100は、単電池の電池容量や内部抵抗にばらつきがあっても、すべての単電池が満充電状態にできるので、電池性能を最大限に発揮させることができる。そのため、本発明にかかるバイポーラリチウムイオン二次電池100を用いれば、高容量、高出力の組電池200を構成でき、この組電池200を搭載すれば、始動性に優れた電気自動車を提供することができる。
【図面の簡単な説明】
【図1】バイポーラ電極の断面構造を示す図である。
【図2】バイポーラ電極の平面図である。
【図3】電流バイパス回路素子の構成説明に供する図である。
【図4】バイポーラ電極の積層状態を示す図である。
【図5】バイポーラリチウムイオン二次電池の内部構造を示す図である。
【図6】図5に示したバイポーラリチウムイオン二次電池の層構造の説明に供する図である。
【図7】図5に示したバイポーラリチウムイオン二次電池の等価回路を示す図である。
【図8】封止材の外で電流バイパス回路素子が取り付けられているバイポーラリチウムイオン二次電池の概略構成図である。
【図9】図3に示したものとは異なる構造の電流バイパス回路素子を示す図である。
【図10】封止材内で複数の単電池単位に電流バイパス回路素子を取り付けた場合の構成図である。
【図11】封止材の外で複数の単電池単位に電流バイパス回路素子を取り付けた場合の構成図である。
【図12】本発明にかかるバイポーラリチウムイオン二次電池を複数接続してなる組電池を車両に取り付ける場合の説明図である。
【符号の説明】
10…バイポーラ電極、
12…集電体、
14…正極、
16…負極、
20…電解質、
30…単電池層、
40…単電池、
50…電流バイパス回路素子、
52…ツェナーダイオード、
54…抵抗器、
56…電圧検出素子、
60…封止材、
70、80…集電体、
100…バイポーラリチウムイオン二次電池、
200…組電池。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery provided with a current bypass circuit that can create an optimal charging environment by itself.
[0002]
[Prior art]
In recent years, as the development of electric vehicles has become active, the development of rechargeable secondary batteries has also become active. Among secondary batteries, a lithium battery is a high-performance battery having features such as small size, light weight, and high energy density, and thus is suitable as a battery mounted on an electric vehicle.
[0003]
Among them, a bipolar type lithium battery has a structure in which a number of cells as one power generation element are stacked in series. Therefore, charging is performed in a state where a large number of cells are connected in series. In addition to the bipolar battery, there is a battery having a structure in which a number of unit cells are stacked or connected in series, and this battery is also charged in a state where the unit cells are connected in series. It should be noted that the unit cells described in this specification indicate individual power generating elements constituting one battery.
[0004]
[Problems to be solved by the invention]
As described above, since a plurality of cells are connected in series inside the bipolar battery, if there is variation in the battery characteristics such as the battery capacity and the internal resistance of each cell, when charging, the cells are uniform. There is a problem that can not be charged.
[0005]
For example, in the case of a lithium battery, the maximum charging voltage is strictly defined as 4.2 V, and charging is terminated immediately when the voltage between the lithium battery terminals reaches this maximum charging voltage during charging.
[0006]
However, when there is a variation in the battery capacity of each unit cell, even if the unit cell with a small battery capacity reaches the full charge state, the unit cell with a larger battery capacity than the unit cell is still in the insufficient charge state. Even in such a state, if the voltage between the bipolar battery terminals does not reach the maximum charging voltage, the charging is continued, and the single battery having a small battery capacity is in an overcharged state.
[0007]
If the internal resistance of the cells varies, the charging current of the same magnitude flows through all the cells. It becomes larger than the charging voltage. Therefore, the state of charge is different for each unit cell.
[0008]
Normally, the optimal charging voltage range of a lithium battery is set to a very narrow range of about ± 0.1 V, so that the variation of the charging voltage allowed for each cell is very small. In order to make the cell capacity and internal resistance of the unit cells uniform, various measures have been taken at the manufacturing stage, such as controlling the coating thickness of the positive and negative electrodes, the thickness of the current collector, and the thickness of the solid electrolyte with high accuracy. It is difficult to completely equalize the battery characteristics of each cell.
[0009]
The present invention has been made in order to solve the problems of the conventional technology as described above, and absorbs non-uniformity of battery characteristics such as a battery capacity and an internal resistance of a unit cell, and provides an optimal charging environment. It is an object of the present invention to provide a secondary battery provided with a current bypass circuit, which can be created by itself and can extend battery life.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, a secondary battery including the current bypass circuit according to the present invention is a secondary battery in which a plurality of cells are connected in series. A current bypass circuit is connected between the positive electrode and the negative electrode to connect the positive electrode and the negative electrode by bypassing the electrolyte interposed between the positive electrode and the negative electrode when the voltage of the cell exceeds a specified value. are doing.
[0011]
During charging, if the charging voltage of the unit cell exceeds a specified value, the bypass circuit bypasses the electrolyte constituting the unit cell and directly connects the positive electrode and the negative electrode of the unit cell. Therefore, when the charging voltage of the unit cell reaches the specified value, the charging of the unit cell ends.
[0012]
By installing a charging current bypass circuit for the purpose of preventing overcharging of the cells, the charging states of the cells can be aligned on the fully charged side, and some of the cells may be overcharged due to variations in the charging state. It is possible to prevent the battery from being charged.
[0013]
【The invention's effect】
According to the secondary battery including the current bypass circuit of the present invention, the electrolyte is bypassed when the voltage of the single cell exceeds the specified value, so that the battery capacity of the single cell, battery characteristics such as internal resistance, and the like are reduced. Even if there is variation, it is possible to make the charged states of the cells constituting the secondary battery uniform.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a secondary battery including a current bypass circuit according to the present invention will be described in detail with reference to the accompanying drawings. In the present embodiment, a bipolar lithium ion secondary battery will be described as an example.
[0015]
FIGS. 1 to 7 are diagrams for explaining the internal structure of a bipolar lithium ion secondary battery having a current bypass circuit. A bipolar electrode 10 having a cross-sectional structure as shown in FIG. 1 is used for a bipolar lithium ion secondary battery according to the present invention. The bipolar electrode 10 has a positive electrode 14 formed on one surface of a current collector 12 and a negative electrode 16 formed on the other surface. Further, a current bypass circuit element 50 is formed on the bipolar electrode 10 above the current collector 12.
[0016]
The positive electrode 14 is formed by applying a positive electrode slurry to one surface of a SUS foil having a thickness of about 20 μm that forms the current collector 12 and curing the same by thermal polymerization. The positive electrode slurry is made of a lithium-transition metal composite, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 or a material obtained by substituting a part of these transition metals with another element, as an active material of acetylene black. By mixing polyethylene oxide (PEO) as a polymer, Li (C 2 F 5 SO 2 ) 2 N as a supporting salt, NMP as a slurry viscosity adjusting medium, and AIBN as a polymerization initiator in predetermined proportions. I do.
[0017]
The negative electrode 16 is formed by applying a negative electrode slurry to the opposite surface of the SUS foil on which the positive electrode 14 has been applied, and curing the applied slurry by thermal polymerization. The negative electrode slurry includes hard carbon, graphite, carbon or a lithium-transition metal composite such as Li 4 Ti 5 O 12 as a negative electrode active material, acetylene black as a conductive additive, polyethylene oxide (PEO) as a polymer, and a supporting salt. By mixing Li (C 2 F 5 SO 2 ) 2 N, NMP as a slurry viscosity adjusting medium, and AIBN as a polymerization initiator at predetermined ratios. The above materials are used for the positive electrode 14 and the negative electrode 16 because these materials are excellent in reactivity and cycle durability and low in cost.
[0018]
The reason why these materials are used for the positive electrode 14 and the negative electrode 16 is that these materials have good reactivity, are excellent in charge / discharge cycle durability, and are low in cost. Therefore, bipolar lithium ion secondary batteries using these materials have excellent output characteristics and are inexpensive.
[0019]
When the positive electrode 14 and the negative electrode 16 are formed on the respective surfaces of the current collector 12, an electrolyte film is formed on the outer surfaces of the positive electrode 14 and the negative electrode 16.
[0020]
In the bipolar lithium ion secondary battery according to the present invention, a current bypass circuit element 50 is formed on the current collector 12 as shown in FIGS. The current bypass circuit element 50 is equivalently a circuit in which a Zener diode 52 and a resistor 54 are connected in series as shown in FIG. The current bypass circuit element 50 may be formed directly on the current collector 12 by using a known semiconductor manufacturing technique, or the current bypass circuit element 50 prepared in advance may be formed on the current collector 12 with a conductive adhesive. May be attached.
[0021]
The bipolar electrode 10 is stacked when a bipolar lithium ion secondary battery is manufactured. The current bypass circuit element 50 is formed so as to have the same dimension as the interval between the two stacked current collectors. .
[0022]
Since the current bypass circuit element 50 bypasses the current at the time of charging when the Zener voltage is exceeded, the resistor 54 is attached to the surface of the current collector 12 on which the positive electrode 14 is formed.
[0023]
In the present embodiment, the current bypass circuit element 50 is a circuit in which the Zener diode 52 and the resistor 54 are connected in series. However, the current bypass circuit element 50 may be constituted only by the Zener diode. However, when the current bypass circuit element 50 bypasses the current, the charging current of the bipolar lithium ion secondary battery increases. Therefore, the increase in the current is suppressed to some extent so that an excessive current does not flow through the current bypass circuit element 50. It is preferable to have a resistor 54 that can be used. The resistance value of the resistor is selected so that the current flowing through the current bypass circuit element 50 does not become excessive.
[0024]
As shown in FIG. 4, the plurality of bipolar electrodes 10 having the above-described configuration are stacked such that the respective positive electrodes 14 and negative electrodes 16 face each other with the electrolyte 20 interposed therebetween.
As the electrolyte 20, either a gel electrolyte or an intrinsic polymer electrolyte can be used. As the intrinsic polymer electrolyte, for example, PEO, PPO and a copolymer thereof can be used. When either the gel electrolyte or the intrinsic polymer electrolyte is used, there is no risk of liquid leakage, and a bipolar lithium ion secondary battery can be formed with a simpler configuration than when a liquid is used as the electrolyte. When a solid polymer such as a gel electrolyte or an intrinsic polymer electrolyte is used, a liquid junction problem does not occur, so that a secondary battery having high reliability and excellent output characteristics can be formed.
[0025]
The current bypass circuit element 50 is formed to have a total thickness of the positive electrode 14, the negative electrode 16 and the electrolyte 20, so that the Zener diode 52 of the current bypass circuit element 50 Contact If a conductive adhesive is applied to the current collector 12 to which the Zener diode 52 comes into contact when the bipolar electrodes 10 are stacked, the current bypass can be performed only by stacking the bipolar electrodes 10 at the time of manufacturing the battery. The circuit element 50 can be connected between the two current collectors 12. That is, the current bypass circuit element 50 is connected simultaneously with the lamination of the bipolar electrodes 10. Therefore, the current bypass circuit element 50 connects the positive electrode 14 of one current collector 12 and the negative electrode 16 of the other current collector 12.
[0026]
As described above, if the current bypass circuit element 50 can be connected between the current collectors 12 only by stacking the bipolar electrodes 10, the current bypass circuit element 50 can be easily housed in the secondary battery, A function for controlling the state of charge of the secondary battery can be incorporated without changing the size of the secondary battery.
[0027]
As described above, when the bipolar electrode 10 is connected in series with five electrodes with the electrolyte 20 interposed therebetween and is wrapped with the sealing material 60, a layer having the current bypass circuit element 50 incorporated in the battery as shown in FIG. A bipolar lithium ion secondary battery 100 having a structure is obtained. Therefore, the current bypass circuit element 50 is connected to the positive electrode 14 and the negative electrode 16 inside the sealing material 60, and a battery having a compact configuration can be obtained. The negative electrode 16 is formed only on one surface of the current collector 70 serving as the negative terminal of the bipolar lithium ion secondary battery 100, and the negative electrode 16 is provided only on one surface of the current collector 80 serving as the positive terminal. 14 is formed.
[0028]
In the layer structure of the bipolar lithium ion secondary battery 100 shown in FIG. 5, a layer structure of the negative electrode 16-electrolyte 20-positive electrode 14 is formed on the two current collectors 12 as shown in FIG. In the specification, this layer structure is referred to as a unit cell layer 30. In addition, although the current collector 12-unit cell layer 30-current collector 12 constitutes one power generation element, this power generation element can be considered to be a smaller battery constituting bipolar lithium ion secondary battery 100. Therefore, in this specification, this power generation element is referred to as a unit cell 40.
[0029]
When the names of the layer structures are given as shown in FIG. 6, the bipolar lithium ion secondary battery 100 shown in FIG. 5 has a plurality of cells connected in series as shown in the equivalent circuit of FIG. Think of it as a battery. The current bypass circuit elements 50 are individually provided for all the cells 40, and the current bypass circuit elements 50 are provided when the voltage of each of the cells 40 exceeds the Zener voltage defined by the Zener diode 52. The current at the time of charging that passes through the cell 40 is bypassed.
[0030]
The operation during charging of the bipolar lithium ion secondary battery 100 configured as described above will be described with reference to FIG. When charging the bipolar lithium ion secondary battery 100, the + terminal of the charger (not shown) is connected to the + terminal of the bipolar lithium ion secondary battery 100, and the-terminal of the charger is connected to the-terminal of the bipolar lithium ion secondary battery 100. Connect to each. The charging voltage applied by the charger to both terminals of the bipolar lithium ion secondary battery 100 is, for example, 4.0 (single cell 1) if the charging voltage of each unit cell 40 is set to 4.0 V. (The charging voltage of the battery) × 5 (the number of the cells 40 included in the bipolar lithium ion secondary battery 100) = 20.0V.
[0031]
When the charger is connected to the bipolar lithium ion secondary battery 100 and a charging voltage is applied, the same current determined by the internal resistance of the bipolar lithium ion secondary battery 100 flows through all the cells. For example, assuming that the internal resistances of the five unit cells 40 are R 1 , R 2 , R 3 , R 4 , and R 5 , the internal resistance R of the bipolar lithium ion secondary battery 100 is R 1 + R 2 + R 3 + R. become 4 + R 5. In this case, assuming that the charging voltage applied by the charger is V, a charging current of I = V / (R 1 + R 2 + R 3 + R 4 + R 5 ) flows through all the cells 40. The cell 40 is charged by this charging current.
[0032]
In the above case, since the magnitude of the internal resistance of each unit cell 40 varies, the charging voltage applied to each unit cell 40 differs. For example, the charging voltage of IR 1 V is applied to the cell 40 having the resistance value of R 1 , and the charging voltage of IR 3 V is applied to the cell 40 having the resistance value of R 3. Become. Therefore, the state of charge varies depending on the unit cell 40.
[0033]
Note that the current bypass circuit element 50 is connected in parallel with each of the cells 40, but in the current bypass circuit element 50, the Zener diode 52 is connected in a direction that prevents conduction. At the beginning of charging, the charging voltage of each cell 40 does not reach the Zener voltage (the voltage at which the Zener diode of the current bypass circuit element 50 conducts), so that almost no current flows through the current bypass circuit element 50. .
[0034]
As the charging progresses, the voltage between the terminals of each cell 40 rises, but when the voltage exceeds the Zener voltage, the Zener diode of the current bypass circuit element 50 conducts to bypass the current flowing through the cell 40. For example, when the Zener diode 52 having a Zener voltage of 4.0 V is used, the charging of the cell 40 ends when the inter-terminal voltage becomes 4.0 V.
[0035]
The cell 40 whose terminal voltage has reached the charging voltage is automatically terminated, and the charging of the bipolar lithium ion secondary battery 100 is terminated when all the current bypass circuit elements 50 have bypassed the cell 40. In a state where all the cells 40 are bypassed, the current supplied from the charger flows through the five current bypass circuit elements 50 connected in series, and the current at this time is connected in series with the Zener diode 52. Limited by the connected resistor 51.
[0036]
As described above, in the secondary battery including the current bypass circuit according to the present invention, when the charging voltage of the unit cell exceeds the specified value, the current bypass circuit operates and terminates the charging. Even if battery characteristics such as internal resistance are not uniform, a uniform and optimal charging environment can be created by itself. The charging state does not become uneven for each unit cell, and uniform charging can be performed, so that the life of the battery is improved and the battery has high reliability.
[0037]
In the above embodiment, the case where the current bypass circuit element 50 is attached to the positive electrode 14 and the negative electrode 16 inside the sealing material 60 has been described. However, as shown in FIG. It may be provided outside the material 60. In this case, as shown in the figure, a part of the current collector 12 is exposed from the sealing material 60, and the current bypass circuit element 50 is retrofitted between the current collector 12 from outside the sealing material 60.
[0038]
As described above, if the current bypass circuit element 50 can be retrofitted from outside the battery, the degree of freedom of the size and the shape of the current bypass circuit element 50 increases, and the circuit can be easily and inexpensively configured. It is also possible to configure a circuit according to the required function.
[0039]
For example, instead of forming the current bypass circuit 50 with only a Zener diode or a series circuit of a Zener diode and a resistor as described above, a voltage detection element 56 may be further built in as shown in FIG. . The voltage detection element 56 is a circuit element including a comparator, and outputs a signal by comparing a terminal voltage of a series circuit of the zener diode 52 and the resistor 54 with a charge termination voltage. When the charging of the cell 40 progresses and the voltage between its terminals rises and reaches the charging end voltage, the Zener diode 52 conducts. By this conduction, charging of the unit cell 40 ends, but the voltage between the terminals of the series circuit of the Zener diode 52 and the resistor 54 is maintained at the charge termination voltage. When the voltage detection element 56 reaches the charge end voltage, a signal is output from a comparator built in the voltage detection element 56. The signal from the comparator is output to a charge control element (not shown) included in the charger. The charger can determine from this signal whether or not the charging of all the cells 40 constituting the bipolar lithium ion secondary battery 100 has been completed, and can confirm that the charging of all the cells 40 has been completed. Then (when it is confirmed that signals are output from all the voltage detection elements 56), the operation of the charger can be automatically stopped.
[0040]
FIG. 10 does not provide the current bypass circuit 50 for every unit cell 40 as in the above-described embodiment, but includes two unit cells connected in series inside the bipolar lithium ion secondary battery 100. One current bypass circuit element 50A is provided for 40A. As described above, when one current bypass circuit is provided for two cells 40, the number of necessary current bypass circuit elements 50A is 1 / of that when all the cells 40 are provided. Thus, cost can be reduced.
[0041]
In the above example, one current bypass circuit element 50A is provided for two unit cells 40. However, the present invention is not limited to this. For example, the bipolar lithium ion secondary battery 100 It is also possible to provide individual cells for an arbitrary number of unit cells provided in.
[0042]
FIG. 11 shows a configuration in which a current bypass circuit element 50B is provided outside each of the bipolar lithium-ion secondary batteries 100 in each of the unit cell groups divided into two groups.
[0043]
The selection as to how many cells are provided with one current bypass circuit, or whether the current bypass circuit is provided inside or outside the battery is determined by the cells constituting the bipolar lithium ion secondary battery 100. It is determined in consideration of the degree of variation in battery characteristics and the required level of battery performance.
[0044]
A plurality of bipolar lithium-ion secondary batteries 100 according to the present invention are connected in series and parallel, and as shown in FIG. The battery pack 200 is used as a power supply for driving an electric vehicle or a hybrid electric vehicle. In addition, the installation place of the battery pack 200 can be installed not only in the lower part of the floor but also in the engine room or the ceiling.
[0045]
In the bipolar lithium ion secondary battery 100 according to the present invention, all the cells can be fully charged even if the cell capacity and internal resistance of the cells vary, so that the battery performance can be maximized. it can. Therefore, by using the bipolar lithium ion secondary battery 100 according to the present invention, a high-capacity, high-output assembled battery 200 can be configured, and by mounting the assembled battery 200, an electric vehicle with excellent startability can be provided. Can be.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of a bipolar electrode.
FIG. 2 is a plan view of a bipolar electrode.
FIG. 3 is a diagram provided for describing the configuration of a current bypass circuit element.
FIG. 4 is a diagram showing a stacked state of bipolar electrodes.
FIG. 5 is a diagram showing an internal structure of a bipolar lithium ion secondary battery.
6 is a diagram for explaining a layer structure of the bipolar lithium ion secondary battery shown in FIG. 5;
7 is a diagram showing an equivalent circuit of the bipolar lithium ion secondary battery shown in FIG.
FIG. 8 is a schematic configuration diagram of a bipolar lithium ion secondary battery in which a current bypass circuit element is attached outside a sealing material.
FIG. 9 is a diagram showing a current bypass circuit element having a structure different from that shown in FIG. 3;
FIG. 10 is a configuration diagram when a current bypass circuit element is attached to a plurality of unit cells in a sealing material.
FIG. 11 is a configuration diagram when a current bypass circuit element is attached to a plurality of unit cells outside a sealing material.
FIG. 12 is an explanatory diagram of a case where a battery pack formed by connecting a plurality of bipolar lithium ion secondary batteries according to the present invention is mounted on a vehicle.
[Explanation of symbols]
10 ... Bipolar electrode,
12 ... current collector,
14 ... Positive electrode,
16 ... negative electrode,
20 ... electrolyte,
30 ... cell layer,
40 ... cell,
50 ... current bypass circuit element,
52 ... Zener diode,
54 ... resistor,
56 ... Voltage detecting element,
60 ... sealing material,
70, 80 ... current collector,
100: bipolar lithium ion secondary battery,
200… A battery pack.

Claims (12)

複数の単電池を直列に接続してなる二次電池であって、前記単電池の正極と負極との間に、前記単電池の電圧が規定値を超えた場合に、前記正極と負極との間に介在する電解質をバイパスして前記正極と負極とを接続する電流バイパス回路を接続したことを特徴とする電流バイパス回路を備えた二次電池。A secondary battery formed by connecting a plurality of cells in series, between the positive electrode and the negative electrode of the cell, when the voltage of the cell exceeds a specified value, the positive electrode and the negative electrode A secondary battery comprising a current bypass circuit, wherein a current bypass circuit is connected to connect the positive electrode and the negative electrode while bypassing an electrolyte interposed therebetween. 複数の単電池を直列に接続してなる二次電池であって、前記単電池は、正極と負極との間に電解質を介在させた構造を持つ単電池層を正極側と負極側から集電体で挟んで構成されるものであり、前記単電池の正極側の集電体と負極側の集電体との間に、前記単電池の電圧が規定値を超えた場合に、前記電解質をバイパスして前記正極と負極とを接続する電流バイパス回路を接続したことを特徴とする電流バイパス回路を備えた二次電池。A secondary battery in which a plurality of cells are connected in series, wherein the cells collect a cell layer having a structure in which an electrolyte is interposed between a positive electrode and a negative electrode from a positive electrode side and a negative electrode side. Between the current collector on the positive electrode side and the current collector on the negative electrode side of the unit cell, when the voltage of the unit cell exceeds a specified value, the electrolyte is A secondary battery comprising a current bypass circuit, wherein a current bypass circuit that connects the positive electrode and the negative electrode by bypass is connected. 集電体の一方の面に正極が形成され他方の面に負極が形成されたバイポーラ電極を、電解質を介在させて複数直列に接続し、前記集電体の間に、前記集電体間で形成される単電池の電圧が規定値を超えた場合に、前記電解質をバイパスして前記正極と負極とを接続する電流バイパス回路を接続したことを特徴とする電流バイパス回路を備えた二次電池。Bipolar electrodes in which a positive electrode is formed on one surface of the current collector and a negative electrode is formed on the other surface are connected in series with an electrolyte interposed therebetween, and between the current collectors, between the current collectors A secondary battery comprising a current bypass circuit, wherein a current bypass circuit that connects the positive electrode and the negative electrode by bypassing the electrolyte is connected when the voltage of the formed cell exceeds a specified value. . 前記電流バイパス回路は、前記集電体上に、2つの集電体の間隔と同一寸法の厚さをもって形成されることを特徴とする請求項2または請求項3に記載の電流バイパス回路を備えた二次電池。4. The current bypass circuit according to claim 2, wherein the current bypass circuit is formed on the current collector with a thickness equal to a distance between two current collectors. 5. Rechargeable battery. 前記電流バイパス回路は、前記二次電池の封止材内で、前記正極と負極とに接続されることを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。The current bypass circuit according to claim 1, wherein the current bypass circuit is connected to the positive electrode and the negative electrode within a sealing material of the secondary battery. Secondary battery. 前記集電体の一部が前記二次電池の封止材から露出され、前記電流バイパス回路は、露出した2つの集電体に接続されることを特徴とする請求項2または請求項3に記載の電流バイパス回路を備えた二次電池。4. The device according to claim 2, wherein a part of the current collector is exposed from a sealing material of the secondary battery, and the current bypass circuit is connected to the two exposed current collectors. 5. A secondary battery comprising the current bypass circuit according to any one of the preceding claims. 前記電流バイパス回路は、前記二次電池が備えるすべての単電池に対して個々に設けたことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。The secondary battery according to any one of claims 1 to 3, wherein the current bypass circuit is individually provided for all cells included in the secondary battery. . 前記電流バイパス回路は、前記二次電池が備える単電池の任意個数のまとまりに対して個々に設けたことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。The current bypass circuit according to any one of claims 1 to 3, wherein the current bypass circuit is individually provided for an arbitrary number of unit cells included in the secondary battery. Secondary battery. 前記電流バイパス回路は、その両端が前記正極と負極とに接続される、ツェナーダイオードを含むことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。The secondary battery according to any one of claims 1 to 3, wherein the current bypass circuit includes a Zener diode whose both ends are connected to the positive electrode and the negative electrode. . 前記電流バイパス回路は、その両端が前記正極と負極とに接続される、ツェナーダイオードと抵抗器との直列回路を含むことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。The current bypass according to any one of claims 1 to 3, wherein the current bypass circuit includes a series circuit of a Zener diode and a resistor, both ends of which are connected to the positive electrode and the negative electrode. Secondary battery with circuit. 前記正極には活物質としてリチウム‐遷移金属複合化物を用い、前記負極には活物質としてカーボンまたはリチウム‐遷移金属複合化物を用いたことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。4. The method according to claim 1, wherein a lithium-transition metal composite is used as an active material for the positive electrode, and carbon or a lithium-transition metal composite is used as an active material for the negative electrode. A secondary battery comprising the current bypass circuit according to any one of the preceding claims. 前記電解質にはゲル電解質または真性ポリマー電解質のいずれかを用いたことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。The secondary battery according to any one of claims 1 to 3, wherein the electrolyte comprises a gel electrolyte or an intrinsic polymer electrolyte.
JP2002209896A 2002-07-18 2002-07-18 Secondary battery equipped with current bypass circuit Withdrawn JP2004055294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209896A JP2004055294A (en) 2002-07-18 2002-07-18 Secondary battery equipped with current bypass circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209896A JP2004055294A (en) 2002-07-18 2002-07-18 Secondary battery equipped with current bypass circuit

Publications (1)

Publication Number Publication Date
JP2004055294A true JP2004055294A (en) 2004-02-19

Family

ID=31933609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209896A Withdrawn JP2004055294A (en) 2002-07-18 2002-07-18 Secondary battery equipped with current bypass circuit

Country Status (1)

Country Link
JP (1) JP2004055294A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127857A (en) * 2004-10-27 2006-05-18 Nissan Motor Co Ltd Bipolar battery, battery pack and vehicle equipped with their batteries
JP2006156357A (en) * 2004-11-02 2006-06-15 Nissan Motor Co Ltd Bipolar battery, battery pack, vehicle mounting these batteries
JP2006156000A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Bipolar battery and its manufacturing method, battery pack, and automobile
JP2006172915A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Battery pack, compound battery pack and manufacturing method for battery pack
JP2007242424A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Bipolar battery
JP2008130454A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounted with them
JP2008135221A (en) * 2006-11-27 2008-06-12 Nissan Motor Co Ltd Secondary battery system
JP2010032349A (en) * 2008-07-29 2010-02-12 Toyota Motor Corp Charging depth measurement mechanism and measurement method, and secondary battery including the measurement mechanism
US7989106B2 (en) 2004-11-02 2011-08-02 Nissan Motor Co., Ltd. Bipolar battery cell and assembled battery for a vehicle
WO2012077160A1 (en) * 2010-12-08 2012-06-14 株式会社 日立製作所 Nonaqueous secondary battery and secondary battery system
US20140134461A1 (en) * 2011-07-04 2014-05-15 Kazuhiko Inoue Secondary battery
JP2020017384A (en) * 2018-07-24 2020-01-30 三菱自動車工業株式会社 Secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581628B2 (en) * 2004-10-27 2010-11-17 日産自動車株式会社 Bipolar battery
JP2006127857A (en) * 2004-10-27 2006-05-18 Nissan Motor Co Ltd Bipolar battery, battery pack and vehicle equipped with their batteries
JP2006156357A (en) * 2004-11-02 2006-06-15 Nissan Motor Co Ltd Bipolar battery, battery pack, vehicle mounting these batteries
US7989106B2 (en) 2004-11-02 2011-08-02 Nissan Motor Co., Ltd. Bipolar battery cell and assembled battery for a vehicle
JP2006156000A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Bipolar battery and its manufacturing method, battery pack, and automobile
JP2006172915A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Battery pack, compound battery pack and manufacturing method for battery pack
JP2007242424A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Bipolar battery
JP2008130454A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounted with them
JP2008135221A (en) * 2006-11-27 2008-06-12 Nissan Motor Co Ltd Secondary battery system
JP2010032349A (en) * 2008-07-29 2010-02-12 Toyota Motor Corp Charging depth measurement mechanism and measurement method, and secondary battery including the measurement mechanism
WO2012077160A1 (en) * 2010-12-08 2012-06-14 株式会社 日立製作所 Nonaqueous secondary battery and secondary battery system
US20130249498A1 (en) * 2010-12-08 2013-09-26 Hitachi, Ltd. Non-aqueous secondary battery and secondary battery system
US20140134461A1 (en) * 2011-07-04 2014-05-15 Kazuhiko Inoue Secondary battery
JP2020017384A (en) * 2018-07-24 2020-01-30 三菱自動車工業株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
US7609029B2 (en) Battery, assembled battery unit, vehicle equipped with battery, and battery voltage adjusting method
US10847988B2 (en) Secondary battery charging apparatus, temperature information acquisition device, secondary battery charging method, in-situ measurement method of electrochemical impedance spectrum
EP1422769B1 (en) Stack type battery with unit cell voltage measurement tabs
JP4374947B2 (en) Multilayer bipolar secondary battery having a cooling tab
US7914917B2 (en) Hybrid power supply unit
US8734984B2 (en) Bipolar battery manufacturing method, and bipolar battery
US9496742B2 (en) Secondary battery control device
US20060134515A1 (en) Energy device and various applications using the same
JP2004095400A (en) Bipolar battery and its control method
JP2005149891A (en) Bipolar battery and packed battery using the same
US8012614B2 (en) Non-aqueous electrolyte battery, and power supply unit
JP5092196B2 (en) Bipolar battery
KR20080049648A (en) Bipolar battery and assembled battery
JP4967230B2 (en) Battery structure
JP2004171955A (en) Bipolar battery, battery pack with multiple bipolar batteries connected, charge control system for controlling charge of bipolar battery or battery pack, and vehicle with battery pack or charge system mounted thereon
JP2004055294A (en) Secondary battery equipped with current bypass circuit
JP2004355953A (en) Bipolar secondary battery and bipolar secondary battery capacity regulating system
JP2005174691A (en) Bipolar battery
JP4595302B2 (en) Bipolar battery
JP2007207438A (en) Method for manufacturing secondary battery
JP4984386B2 (en) Battery structure
JP2000277176A (en) Lithium secondary battery and method for using the same
JP2005174844A (en) Bipolar battery
JP4438348B2 (en) Bipolar battery and battery pack
JP2005317468A (en) Bipolar electrode, method of manufacturing bipolar electrode, bipolar battery, battery pack and vehicle with these mounted thereon

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004