JP2004052013A - High frequency induction heating coil body - Google Patents

High frequency induction heating coil body Download PDF

Info

Publication number
JP2004052013A
JP2004052013A JP2002207961A JP2002207961A JP2004052013A JP 2004052013 A JP2004052013 A JP 2004052013A JP 2002207961 A JP2002207961 A JP 2002207961A JP 2002207961 A JP2002207961 A JP 2002207961A JP 2004052013 A JP2004052013 A JP 2004052013A
Authority
JP
Japan
Prior art keywords
frequency induction
induction heating
coil body
heating coil
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002207961A
Other languages
Japanese (ja)
Other versions
JP3733089B2 (en
Inventor
Seiichi Sawatsubashi
沢津橋 精一
Hitoshi Tanaka
田中  均
Masanobu Chiba
千葉 正伸
Keiichi Kubo
久保 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2002207961A priority Critical patent/JP3733089B2/en
Priority to KR1020030048052A priority patent/KR100557309B1/en
Priority to CNB031458742A priority patent/CN1277448C/en
Publication of JP2004052013A publication Critical patent/JP2004052013A/en
Application granted granted Critical
Publication of JP3733089B2 publication Critical patent/JP3733089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency induction heating coil body for tempering-heating with which the preparing time according to change of machine kinds can be shortened and the tempered quality can be obtained at better than that of the conventional method at a low cost. <P>SOLUTION: In the high frequency induction heating coil body for induction-heating the outer peripheral surface of a shaft-like member (e.g. inner shaft 2) having plurality of different diameters to the outer peripheral part, or the inner peripheral surface of a cylindrical member (e.g. outer ring 41) having different diameters to the inner peripheral part, this coil body is provided with plurality of linear-shaped heating conductors 22-25 disposed as parallel to the axial direction of the shaft-like member or the cylindrical member and also, disposed as facing to the outer peripheral surface of the shaft-like member or the inner peripheral surface of the cylindrical member, a connecting conductor 26 connected with the respective end parts of the plurality of heating conductors and connecting conductors 27, 28 for connecting the respective other end parts of plurality of heating conductors and lead parts 30, 31 for supplying electric power connected to a high frequency power source 29. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、異径外周部(凹凸形状の外周部)を有する軸状部材の外周面、或いは、異径内周部を有する筒状部材の内周面を高周波誘導加熱する高周波誘導加熱コイル体に関し、例えば、自動車の車輪の軸受部となるハブユニットの内軸(軸状部材)の外周面或いは外輪(筒状部材)の内周面を高周波誘導加熱(例えば、焼戻加熱)するのに用いて好適な高周波誘導加熱コイル体に関する。
【0002】
【従来の技術】
図9は、従来より用いられている内軸焼戻加熱用の高周波焼戻装置1を示すものである。この高周波焼戻装置1は、複数の異径外周部を有するハブユニットの内軸(凹凸形状の外周面を有する軸状部材)2の外周面2aを焼入処理した後においてその内軸2の外周面2aを焼戻処理するための装置であって、大径の巻線部3aと小径の巻線部3bとを直列接続して成る高周波誘導加熱コイル体3と、高周波誘導加熱を促進するための珪素鋼板製コア4とを備えている。なお、上述のコア4は、内軸2を載置状態で昇降移動する移動台4aと、この移動台4a上に保持された内軸2を取り囲む枠状部4bとを互いに組み合わせて成る矩形形状の枠状部材である。
【0003】
焼入処理された内軸2を高周波焼戻装置1にて焼戻処理のために高周波誘導加熱するに際しては、移動台4aに設けられたワーク受け治具5上に内軸2を載置して図9において鎖線で示す位置から実線で示す加熱位置に移動させて、この内軸2をワーク受け治具5とワーク受け軸6(図9参照)との間に挟持状態で保持する。これに伴い、内軸2の大径部Mが高周波誘導加熱コイル体3の大径の巻線部3aの内部に所要の間隔を隔てて挿入配置される一方、内軸2の小径部Nが高周波誘導加熱コイル体3の小径の巻線部3bの内部に僅かな間隔を隔てて挿入配置されると共に前記巻線部3bの下側部分が内軸2の大径部Mの上面に所要の間隔を隔てて対向配置される。そして、内軸2及び高周波誘導加熱コイル体3がコア4にて取り囲まれた位置に設置(すなわち、焼戻対象部品である内軸2がコア4の一部分となるように設定)される。かくして、このような状態の下で、高周波電源(周波数が200〜300Hz程度の発振器)7から高周波誘導加熱コイル体3に高周波電流を流すことにより内軸2の外周面2aを所要の焼戻温度に高周波誘導加熱し、その直後に放冷して焼戻処理を施行するようにしている。
【0004】
また、図10は、従来より用いられている外輪焼戻加熱用の高周波焼戻装置10を示すものである。この高周波焼戻装置10は、複数の異径内周部を有するハブユニットの外輪(凹凸形状の内周面を有する筒状部材)11の内周面11aを焼入処理した後においてその外輪11の内周面11aを焼戻処理するための装置であって、一定の直径となるように導線を螺旋状に巻回して成る高周波誘導加熱コイル体12、及び、外輪11の高周波誘導加熱を促進するための珪素鋼板製コア13を備えている。なお、上述のコア13は、外輪11を載置状態で昇降移動する移動台13aと、この移動台13a上のワーク受け治具14に保持される外輪11を取り囲む枠状部13bと、この枠状部13bの内部側に一体に設けられた磁性材製の軸部13cとを互いに組み合わせて成る枠状部材である。また、図10に示す外輪焼戻加熱用の高周波焼戻装置10は、基本的には既述の内軸焼戻加熱用の高周波焼戻装置1と同様の構造であるが、焼戻対象部品である外輪11の中空部分にコア13の軸部13cが貫通されるようになっている点が内軸焼戻加熱用の高周波焼戻装置1の場合と異なる。かくして、従来では、上述の如き高周波焼戻装置10を用いて、焼入処理後の外輪11の内周面11aを焼戻処理するようにしている。
【0005】
【発明が解決しようとする課題】
ところで、高周波誘導加熱に際して被加熱物(例えば、上述の内軸2や外輪11等)の内部まで加熱する場合、高周波誘導電流の浸透深さが深くなるようにする方法として、高周波誘導加熱コイル体3,12に流す高周波電流の周波数を低く設定する方法を採用するのが通例であり、従来の高周波焼戻装置1,10においてもその周波数は200〜300Hzが選択されている。しかしながら、低い周波数を選択した場合の浸透深さの効果が顕著になるのは磁気変態点(キュリー点)以上の温度域であり、焼戻加熱のような磁気変態点以下の温度領域の加熱ではその効果は期待できない。因みに、常温における誘導電流の浸透深さは、260Hzでは1.0mm程度、2kHzでは0.36mm程度である。ハブユニットの焼入硬化層の深さは概ね2.0〜4.0mm程度あり、焼戻処理時の高周波誘導加熱による昇温はごく表面部に限られていることがわかる。従って、高周波誘導加熱による焼戻処理(焼戻加熱)においては加熱後の熱伝導による昇温の占める割合が大きいという事情に鑑み、良好な焼戻品質を得るためには高周波誘導加熱時の被加熱物表面の温度分布の調整が非常に重要である。
【0006】
従来より用いられている高周波焼戻装置1,10では、内軸2や外輪11等の焼戻対象部品の全体を加熱昇温させるようにしているが、被加熱物の焼戻対象領域の表面温度分布はその形状に影響されることが多く、例えば厚肉部分は昇温しにくく、薄肉部分は昇温し易いといった現象がある。また、形状依存度が高いため、焼戻対象領域の表面温度分布の調整は難しいのが実状である。更に、焼戻対象部品の機種が複数でかつ形状寸法が異なる場合には、同一(単一)のコアを用いて全ての部品について良好な焼戻品質を得ることは非常に難しいのが現状である。また、熱処理品質を優先して複数の焼戻対象部品に対して焼戻対象部品の各々に専用のコア(例えば、上述の珪素鋼板製コア4,13)を用意した場合には、コアの重量は45〜50kgであるため作業員一人が保持・移動させるには重すぎ、従って機種変更毎に焼戻用コアの交換に長時間を要し、生産性が低下する等の不具合を生じる。
【0007】
本発明、このような実状に鑑みてなされたものであって、その目的は、機種変更に伴う段取り時間を短縮することはでき、しかも従来よりも良好な焼戻品質を低コストで得ることのできる焼戻加熱用の高周波誘導加熱コイル体を提供することにある。
【0008】
【課題を解決する手段】
上述の目的を達成するために、本発明では、複数の異径外周部を有する軸状部材の外周面、或いは、異径内周部を有する筒状部材の内周面を焼戻処理のために高周波誘導加熱する焼戻処理用の高周波誘導加熱コイル体において、
(a) 前記軸状部材或いは筒状部材の軸線方向に対して平行に配置されると共に、前記軸状部材の外周面或いは前記筒状部材の内周面に対向して配置される直線形状の複数の加熱導体と、
(b) 前記複数の加熱導体の一端部が接続される接続導体と、
(c) 前記複数の加熱導体の他端部と高周波電源に接続される給電用リード部とを接続するための接続導体と、
をそれぞれ具備するようにしている。
また、本発明では、前記加熱導体を3つ以上設けるようにしている。
また、本発明では、前記複数の加熱導体の一端部が接続される接続導体を、円環状,円弧状,或いは直線状に構成するようにしている。
【0009】
本発明の好ましい実施形態においては、焼戻加熱が必要な焼入硬化層を含む被加熱面である凹凸を有する金属製軸状部材の外周面或いは金属製筒状部材の内周面に対し、軸状部材或いは筒状部材の軸線に平行な複数の導体をその外周面或いは内面に所定の間隔をもって対向配置し、前記軸線に平行な誘導電流を被加熱面に流すことによって被加熱面の全体を均一に昇温させるようにしている。そして、被加熱面内の温度分布を任意に調整可能するために、前記複数の加熱導体と被加熱面との間の間隔(距離)を変化させる、或いは、導体に高周波磁場の磁束密度を調整することのできる磁性材を装着するようにしている。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について図1〜図8を参照して説明する。
【0011】
図1は、本発明の第1実施形態に係る高周波誘導加熱コイル体20を示すものであって、この高周波誘導加熱コイル体20は、焼入処理後のハブユニットの内軸21の外周面21a(図2参照)を焼戻処理のために高周波誘導加熱(焼戻加熱)するのに使用されるものである。本実施形態の高周波誘導加熱コイル体20は、図1に示すように、例えば断面矩形状の導電性パイプ材を所定形状をなすように連結して成る構造体であって、焼戻対象部品である内軸21の軸線方向に対して平行に配置されると共にこの内軸21の外周面21aに対向して配置される直線形状の第1〜第4の加熱導体22,23,24,25と、これらの加熱導体22〜25の一端部(図1では下端部)の全てが接続される円環状の第1の接続導体26と、上述の加熱導体22〜25の前記一端部とは反対側の他端部(図1では上端部)のうちの2つがそれぞれ接続される円環状の第2の接続導体27及び円弧状の第3の接続導体28と、第2の接続導体27と高周波電源29との間に接続された第1の給電用リード部30と、第2の接続導体28と高周波電源29との間に接続された第2の給電用リード部31とから構成されている。
【0012】
更に具体的に述べると、第1及び第2の加熱導体22,23が角度間隔θ1 を隔てた位置においてそれらの両端部が第1及び第2の接続導体26,27にそれぞれ接続されると共に、第3及び第4の加熱導体24,25が角度間隔θ2 を隔てた位置においてそれらの両端部が第1の接続導体26及び第3の接続導体28にそれぞれ接続されている。なお、上述の角度間隔θ1 ,θ2 の大きさは、加熱の目的にあわせて任意に設定することが可能である。そして、第1及び第4の加熱導体22,25と第2及び第3の加熱導体23,24とが円環状の第1及び第2の接続導体26,27に互いに対称な位置に配置されている。なお、前記第1〜第4の加熱導体22〜25は、第1の接続導体26の内径側において垂直状に配置されると共に、それらの上端部は第2及び第3の接続導体27,28の下面部に接続されている。
【0013】
かくして、高周波電源29から第1及び第2の給電用リード部30,31を介して高周波電流が高周波誘導加熱コイル体20に供給されると、後に詳述するように図1において矢印Rで示す電流経路を通って高周波電流が流れるように構成されている。なお、この場合、第1の接続導体26のうち、第1及び第2の加熱導体22,23間の導体部分α及び第3及び第4の加熱導体24,25間の導体部分β、並びに、第2の接続導体27のうち第1及び第2の加熱導体22,23間の導体部分γの両端箇所において高周波電圧が同位相でかつ同電位となるように構成されており、従って、これらの導体部分α,β,γには高周波電流は流れないようになっている。
【0014】
一方、上述の第2及び第3の接続導体27,28、並びに、第1及び第2の給電用リード部30,31は、互いに僅かな間隔を隔ててそれぞれ平行状に対向配置されており、図示を省略したがこれらの間には絶縁板が介在されるようになっている。また、導電性パイプ材からそれぞれ成る前記第1〜第4の加熱導体22〜25,第1〜第3の接続導体26〜28,第1及び第2の給電用リード部30,31の中空部には、図外の冷却液供給機構から供給される冷却液が流れるように構成されている。更に、本実施形態の高周波誘導加熱コイル体20にあっては、図2に示すように、第1〜第4の加熱導体22〜25の一端部の箇所であって、かつ、第1〜第4の加熱導体22〜25と第1の接続導体26との接続部の近傍箇所に、磁束集中用の磁性材32がそれぞれ取付けられている。
【0015】
ここで、上述の高周波誘導加熱コイル体20を用いて内軸21の外周面21aを焼戻処理のために高周波誘導加熱する際の手順を述べると、次の通りである。まず、焼入対象部品である内軸21を図外のワーク受け治具にて固定し、高周波誘導加熱コイル体20を図外の昇降機構にて例えば下降移動させて、図2に示す如く、内軸21のフランジ部Fの上方位置において、内軸21の軸線と高周波誘導加熱コイル体20の軸線(第1及び第2の接続導体26,27の中心線)に一致せしめた状態で配置する。これにより、高周波誘導加熱コイル体20の第1〜第4の加熱導体22〜25を、前記軸線に対して平行に配置して、内軸21の外周面21aに対して所定間隔を隔てて平行状に対向配置する。しかる後に、高周波電源29から第1及び第2の給電用リード部30,31を介して高周波電流を高周波誘導加熱コイル体20に供給すると共に、内軸21を図外のワーク受け治具と一緒にその軸線を中心に回転駆動する。
【0016】
この場合、高周波誘導加熱コイル体20へ高周波電力を供給するのに伴い、高周波誘導加熱コイル体20には、或る瞬時において図1の矢印Rで示す方向の経路に沿って高周波電流が流れ、次の瞬時には前記矢印R方向とは反対の方向の経路に沿って高周波電流が交互に流れることとなる。具体的には、図1に示す場合の高周波電流は、高周波電源29,第1の給電用リード部30,第2の接続導体27の導体部分A,第1の加熱導体22,第1の接続導体26の導体部分B(前記導体部分α,βの間の導体部分),第4の加熱導体25,第3の接続導体28,及び第2の給電用リード部31を順次に通って流れると同時に、高周波電源29,第1の給電用リード部30,第2の接続導体27の導体部分C(前記導体部分Aに対向する導体部分),第2の加熱導体23,第1の接続導体26の導体部分D(前記導体部分Bに対向する導体部分),第3の加熱導体24,及び第2の給電用リード部31を順次に通って流れる。かくして、回転駆動状態の内軸21の外周面21aが、その外周面21aと対向して配置されている直線形状の第1〜第4の加熱導体22〜25に流れる高周波電流の誘導作用にて所要の焼戻温度にまで高周波誘導加熱される。しかる後に、内軸21を所定時間にわたり放冷することにより焼戻処理を完了する。
【0017】
上述の如き構成の高周波誘導加熱コイル体20によれば、内軸21の外周面21aに対して平行に配置された直線形状の第1〜第4の加熱導体22〜25の作用によって、前記外周面21aには内軸21の軸線に平行な誘導電流が流れることとなり、その結果、前記外周面21aの全体(すなわち、被加熱面の全体)を均一に昇温させることができ、ひいては従来以上の良好な焼戻品質を得ることができる。
【0018】
なお、ここで、被加熱面(外周面21a)に被加熱物(内軸21)の軸線に平行な誘導電流を流すことによって被加熱面の全体を均一に昇温させることができることについて説明すると、次の通りである。すなわち、本コイル体20を用いて被加熱物の軸線に平行に円周方向の複数箇所(本実施形態では、4箇所)において誘導電流を流すようにした場合、本コイル体20は被加熱面を常時加熱している訳ではなく、被加熱面の円周方向で昇温しているのは第1〜第4の加熱導体22〜25にそれぞれ対向している部分(4箇所)である。そして、この際、被加熱物は回転しているため第1〜第4の加熱導体22〜25によって昇温された領域が次の時点でこれらの第1〜第4の加熱導体22〜25に対向するまでは放冷状態あり、温度が高い部分から低い部分へ熱が移動することにより全体が一定温度に近づくようになる。このような状態を繰り返すのに伴って(つまり、加熱と放熱とを交互に繰り返すのに伴って)、一定時間の経過後(例えば、15秒程度)経過後に被加熱面の全体がほぼ均一になり、更にその後の一定時間(例えば、120秒程度)経過後に完全に均熱化することとなるのである。
【0019】
ところで、高周波焼戻処理においては、一般に、加熱も重要なことであるが、その加熱後の放冷時間を利用して被加熱物の内部に熱移動をさせることも重要であり、この熱移動が不充分であると表面付近の硬さが下がった後に、いったん硬さが上がり(正確には、焼戻時に硬さが下がらず焼入時の硬さのままである)、それから再び硬さ下がることがある。しかし、本コイル体20によれば、このようなことを生じることはなく、被加熱物の表面から内部に向かって硬さが低下するように焼戻処理を行うことが可能である。
【0020】
更に、本コイル体20によれば、前記外周面21a(すなわち、被加熱面)と第1〜第4の加熱導体22〜25との間の間隔(距離)を適宜に調節することによって、或いは、高周波磁場の磁束密度を調整することができる磁性材32を第1〜第4の加熱導体22〜25に装着することにより、前記外周面21aにおける温度分布を任意に調整することが可能である。特に、直線形状の第1〜第4の加熱導体22〜25と被加熱面との間の距離は被加熱物の軸線方向の数箇所において異なることとなるため被加熱面の加熱温度に許容以上の差異が生じる場合には、第1〜第4の加熱導体22〜25の各箇所のなかで昇温量の少ない領域に対向する部分にケイ素鋼板等の磁性材32を装着することにより昇温量をそろえて均一加熱を行うことが可能である。
【0021】
また、本コイル体20の構成は簡素で安価なものなので、焼戻対象部品の種類が増えた場合に、その種類分の専用の高周波誘導加熱コイル体20を用意して各部品に最適な加熱条件で焼戻処理を行うことができることから、多機種にわたる熱処理品質管理が容易になると共に、高周波誘導加熱コイル体20の重量は従来のものに比べて非常に軽量(因みに、2kg程度)であることから、機種変更に伴う段取り時間を短縮することができる。更に、円環状の第1及び第2の接続導体26,27を用いることにより、高周波誘導加熱コイル体20の製造を容易に行ない得ると共に、高周波誘導加熱コイル体20を高強度に構成することができる。
【0022】
以下に、本発明の第1実施形態に係る高周波誘導加熱コイル体20を用いて焼戻処理する場合の具体例を示す。
具体例
(1) 焼戻対象部品: ハブユニットの内軸
(a) 材質   : S53C
(b) 全長   : 84.5mm
(c) 軸径   : 20〜26mm
(d) フランジ径: 135mm
(2) 高周波焼戻条件
(a) 周波数  : 2.5kHz
(b) 出力   : 26kW
(c) 加熱時間 : 15sec
(d) 放冷時間 : 120sec
【0023】
上記の条件の下で焼戻処理を行ったところ、内軸の外周面に形成された焼入硬化層が最表面から内部の母材との境界線に至るまで硬さが落ちており、充分に焼戻されている事が確認できた。
【0024】
一方、図3は、高周波誘導加熱コイル体20の変形例を示すものであって、この変形例に係る高周波誘導加熱コイル体20’は、第1の接続導体26の導体部分α,β、並びに、第2の接続導体27の導体部分γの一部分に切断部を設けてこれらの切断部に絶縁版35,36,37をそれぞれ配置するようにしたものである。なお、絶縁版35,36,37以外の構成は、既述の高周波誘導加熱コイル体20と同様である。また、図4は、高周波誘導加熱コイル体20の別の変形例を示すものであって、この変形例に係る高周波誘導加熱コイル体20’’は、第1の接続導体26の導体部分α,β、並びに、第2の接続導体27の導体部分γの全部を切除するようにしたものである。なお、高周波誘導加熱コイル体20’’のその他の構成は、既述の高周波誘導加熱コイル体20と同様である。これらの高周波誘導加熱コイル体20’,20’’は、既述の高周波誘導加熱コイル体20に代えて使用可能であり、既述の高周波誘導加熱コイル体20の場合と同様の作用効果を奏することができる。
【0025】
また、図5は、本発明の第2実施形態に係る高周波誘導加熱コイル体40を示すものであって、この高周波誘導加熱コイル体40は、焼入処理後のハブユニットの外輪41(図6参照)の内周面41aを焼戻処理のために高周波誘導加熱するのに使用されるものである。本実施形態の高周波誘導加熱コイル体40は、図5に示すように、例えば断面矩形状の導電性パイプ材を所定形状をなすように連結して成る構造体であって、焼戻対象部品である外輪41の軸線方向に対して平行に配置されると共にこの外輪41の内周面41aに対向して配置される直線形状の第1〜第4の加熱導体42,43,44,45と、これらの第1〜第4の加熱導体42〜45の一端部(図5では下端部)の全てが接続される円環状の第1の接続導体46と、この第1の接続導体46に接続されていない第1〜第4の加熱導体42〜45の他端部すなわち前記一端部とは反対側の他端部(図5では上端部)にそれぞれ接続されかつ第1〜第4の加熱導体42〜45に対して第1の接続導体46の内側に向けてほぼ90度をなすように接合された第2〜第5の接続導体47,48,49,50と、第2及び第3の接続導体47,48の先端部に接続された第1の給電用リード部51と、第4及び第5の接続導体49,50の先端部に接続された第2の給電用リード部52とから構成されている。なお、本実施形態においては、第1の接続導体46の上面部に加熱導体42〜45の下端部が接続されており、第1の接続導体46の外周面と第1〜第4の加熱導体42〜45の外面とが同一の円筒面上に配置されている。
【0026】
かくして、高周波電源53から第1及び第2の給電用リード部51,52を介して高周波電流が高周波誘導加熱コイル体40に供給されると、後に詳述するように図1において矢印Sで示す電流経路を通って高周波電流が流れるように構成されている。なお、この場合、第1の接続導体46のうち、第1及び第2の加熱導体42,43間の導体部分α’及び第3及び第4の加熱導体44,45間の導体部分β’も両端箇所において高周波電圧が同位相でかつ同電位となるように構成されているため、これらの導体部分α’,β’には高周波電流は流れないようになっている。
【0027】
一方、上述の第2〜第5の接続導体47の先端部、並びに、第1及び第2の給電用リード部30,31は、互いに僅かな間隔を隔ててそれぞれ平行状に対向配置されており、図示を省略したがこれらの間には絶縁板が介在されるようになっている。また、導電性パイプ材からそれぞれ成る前記第1〜第4の加熱導体42〜45,第1〜第5の接続導体46〜50,第1及び第2の給電用リード部51,52の中空部には、図外の冷却液供給機構から供給される冷却液が流れるように構成されている。更に、本実施形態の高周波誘導加熱コイル体40にあっては、図6に示すように、第1〜第4の加熱導体42〜45のうちその外側面を除く部分に磁束集中用の磁性材54がそれぞれ取付けられている。
【0028】
ここで、上述の高周波誘導加熱コイル体40を用いて外輪41の内周面41aを焼戻処理のために高周波誘導加熱する際の手順を述べると、次の通りである。まず、焼入対象部品である外輪41を図外のワーク受け治具にて固定し、高周波誘導加熱コイル体40を図外の昇降機構にて例えば下降移動させて図6に示す如く外輪41の軸線と高周波誘導加熱コイル体40の軸線(第1の接続導体46の中心線)に一致する位置に配置する。これにより、高周波誘導加熱コイル体40の第1〜第4の加熱導体42〜45を外輪41の内周面41aに対して所定間隔を隔てて平行状に対向配置する。しかる後に、高周波電源53から第1及び第2の給電用リード部51,52を介して高周波電流を高周波誘導加熱コイル体40に供給すると共に、外輪41を図外のワーク受け治具と一緒にその軸線を中心に回転駆動する。
【0029】
この場合、高周波誘導加熱コイル体40へ高周波電力を供給するのに伴い、高周波誘導加熱コイル体40には、或る瞬時において図5の矢印Sで示す方向の経路に沿って高周波電流が流れ、次の瞬時には前記矢印S方向とは反対の方向の経路に沿って高周波電流が交互に流れることとなる。具体的には、図5に示す場合の高周波電流は、高周波電源53,第1の給電用リード部51,第2の接続導体47,第1の加熱導体42,第1の接続導体46の導体部分G(前記部分α’,β’の間の導体部分),第4の加熱導体45,第5の接続導体50,及び第2の給電用リード部52を順次に通って流れると共に、高周波電源53,第1の給電用リード部51,第3の接続導体48,第2の加熱導体43,第1の接続導体46の導体部分H(前記導体部分Gに対向する導体部分),第3の加熱導体44,第4の接続導体49,及び第2の給電用リード部52を順次に通って流れる。かくして、回転駆動状態の外輪41の内周面41aが、その内周面41aと対向して配置されている第1〜第4の加熱導体22〜25に流れる高周波電流の誘導作用にて所要の焼戻温度にまで均一に高周波誘導加熱される。しかる後に、外輪41を所定時間にわたり放冷することにより焼戻処理を完了する。
【0030】
上述の如き構成の高周波誘導加熱コイル体40によれば、外輪41の内周面41aに対して平行に配置された直線形状の第1〜第4の加熱導体42〜45の作用によって、前記外周面41aには外輪41の軸線に平行な誘導電流が流れることとなり、その結果、前記内周面41aの全体(すなわち、被加熱面の全体)を均一に昇温させることができ、ひいては従来以上の良好な焼戻品質を得ることができる。しかも、前記内周面41a(すなわち、被加熱面)と第1〜第4の加熱導体42〜45との間の間隔(距離)を適宜に調節することによって、或いは、高周波磁場の磁束密度を調整することができる磁性材54を第1〜第4の加熱導体42〜45に装着することにより、前記内周面41aにおける温度分布を任意に調整することが可能である。また、高周波誘導加熱コイル体40の構成は簡素で安価なものなので、焼戻対象部品の種類が増えた場合に、その種類分の専用の高周波誘導加熱コイル体を用意して各部品に最適な加熱条件で焼戻処理を行うことができることから、多機種にわたる熱処理品質管理が容易になると共に、高周波誘導加熱コイル体40の重量は従来のものに比べて非常に軽量(因みに、2kg程度)であることから、機種変更に伴う段取り時間を短縮することができる。更に、円環状の第1の接続導体46を用いることにより、高周波誘導加熱コイル体40の製造を容易に行ない得ると共に、高周波誘導加熱コイル体20を高強度に構成することができる。
【0031】
以下に、本発明の第2実施形態に係る高周波誘導加熱コイル体40を用いて焼戻処理する場合の具体例を示す。
具体例
(1) 焼戻対象部品: ハブユニットの外輪
(a) 材質   : S53C
(b) 高さ   : 55.8mm
(c) 最小内径 : 51mm
(d) ボール溝径: 61.5mm
(4) 高周波焼戻条件
(a) 周波数  : 2.5kHz
(b) 出力   : 20kW
(c) 加熱時間 : 15sec
(d) 放冷時間 : 120sec
【0032】
上記の条件の下で焼戻処理を行ったところ、内軸の外周面に形成された焼入硬化層が最表面から内部の母材との境界線に至るまで硬さが落ちており、充分に焼戻されている事が確認できた。
【0033】
一方、図7は、高周波誘導加熱コイル体40の変形例を示すものであって、この変形例に係る高周波誘導加熱コイル体40’は、第1の接続導体46の導体部分α’,β’の一部分に切断部を設けてこれらの切断部に絶縁版55,56をそれぞれ配置するようにしたものである。なお、絶縁版55,56以外の構成は、既述の高周波誘導加熱コイル体40と同様である。また、図8は、高周波誘導加熱コイル体40の別の変形例を示すものであって、この変形例に係る高周波誘導加熱コイル体40’’は、第1の接続導体46の導体部分α’,β’の全部を切除するようにしたものである。なお、高周波誘導加熱コイル体40’’のその他の構成は、既述の高周波誘導加熱コイル体20と同様である。これらの高周波誘導加熱コイル体40’,40’’は、既述の高周波誘導加熱コイル体40に代えて使用可能であり、既述の高周波誘導加熱コイル体40の場合と同様の作用効果を奏することができる。
【0034】
以上、本発明の実施形態について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、第1及び第2の接続導体26,27若しくは第1の接続導体46を円環状又は円弧状にする必要は必ずしもなく、互いに隣接する第1〜第4の加熱導体22〜25若しくは42〜45を直線形状の接続導体にて接続するようにしても良い。また、加熱導体の数は、4つに限定されることなく、必要に応じて増減(但し、2つ以上)が可能である。更に、本発明に係る高周波誘導加熱コイル体20,40は、ハブユニットの内軸21又は外輪41を加熱対象とする場合に限定されることなく、外周面又は内周面に複数の異径部を有する各種の部品を加熱対象とすることが可能である。
【0035】
また、既述の実施形態及び変形例では、焼戻用の高周波誘導加熱コイル体について述べたが、これに限らず、焼入用の高周波誘導加熱コイル体にも本発明を適用可能であることは言う迄もない。
【0036】
【発明の効果】
請求項1に記載の本発明は、複数の異径外周部を有する軸状部材の外周面、或いは、異径内周部を有する筒状部材の内周面を高周波誘導加熱する高周波誘導加熱コイル体において、軸状部材或いは筒状部材の軸線方向に対して平行に配置されると共に、軸状部材の外周面或いは筒状部材の内周面に対向して配置される直線形状の複数の加熱導体と、複数の加熱導体の一端部が接続される接続導体と、複数の加熱導体の他端部と高周波電源に接続される給電用リード部とを接続するための接続導体とをそれぞれ具備するようにしたものであるから、軸状部材の外周面或いは筒状部材の内周面に複数の異径形状部(凹凸)があっても、加熱対象部品の形状に影響されることなく、高周波誘導加熱コイル体の加熱導体と加熱対象部品の被加熱面との間の間隔(距離)の変更や磁性材料の装着により加熱中における加熱対象部品の焼入硬化層及びその周辺領域の表面温度分布を調整することが容易であり、加熱終了後の熱伝導による焼入硬化層深部の最適温度分布を得るための表面温度分布を設定することができる。また、高周波誘導加熱コイル体を含む加熱装置の総重量が2kg程度と従来の加熱装置に比べて非常に軽量かつ安価で済むため、加熱対象部品の種類が増えた場合、その種類分の専用の加熱装置を用意して各部品に最適な加熱条件で加熱処理を行うことができ、多機種にわたる熱処理品質管理が容易になる。
【0037】
また、請求項2に記載の本発明は、加熱導体を3つ以上設けるようにしたものであるから、3つ以上の直線形状の加熱導体の存在により、十分な程度の均一加熱が可能となる。
【0038】
また、請求項3に記載の本発明は、複数の加熱導体の一端部が接続される接続導体を、円環状,円弧状,或いは直線状に構成したものであるから、高周波誘導加熱コイル体の設計の自由度を向上させることができ、特に円環状の接続導体とした場合には、高周波誘導加熱コイル体の強度を充分に確保することができると共に高周波誘導加熱コイル体の製造の容易化を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る焼戻処理用の高周波誘導加熱コイル体における電流経路を示す斜視図である。
【図2】本発明の第1実施形態に係る焼戻処理用の高周波誘導加熱コイル体を用いてハブユニットの内軸の外周面を高周波誘導加熱する際の状況を示す斜視図である。
【図3】本発明の第1実施形態に係る焼戻処理用の高周波誘導加熱コイル体の変形例を示す斜視図である。
【図4】本発明の第1実施形態に係る焼戻処理用の高周波誘導加熱コイル体の別の変形例を示す斜視図である。
【図5】本発明の第2実施形態に係る焼戻処理用の高周波誘導加熱コイル体における電流経路を示す斜視図である。
【図6】本発明の第2実施形態に係る焼戻処理用の高周波誘導加熱コイル体を用いてハブユニットの外輪の内周面を高周波誘導加熱する際の状況を示す斜視図である。
【図7】本発明の第2実施形態に係る焼戻処理用の高周波誘導加熱コイル体の変形例を示す斜視図である。
【図8】本発明の第2実施形態に係る焼戻処理用の高周波誘導加熱コイル体の別の変形例を示す斜視図である。
【図9】ハブユニットの内軸の外周面を焼戻処理するために従来より用いられている高周波焼戻装置の斜視図である。
【図10】ハブユニットの外輪の内周面を焼戻処理するために従来より用いられている高周波焼戻装置の斜視図である。
【符号の説明】
20 内軸焼戻処理用の高周波誘導加熱コイル体
21 ハブユニットの内軸
21a 外周面
22 第1の加熱導体
23 第2の加熱導体
24 第3の加熱導体
25 第4の加熱導体
26 第1の接続導体
27 第2の接続導体
28 第3の接続導体
29 高周波電源
30 第1の給電用リード部
31 第2の給電用リード部
32 磁性材
40 外輪焼戻処理用の高周波誘導加熱コイル体
41 ハブユニットの外輪
41a 内周面
42 第1の加熱導体
43 第2の加熱導体
44 第3の加熱導体
45 第4の加熱導体
46 第1の接続導体
47 第2の接続導体
48 第3の接続導体
49 第4の接続導体
50 第5の接続導体
51 第1の給電用リード部
52 第2の給電用リード部
53高周波電源
54 磁性材
R,S 矢印(電流経路)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency induction heating coil body for high-frequency induction heating of an outer peripheral surface of a shaft member having an outer peripheral portion having a different diameter (an outer peripheral portion having an uneven shape) or an inner peripheral surface of a cylindrical member having an inner peripheral portion having a different diameter. For example, high-frequency induction heating (for example, tempering heating) of the outer peripheral surface of the inner shaft (shaft member) or the inner peripheral surface of the outer ring (cylindrical member) of a hub unit serving as a bearing portion of a vehicle wheel is performed. The present invention relates to a high-frequency induction heating coil suitable for use.
[0002]
[Prior art]
FIG. 9 shows an induction tempering device 1 for inner tempering heating which has been conventionally used. The induction tempering apparatus 1 is configured such that after an outer peripheral surface 2a of an inner shaft (shaft member having an irregular outer surface) 2 of a hub unit having a plurality of different diameter outer peripheral portions is hardened, the inner shaft 2 A high-frequency induction heating coil body 3 in which a large-diameter winding portion 3a and a small-diameter winding portion 3b are connected in series, and a device for tempering the outer peripheral surface 2a; And a core 4 made of silicon steel. The above-mentioned core 4 has a rectangular shape formed by combining a moving table 4a that moves up and down with the inner shaft 2 placed thereon and a frame-shaped portion 4b that surrounds the inner shaft 2 held on the moving table 4a. Frame-shaped member.
[0003]
When the quenched inner shaft 2 is subjected to high-frequency induction heating for tempering by the high-frequency tempering device 1, the inner shaft 2 is placed on a work receiving jig 5 provided on a movable table 4a. In FIG. 9, the inner shaft 2 is moved from the position shown by the dashed line to the heating position shown by the solid line to hold the inner shaft 2 between the work receiving jig 5 and the work receiving shaft 6 (see FIG. 9). Along with this, the large-diameter portion M of the inner shaft 2 is inserted into the large-diameter winding portion 3a of the high-frequency induction heating coil body 3 at a predetermined interval, while the small-diameter portion N of the inner shaft 2 is inserted. The small-diameter winding portion 3b of the high-frequency induction heating coil body 3 is inserted into the small-diameter winding portion 3b at a small interval, and the lower portion of the winding portion 3b is provided on the upper surface of the large-diameter portion M of the inner shaft 2. They are arranged facing each other with an interval. Then, the inner shaft 2 and the high-frequency induction heating coil body 3 are installed at a position surrounded by the core 4 (that is, the inner shaft 2 which is a part to be tempered is set to be a part of the core 4). Thus, under such a condition, a high-frequency current is supplied from the high-frequency power source (oscillator having a frequency of about 200 to 300 Hz) to the high-frequency induction heating coil body 3 so that the outer peripheral surface 2a of the inner shaft 2 has a required tempering temperature. High-frequency induction heating, and immediately thereafter, it is allowed to cool to perform a tempering treatment.
[0004]
FIG. 10 shows an induction tempering apparatus 10 for heating and heating an outer ring which has been conventionally used. The induction tempering apparatus 10 is configured such that after an inner peripheral surface 11a of an outer ring (a cylindrical member having an uneven inner peripheral surface) 11 of a hub unit having a plurality of different diameter inner peripheral portions is hardened, the outer ring 11 is formed. Is a device for tempering the inner peripheral surface 11a of the coil, which promotes high-frequency induction heating of the high-frequency induction heating coil body 12 and the outer ring 11 formed by spirally winding a conductive wire so as to have a constant diameter. And a core 13 made of a silicon steel sheet. The above-mentioned core 13 includes a moving table 13a that moves up and down with the outer ring 11 placed thereon, a frame 13b surrounding the outer ring 11 held by a work receiving jig 14 on the moving table 13a, It is a frame-shaped member formed by combining a magnetic material shaft portion 13c integrally provided inside the shape portion 13b. Further, the induction tempering apparatus 10 for outer ring tempering heating shown in FIG. 10 has basically the same structure as the above-described induction tempering apparatus 1 for inner shaft tempering heating, but the components to be tempered. The point that the shaft portion 13c of the core 13 penetrates through the hollow portion of the outer ring 11 is different from the case of the induction tempering apparatus 1 for tempering and heating the inner shaft. Thus, in the related art, the inner peripheral surface 11a of the outer ring 11 after the quenching process is tempered using the induction hardening device 10 as described above.
[0005]
[Problems to be solved by the invention]
By the way, when heating the inside of the object to be heated (for example, the inner shaft 2 and the outer ring 11 described above) at the time of high-frequency induction heating, as a method for increasing the penetration depth of the high-frequency induction current, a high-frequency induction heating coil body is used. It is usual to adopt a method of setting the frequency of the high-frequency current flowing through the high-frequency tempering devices 3 and 12 to be low. In the conventional high-frequency tempering devices 1 and 10, the frequency is selected to be 200 to 300 Hz. However, the effect of the penetration depth when a low frequency is selected is remarkable in the temperature range above the magnetic transformation point (Curie point), and in the heating in the temperature range below the magnetic transformation point such as tempering heating. The effect cannot be expected. Incidentally, the penetration depth of the induced current at room temperature is about 1.0 mm at 260 Hz and about 0.36 mm at 2 kHz. It can be seen that the depth of the quench hardened layer of the hub unit is approximately 2.0 to 4.0 mm, and the temperature rise by high-frequency induction heating during the tempering process is limited to only the surface portion. Therefore, in the tempering process by high-frequency induction heating (tempering heating), in view of the fact that the rate of temperature rise due to heat conduction after heating is large, in order to obtain good tempering quality, the temperature during high-frequency induction heating is high. It is very important to adjust the temperature distribution on the surface of the heated object.
[0006]
In the conventionally used induction tempering devices 1 and 10, the entire tempering target components such as the inner shaft 2 and the outer ring 11 are heated and heated, but the surface of the tempering target region of the object to be heated is heated. The temperature distribution is often influenced by its shape. For example, there is a phenomenon that the temperature of a thick portion is hard to rise and the temperature of a thin portion is easy to rise. In addition, since the degree of shape dependency is high, it is difficult to adjust the surface temperature distribution in the tempering target area. Furthermore, when there are a plurality of types of tempering target components and different shapes and dimensions, it is very difficult to obtain good tempering quality for all components using the same (single) core. is there. In addition, in the case where a dedicated core (for example, the above-mentioned silicon steel cores 4 and 13) is prepared for each of the plurality of tempering target parts by giving priority to the heat treatment quality, the weight of the cores is reduced. Since the weight is 45 to 50 kg, it is too heavy for one worker to hold and move. Therefore, it takes a long time to replace the tempering core every time the model is changed, which causes problems such as a decrease in productivity.
[0007]
The present invention has been made in view of such a situation, and an object of the present invention is to reduce the setup time due to a model change and to obtain a better tempering quality at a lower cost than before. It is an object of the present invention to provide a high-frequency induction heating coil for tempering heating.
[0008]
[Means to solve the problem]
In order to achieve the above object, according to the present invention, an outer peripheral surface of a shaft-shaped member having a plurality of different-diameter outer peripheral portions, or an inner peripheral surface of a cylindrical member having a different-diameter inner peripheral portion is subjected to a tempering process. In the high-frequency induction heating coil body for tempering treatment to perform high-frequency induction heating
(A) A linear shape that is arranged parallel to the axial direction of the shaft member or the cylindrical member, and is arranged to face the outer peripheral surface of the shaft member or the inner peripheral surface of the cylindrical member. A plurality of heating conductors;
(B) a connection conductor to which one ends of the plurality of heating conductors are connected;
(C) a connection conductor for connecting the other ends of the plurality of heating conductors and a power supply lead connected to a high-frequency power supply;
Respectively.
In the present invention, three or more heating conductors are provided.
Further, in the present invention, the connection conductor to which one end of the plurality of heating conductors is connected is formed in an annular, arcuate, or linear shape.
[0009]
In a preferred embodiment of the present invention, with respect to the outer peripheral surface of the metal shaft member or the inner peripheral surface of the metal cylindrical member having irregularities that is a heated surface including a quenched and hardened layer requiring tempering heating, A plurality of conductors parallel to the axis of the shaft-shaped member or the cylindrical member are arranged on the outer peripheral surface or the inner surface thereof at predetermined intervals to face each other, and an induced current parallel to the axis is caused to flow through the surface to be heated. Is heated uniformly. Then, in order to arbitrarily adjust the temperature distribution in the surface to be heated, the distance (distance) between the plurality of heating conductors and the surface to be heated is changed, or the magnetic flux density of the high-frequency magnetic field is adjusted in the conductor. Magnetic material that can be used.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0011]
FIG. 1 shows a high-frequency induction heating coil body 20 according to a first embodiment of the present invention. The high-frequency induction heating coil body 20 has an outer peripheral surface 21a of an inner shaft 21 of a hub unit after a quenching process. (See FIG. 2) is used for high-frequency induction heating (tempering heating) for tempering. As shown in FIG. 1, the high-frequency induction heating coil body 20 of the present embodiment is a structure formed by connecting conductive pipe members having a rectangular cross section so as to form a predetermined shape. Straight-shaped first to fourth heating conductors 22, 23, 24, 25 arranged in parallel to the axial direction of a certain inner shaft 21 and opposed to the outer peripheral surface 21 a of the inner shaft 21; An annular first connection conductor 26 to which all of the one end portions (lower end portions in FIG. 1) of these heating conductors 22 to 25 are connected, and the heating conductors 22 to 25 on the side opposite to the one end portions. , The second connecting conductor 27 and the third connecting conductor 28 having an arc shape to which two of the other ends (the upper end in FIG. 1) are connected, respectively, the second connecting conductor 27 and the high-frequency power supply. 29, a second power supply lead 30 connected between the first power supply lead 30 and the second connection lead. And a connected second power supply lead portion 31. Between the 28 and the high frequency power source 29.
[0012]
More specifically, the first and second heating conductors 22 and 23 are separated by an angular interval θ.1At both ends are connected to the first and second connection conductors 26 and 27, respectively, and the third and fourth heating conductors 24 and 25 are separated by an angular interval θ.2At both positions are connected to the first connection conductor 26 and the third connection conductor 28, respectively. Note that the above-described angle interval θ1, Θ2Can be arbitrarily set according to the purpose of heating. The first and fourth heating conductors 22 and 25 and the second and third heating conductors 23 and 24 are arranged on the annular first and second connection conductors 26 and 27 at positions symmetrical to each other. I have. The first to fourth heating conductors 22 to 25 are vertically arranged on the inner diameter side of the first connection conductor 26, and their upper ends are connected to the second and third connection conductors 27 and 28. Is connected to the lower surface portion.
[0013]
Thus, when a high-frequency current is supplied from the high-frequency power supply 29 to the high-frequency induction heating coil body 20 via the first and second power supply leads 30, 31, as shown in detail in FIG. The high-frequency current is configured to flow through the current path. In this case, of the first connection conductor 26, the conductor portion α between the first and second heating conductors 22 and 23 and the conductor portion β between the third and fourth heating conductors 24 and 25, and The high frequency voltage is in the same phase and at the same potential at both ends of the conductor portion γ between the first and second heating conductors 22 and 23 of the second connection conductor 27, and therefore, these No high-frequency current flows through the conductor portions α, β, and γ.
[0014]
On the other hand, the above-described second and third connection conductors 27 and 28 and the first and second power supply leads 30 and 31 are opposed to each other in parallel at a slight distance from each other. Although not shown, an insulating plate is interposed between them. Also, the hollow portions of the first to fourth heating conductors 22 to 25, the first to third connection conductors 26 to 28, and the first and second power supply leads 30, 31 each made of a conductive pipe material. Is configured to flow a cooling liquid supplied from a cooling liquid supply mechanism (not shown). Further, in the high-frequency induction heating coil body 20 of the present embodiment, as shown in FIG. 2, it is located at one end of the first to fourth heating conductors 22 to 25, and The magnetic material 32 for concentrating magnetic flux is attached to a portion near the connection portion between the fourth heating conductors 22 to 25 and the first connection conductor 26.
[0015]
Here, the procedure for high-frequency induction heating of the outer peripheral surface 21a of the inner shaft 21 for tempering using the above-described high-frequency induction heating coil body 20 will be described as follows. First, the inner shaft 21 to be quenched is fixed by a work receiving jig (not shown), and the high-frequency induction heating coil body 20 is moved downward, for example, by an elevating mechanism (not shown), as shown in FIG. At a position above the flange portion F of the inner shaft 21, the inner shaft 21 and the high-frequency induction heating coil 20 are aligned with the axis (the center line of the first and second connection conductors 26 and 27). . Thereby, the first to fourth heating conductors 22 to 25 of the high-frequency induction heating coil body 20 are arranged parallel to the axis, and are parallel to the outer peripheral surface 21 a of the inner shaft 21 at a predetermined interval. Are arranged facing each other. Thereafter, a high-frequency current is supplied from the high-frequency power supply 29 to the high-frequency induction heating coil body 20 via the first and second power supply leads 30 and 31, and the inner shaft 21 is moved together with a work receiving jig (not shown). Then, it is driven to rotate about its axis.
[0016]
In this case, along with supplying the high-frequency power to the high-frequency induction heating coil 20, a high-frequency current flows through the high-frequency induction heating coil 20 at a certain moment along a path in a direction indicated by an arrow R in FIG. At the next moment, the high-frequency current flows alternately along the path in the direction opposite to the direction of the arrow R. Specifically, the high-frequency current in the case shown in FIG. 1 is supplied by the high-frequency power supply 29, the first power supply lead 30, the conductor portion A of the second connection conductor 27, the first heating conductor 22, and the first connection. When flowing through the conductor portion B of the conductor 26 (the conductor portion between the conductor portions α and β), the fourth heating conductor 25, the third connection conductor 28, and the second power supply lead portion 31 sequentially. At the same time, the high-frequency power source 29, the first power supply lead 30, the conductor portion C of the second connection conductor 27 (the conductor portion facing the conductor portion A), the second heating conductor 23, and the first connection conductor 26 (The conductor portion facing the conductor portion B), the third heating conductor 24, and the second power supply lead portion 31 in this order. Thus, the outer peripheral surface 21a of the inner shaft 21 in the rotationally driven state is induced by the induction of the high-frequency current flowing through the linear first to fourth heating conductors 22 to 25 that are arranged to face the outer peripheral surface 21a. High-frequency induction heating to the required tempering temperature. Thereafter, the tempering process is completed by allowing the inner shaft 21 to cool for a predetermined time.
[0017]
According to the high-frequency induction heating coil body 20 having the above-described configuration, the outer peripheral surface is formed by the action of the first to fourth linear heating conductors 22 to 25 arranged in parallel to the outer peripheral surface 21 a of the inner shaft 21. An induced current parallel to the axis of the inner shaft 21 flows through the surface 21a. As a result, the entire outer peripheral surface 21a (that is, the entire surface to be heated) can be uniformly heated, and, as a result, more than before. Good tempering quality can be obtained.
[0018]
Here, it will be described that the entire surface to be heated can be uniformly heated by flowing an induced current parallel to the axis of the object to be heated (the inner shaft 21) to the surface to be heated (the outer peripheral surface 21a). Is as follows. That is, when the induction current is caused to flow at a plurality of locations (four locations in the present embodiment) in the circumferential direction in parallel with the axis of the object to be heated by using the coil body 20, the coil body 20 is heated. Are not always heated, but the portions (four locations) facing the first to fourth heating conductors 22 to 25 are heated in the circumferential direction of the surface to be heated. At this time, since the object to be heated is rotating, the region heated by the first to fourth heating conductors 22 to 25 is moved to the first to fourth heating conductors 22 to 25 at the next time. Until they face each other, there is a cooling state, and heat moves from a high-temperature part to a low-temperature part, so that the whole becomes closer to a constant temperature. With the repetition of such a state (that is, with the repetition of the heating and the heat radiation alternately), after a lapse of a certain time (for example, about 15 seconds), the entire surface to be heated becomes substantially uniform. Then, after a certain period of time (for example, about 120 seconds), the temperature is completely soaked.
[0019]
By the way, in the induction tempering process, in general, heating is also important, but it is also important to transfer heat inside the object to be heated by using the cooling time after the heating. If the hardness is insufficient, the hardness near the surface decreases and then increases once (exactly, the hardness does not decrease during tempering but remains the hardness during quenching), and then the hardness again May go down. However, according to the present coil body 20, such a phenomenon does not occur, and it is possible to perform the tempering treatment so that the hardness decreases from the surface of the object to be heated toward the inside.
[0020]
Further, according to the present coil body 20, by appropriately adjusting the distance (distance) between the outer peripheral surface 21a (that is, the surface to be heated) and the first to fourth heating conductors 22 to 25, or By attaching the magnetic material 32 capable of adjusting the magnetic flux density of the high-frequency magnetic field to the first to fourth heating conductors 22 to 25, the temperature distribution on the outer peripheral surface 21a can be arbitrarily adjusted. . In particular, since the distance between the first to fourth linear heating conductors 22 to 25 and the surface to be heated is different at several points in the axial direction of the object to be heated, the heating temperature of the surface to be heated is more than allowable. In the case where there is a difference in the temperature, a magnetic material 32 such as a silicon steel plate is attached to a portion of each of the first to fourth heating conductors 22 to 25 which faces a region where the amount of temperature rise is small. It is possible to perform uniform heating in uniform amounts.
[0021]
In addition, since the configuration of the present coil body 20 is simple and inexpensive, when the number of types of components to be tempered increases, a dedicated high-frequency induction heating coil body 20 corresponding to the type is prepared and optimal heating for each component is performed. Since the tempering process can be performed under the conditions, the quality control of the heat treatment of various types becomes easy, and the weight of the high-frequency induction heating coil body 20 is very light (about 2 kg) as compared with the conventional one. Therefore, it is possible to reduce the setup time for changing the model. Further, by using the annular first and second connection conductors 26 and 27, it is possible to easily manufacture the high-frequency induction heating coil body 20 and to configure the high-frequency induction heating coil body 20 with high strength. it can.
[0022]
Hereinafter, a specific example in the case of performing tempering using the high-frequency induction heating coil body 20 according to the first embodiment of the present invention will be described.
Concrete example
(1) Tempering parts: Inner shaft of hub unit
(A) {Material}: S53C
(B) {Overall length}: 84.5 mm
(C) {Shaft diameter}: 20-26 mm
(D) Flange diameter: 135mm
(2) Induction tempering conditions
(A) {frequency}: 2.5kHz
(B) << Output >>: 26kW
(C) {Heating time}: 15 sec
(D) {Cooling time}: 120 seconds
[0023]
When tempering was performed under the above conditions, the quenched hardened layer formed on the outer peripheral surface of the inner shaft decreased in hardness from the outermost surface to the boundary line with the inner base material, It was confirmed that it was tempered.
[0024]
On the other hand, FIG. 3 shows a modification of the high-frequency induction heating coil 20. The high-frequency induction heating coil 20 'according to this modification includes conductor portions α and β of the first connection conductor 26, and A cut portion is provided in a portion of the conductor portion γ of the second connection conductor 27, and the insulating plates 35, 36, and 37 are arranged in these cut portions, respectively. The configuration other than the insulating plates 35, 36, and 37 is the same as that of the high-frequency induction heating coil body 20 described above. FIG. 4 shows another modification of the high-frequency induction heating coil body 20. The high-frequency induction heating coil body 20 ″ according to this modification includes a conductor portion α of the first connection conductor 26, β and the entire conductor portion γ of the second connection conductor 27 are cut off. The other configurations of the high-frequency induction heating coil 20 ″ are the same as those of the high-frequency induction heating coil 20 described above. These high-frequency induction heating coil bodies 20 ′ and 20 ″ can be used in place of the above-described high-frequency induction heating coil body 20, and have the same operational effects as those of the above-described high-frequency induction heating coil body 20. be able to.
[0025]
FIG. 5 shows a high-frequency induction heating coil body 40 according to a second embodiment of the present invention. The high-frequency induction heating coil body 40 is provided with an outer ring 41 (see FIG. ) Is used for high-frequency induction heating for the tempering treatment of the inner peripheral surface 41a of FIG. As shown in FIG. 5, the high-frequency induction heating coil body 40 of the present embodiment is a structure formed by connecting conductive pipe members having a rectangular cross section to form a predetermined shape. First to fourth linear heating conductors 42, 43, 44, 45 arranged in parallel to the axial direction of a certain outer ring 41 and opposed to the inner peripheral surface 41a of the outer ring 41; An annular first connection conductor 46 to which all of the one end portions (lower end portions in FIG. 5) of the first to fourth heating conductors 42 to 45 are connected, and the first connection conductor 46 is connected to the first connection conductor 46. The first to fourth heating conductors 42 are connected to the other end portions of the first to fourth heating conductors 42 to 45 which are not connected, that is, the other end portions (upper end portions in FIG. 5) opposite to the one end portions, respectively. At an angle of about 90 degrees toward the inside of the first connection conductor 46 with respect to. The second to fifth connection conductors 47, 48, 49, 50 joined to each other; the first power supply lead 51 connected to the distal end of the second and third connection conductors 47, 48; And a second power supply lead 52 connected to the distal ends of the fifth connection conductors 49 and 50. In this embodiment, the lower ends of the heating conductors 42 to 45 are connected to the upper surface of the first connection conductor 46, and the outer peripheral surface of the first connection conductor 46 is connected to the first to fourth heating conductors. The outer surfaces 42 to 45 are arranged on the same cylindrical surface.
[0026]
Thus, when the high-frequency current is supplied from the high-frequency power supply 53 to the high-frequency induction heating coil body 40 through the first and second power supply leads 51 and 52, as shown in detail in FIG. The high-frequency current is configured to flow through the current path. In this case, of the first connection conductor 46, the conductor portion α 'between the first and second heating conductors 42 and 43 and the conductor portion β' between the third and fourth heating conductors 44 and 45 are also included. Since the high-frequency voltages are configured to have the same phase and the same potential at both ends, no high-frequency current flows through these conductor portions α ′ and β ′.
[0027]
On the other hand, the end portions of the above-described second to fifth connection conductors 47 and the first and second power supply lead portions 30 and 31 are opposed to each other in parallel at a slight distance from each other. Although not shown, an insulating plate is interposed between them. In addition, the hollow portions of the first to fourth heating conductors 42 to 45, the first to fifth connection conductors 46 to 50, and the first and second power supply leads 51 and 52, which are made of a conductive pipe material, respectively. Is configured to flow a cooling liquid supplied from a cooling liquid supply mechanism (not shown). Further, in the high-frequency induction heating coil body 40 of the present embodiment, as shown in FIG. 6, a magnetic material for concentrating magnetic flux is provided on a portion of the first to fourth heating conductors 42 to 45 other than the outer surfaces thereof. 54 are respectively attached.
[0028]
Here, a procedure for high-frequency induction heating of the inner peripheral surface 41a of the outer race 41 for tempering using the high-frequency induction heating coil body 40 will be described as follows. First, the outer ring 41 to be quenched is fixed by a work receiving jig (not shown), and the high-frequency induction heating coil body 40 is moved downward by, for example, an elevating mechanism (not shown), thereby forming the outer ring 41 as shown in FIG. It is arranged at a position that matches the axis and the axis of the high-frequency induction heating coil body 40 (the center line of the first connection conductor 46). As a result, the first to fourth heating conductors 42 to 45 of the high-frequency induction heating coil body 40 are arranged in parallel to the inner peripheral surface 41 a of the outer race 41 at a predetermined interval. Thereafter, a high-frequency current is supplied from the high-frequency power supply 53 to the high-frequency induction heating coil body 40 via the first and second power supply leads 51 and 52, and the outer ring 41 is moved together with a work receiving jig (not shown). It is driven to rotate about its axis.
[0029]
In this case, along with supplying high-frequency power to the high-frequency induction heating coil body 40, a high-frequency current flows through the high-frequency induction heating coil body 40 at a certain moment along a path in the direction indicated by the arrow S in FIG. At the next moment, a high-frequency current flows alternately along a path in the direction opposite to the direction of the arrow S. Specifically, the high-frequency current in the case shown in FIG. 5 is supplied to the high-frequency power source 53, the first power supply lead 51, the second connection conductor 47, the first heating conductor 42, and the first connection conductor 46. A portion G (a conductor portion between the portions α ′ and β ′), a fourth heating conductor 45, a fifth connection conductor 50, and a second power supply lead 52 sequentially flow, and a high-frequency power supply 53, a first power supply lead 51, a third connection conductor 48, a second heating conductor 43, a conductor portion H of the first connection conductor 46 (a conductor portion facing the conductor portion G), and a third It flows through the heating conductor 44, the fourth connection conductor 49, and the second power supply lead 52 sequentially. Thus, the inner peripheral surface 41a of the outer ring 41 in the rotationally driven state is required by the induction action of the high-frequency current flowing through the first to fourth heating conductors 22 to 25 arranged opposite to the inner peripheral surface 41a. High-frequency induction heating is performed uniformly up to the tempering temperature. Thereafter, the outer ring 41 is allowed to cool for a predetermined time, thereby completing the tempering process.
[0030]
According to the high-frequency induction heating coil body 40 having the above-described configuration, the outer circumference 41 is formed by the action of the linear first to fourth heating conductors 42 to 45 arranged in parallel to the inner peripheral surface 41 a of the outer race 41. An induced current parallel to the axis of the outer ring 41 flows through the surface 41a. As a result, the entire inner peripheral surface 41a (that is, the entire surface to be heated) can be uniformly heated, and, as a result, more than before. Good tempering quality can be obtained. Moreover, by appropriately adjusting the interval (distance) between the inner peripheral surface 41a (that is, the surface to be heated) and the first to fourth heating conductors 42 to 45, or by reducing the magnetic flux density of the high-frequency magnetic field. By attaching the adjustable magnetic material 54 to the first to fourth heating conductors 42 to 45, the temperature distribution on the inner peripheral surface 41a can be arbitrarily adjusted. In addition, since the configuration of the high-frequency induction heating coil body 40 is simple and inexpensive, when the types of the components to be tempered are increased, a dedicated high-frequency induction heating coil body for the type is prepared to optimize the components. Since the tempering process can be performed under the heating condition, the quality control of the heat treatment for various types becomes easy, and the weight of the high-frequency induction heating coil body 40 is very light (about 2 kg) compared to the conventional one. Because of this, it is possible to reduce the setup time associated with the model change. Further, by using the annular first connection conductor 46, it is possible to easily manufacture the high-frequency induction heating coil body 40 and to configure the high-frequency induction heating coil body 20 with high strength.
[0031]
Hereinafter, a specific example in a case where tempering processing is performed using the high-frequency induction heating coil body 40 according to the second embodiment of the present invention will be described.
Concrete example
(1) Tempering target parts: Outer ring of hub unit
(A) {Material}: S53C
(B) {Height}: 55.8 mm
(C) {minimum inner diameter}: 51mm
(D) Ball groove diameter: 61.5 mm
(4) Induction tempering conditions
(A) {frequency}: 2.5kHz
(B) {Output}: 20kW
(C) {Heating time}: 15 sec
(D) {Cooling time}: 120 seconds
[0032]
When tempering was performed under the above conditions, the quenched hardened layer formed on the outer peripheral surface of the inner shaft decreased in hardness from the outermost surface to the boundary line with the inner base material, It was confirmed that it was tempered.
[0033]
On the other hand, FIG. 7 shows a modification of the high-frequency induction heating coil body 40. The high-frequency induction heating coil body 40 ′ according to this modification includes conductor portions α ′ and β ′ of the first connection conductor 46. Are provided with cut portions, and the insulating plates 55 and 56 are arranged at these cut portions, respectively. The configuration other than the insulating plates 55 and 56 is the same as that of the high-frequency induction heating coil body 40 described above. FIG. 8 shows another modification of the high-frequency induction heating coil body 40. The high-frequency induction heating coil body 40 ″ according to this modification includes a conductor portion α ′ of the first connection conductor 46. , Β ′ are completely removed. Other configurations of the high-frequency induction heating coil body 40 ″ are the same as those of the high-frequency induction heating coil body 20 described above. These high-frequency induction heating coil bodies 40 ′ and 40 ″ can be used in place of the above-described high-frequency induction heating coil body 40, and have the same operational effects as those of the above-described high-frequency induction heating coil body 40. be able to.
[0034]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention. For example, the first and second connection conductors 26 and 27 or the first connection conductor 46 does not necessarily have to be annular or arcuate, and the first to fourth heating conductors 22 to 25 or 42 to adjacent to each other are not necessarily required. 45 may be connected by a linear connection conductor. The number of heating conductors is not limited to four, but can be increased or decreased (however, two or more) as needed. Furthermore, the high-frequency induction heating coil bodies 20 and 40 according to the present invention are not limited to the case where the inner shaft 21 or the outer ring 41 of the hub unit is to be heated, and a plurality of different-diameter portions are provided on the outer peripheral surface or the inner peripheral surface. It is possible to heat various components having the following.
[0035]
In the above-described embodiments and modifications, the high-frequency induction heating coil for tempering has been described, but the present invention is not limited to this, and the present invention can be applied to a high-frequency induction heating coil for quenching. Needless to say.
[0036]
【The invention's effect】
The present invention according to claim 1 is a high-frequency induction heating coil that performs high-frequency induction heating on the outer peripheral surface of a shaft-like member having a plurality of different-diameter outer peripheral portions or the inner peripheral surface of a cylindrical member having a different-diameter inner peripheral portion. In the body, a plurality of linear heating units are disposed in parallel with the axial direction of the shaft member or the cylindrical member, and are disposed opposite to the outer peripheral surface of the shaft member or the inner peripheral surface of the cylindrical member. A conductor, a connection conductor to which one end of the plurality of heating conductors is connected, and a connection conductor for connecting the other end of the plurality of heating conductors to a power supply lead connected to a high-frequency power supply. Therefore, even if there are a plurality of different-diameter shaped portions (irregularities) on the outer peripheral surface of the shaft-shaped member or the inner peripheral surface of the cylindrical member, the high-frequency wave is not affected by the shape of the component to be heated. Between the heating conductor of the induction heating coil body and the surface to be heated of the component to be heated It is easy to adjust the surface temperature distribution of the quenched and hardened layer of the component to be heated and the surrounding area during heating by changing the distance (distance) between the layers and mounting the magnetic material. The surface temperature distribution for obtaining the optimum temperature distribution in the deep part of the hardened layer can be set. In addition, since the total weight of the heating device including the high-frequency induction heating coil body is about 2 kg, which is extremely light and inexpensive as compared with the conventional heating device, if the number of types of parts to be heated is increased, a dedicated type for the type is required. By preparing a heating device, it is possible to perform a heat treatment on each part under optimum heating conditions, thereby facilitating heat treatment quality control for various models.
[0037]
Further, in the present invention described in claim 2, since three or more heating conductors are provided, a sufficient degree of uniform heating is possible due to the presence of three or more linear heating conductors. .
[0038]
According to the third aspect of the present invention, the connection conductor to which one end of each of the plurality of heating conductors is connected is formed in an annular, arcuate, or linear shape. The degree of freedom of design can be improved, and particularly when the connection conductor is in the form of an annular ring, the strength of the high-frequency induction heating coil can be sufficiently ensured and the manufacture of the high-frequency induction heating coil can be facilitated. Can be planned.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a current path in a high-frequency induction heating coil for tempering according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing a situation when the outer peripheral surface of the inner shaft of the hub unit is subjected to high-frequency induction heating using the high-frequency induction heating coil body for tempering according to the first embodiment of the present invention.
FIG. 3 is a perspective view showing a modification of the high-frequency induction heating coil body for tempering according to the first embodiment of the present invention.
FIG. 4 is a perspective view showing another modification of the high-frequency induction heating coil for tempering according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing a current path in a high-frequency induction heating coil body for tempering according to a second embodiment of the present invention.
FIG. 6 is a perspective view showing a situation when an inner peripheral surface of an outer ring of a hub unit is subjected to high-frequency induction heating using a high-frequency induction heating coil for tempering according to a second embodiment of the present invention.
FIG. 7 is a perspective view showing a modification of the high-frequency induction heating coil for tempering according to the second embodiment of the present invention.
FIG. 8 is a perspective view showing another modification of the high-frequency induction heating coil for tempering according to the second embodiment of the present invention.
FIG. 9 is a perspective view of a high-frequency tempering apparatus conventionally used for tempering the outer peripheral surface of the inner shaft of the hub unit.
FIG. 10 is a perspective view of a high-frequency tempering apparatus conventionally used for tempering an inner peripheral surface of an outer ring of a hub unit.
[Explanation of symbols]
High frequency induction heating coil for 20 ° inner shaft tempering
21 Hub unit inner shaft
21a Outer peripheral surface
22 ° first heating conductor
23 ° second heating conductor
24 ° third heating conductor
25 ° fourth heating conductor
26 ° first connection conductor
27 ° second connection conductor
28 ° third connection conductor
29 high frequency power supply
30 ° first power supply lead
31 # second power supply lead
32 mm magnetic material
High frequency induction heating coil for 40 ° outer ring tempering
41 Hub unit outer ring
41a inner circumference
42 first heating conductor
43 ° second heating conductor
44 ° third heating conductor
45 ° fourth heating conductor
46 ° first connection conductor
47 ° second connection conductor
48 ° third connection conductor
49 ° fourth connection conductor
50 ° fifth connection conductor
51 # first power supply lead
52 # second power supply lead
53 high frequency power supply
54 magnetic material
R, S arrow (current path)

Claims (3)

複数の異径外周部を有する軸状部材の外周面、或いは、異径内周部を有する筒状部材の内周面を高周波誘導加熱する高周波誘導加熱コイル体において、
(a) 前記軸状部材或いは筒状部材の軸線方向に対して平行に配置されると共に、前記軸状部材の外周面或いは前記筒状部材の内周面に対向して配置される直線形状の複数の加熱導体と、
(b) 前記複数の加熱導体の一端部が接続される接続導体と、
(c) 前記複数の加熱導体の他端部と高周波電源に接続される給電用リード部とを接続するための接続導体と、
をそれぞれ具備することを特徴とする高周波誘導加熱コイル体。
In a high-frequency induction heating coil body for high-frequency induction heating of the outer peripheral surface of a shaft-shaped member having a plurality of different-diameter outer peripheral portions, or the inner peripheral surface of a cylindrical member having a different-diameter inner peripheral portion,
(A) A linear shape that is arranged parallel to the axial direction of the shaft-shaped member or the cylindrical member, and is arranged to face the outer peripheral surface of the shaft-shaped member or the inner peripheral surface of the cylindrical member. A plurality of heating conductors;
(B) a connection conductor to which one ends of the plurality of heating conductors are connected;
(C) a connection conductor for connecting the other end of the plurality of heating conductors and a power supply lead connected to a high-frequency power supply;
A high-frequency induction heating coil body comprising:
前記加熱導体を3つ以上設けたことを特徴とする請求項1に記載の高周波誘導加熱コイル体。The high-frequency induction heating coil according to claim 1, wherein three or more heating conductors are provided. 前記複数の加熱導体の一端部が接続される接続導体を、円環状,円弧状,或いは直線状に構成したことを特徴とする請求項1又は2に記載の高周波誘導加熱コイル体。The high-frequency induction heating coil body according to claim 1, wherein the connection conductor to which one end of the plurality of heating conductors is connected is formed in an annular, arcuate, or linear shape.
JP2002207961A 2002-07-17 2002-07-17 High frequency induction heating coil body Expired - Fee Related JP3733089B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002207961A JP3733089B2 (en) 2002-07-17 2002-07-17 High frequency induction heating coil body
KR1020030048052A KR100557309B1 (en) 2002-07-17 2003-07-14 High frequency induction heating coil
CNB031458742A CN1277448C (en) 2002-07-17 2003-07-17 High frequency inductive heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207961A JP3733089B2 (en) 2002-07-17 2002-07-17 High frequency induction heating coil body

Publications (2)

Publication Number Publication Date
JP2004052013A true JP2004052013A (en) 2004-02-19
JP3733089B2 JP3733089B2 (en) 2006-01-11

Family

ID=31932235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207961A Expired - Fee Related JP3733089B2 (en) 2002-07-17 2002-07-17 High frequency induction heating coil body

Country Status (3)

Country Link
JP (1) JP3733089B2 (en)
KR (1) KR100557309B1 (en)
CN (1) CN1277448C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045976A1 (en) * 2012-09-21 2014-03-27 新日鐵住金株式会社 High-frequency induction heating device and processing device
CN105506258A (en) * 2015-12-14 2016-04-20 江苏南方轴承股份有限公司 Automobile steering bearing component induction heat treatment tool
JP7223460B1 (en) 2022-02-17 2023-02-16 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2012DN00835A (en) 2009-07-30 2015-06-26 Neturen Co Ltd
JP5619162B2 (en) 2010-07-08 2014-11-05 本田技研工業株式会社 High frequency heating coil
CN104046756A (en) * 2013-03-15 2014-09-17 上海恒精机电设备有限公司 Inductor capable of realizing induction quenching of three shaft-type parts of different diameters
JP6286317B2 (en) * 2014-08-05 2018-02-28 高周波熱錬株式会社 Heating coil
WO2017037847A1 (en) * 2015-08-31 2017-03-09 精電舎電子工業株式会社 Heat caulking apparatus
JP6803588B2 (en) * 2017-09-28 2020-12-23 本田技研工業株式会社 Heating coil
KR102003293B1 (en) 2017-11-24 2019-10-01 셰플러코리아(유) Coil Assembly For High-Frequency Induction Heat Treatment
WO2020066080A1 (en) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 High-frequency heating device
KR20200063529A (en) 2018-11-28 2020-06-05 이현철 Inductive Heating Apparatus for Heat Treatment Materials
CN111363894B (en) * 2020-03-27 2021-11-30 丰城市顺达五金制品有限公司 Heating improved type heat treatment equipment for alloy steel strip and alloy steel strip heat treatment process
CN117320205B (en) * 2023-11-30 2024-02-09 山东荣泰感应科技有限公司 Intermediate frequency tempering induction coil heating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045976A1 (en) * 2012-09-21 2014-03-27 新日鐵住金株式会社 High-frequency induction heating device and processing device
JP5549791B1 (en) * 2012-09-21 2014-07-16 新日鐵住金株式会社 High frequency induction heating device, processing device
CN104620676A (en) * 2012-09-21 2015-05-13 新日铁住金株式会社 High-frequency induction heating device and processing device
CN104620676B (en) * 2012-09-21 2016-04-06 新日铁住金株式会社 High-frequency induction heating apparatus, processing unit (plant)
CN105506258A (en) * 2015-12-14 2016-04-20 江苏南方轴承股份有限公司 Automobile steering bearing component induction heat treatment tool
JP7223460B1 (en) 2022-02-17 2023-02-16 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment
JP2023120102A (en) * 2022-02-17 2023-08-29 ティーケーエンジニアリング株式会社 Heating coil fir high frequency heating device

Also Published As

Publication number Publication date
KR20040008085A (en) 2004-01-28
KR100557309B1 (en) 2006-03-03
CN1277448C (en) 2006-09-27
JP3733089B2 (en) 2006-01-11
CN1484472A (en) 2004-03-24

Similar Documents

Publication Publication Date Title
JP2004052013A (en) High frequency induction heating coil body
JP2010222672A (en) High frequency-induction hardening apparatus for large-size material
WO2015136927A1 (en) Heat-treatment device and heat-treatment method
JP3582783B2 (en) High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method
JP5553440B2 (en) Heat treatment method and heat treatment apparatus
JP4023623B2 (en) Camshaft high frequency induction heating coil and camshaft high frequency induction heating method using the heating coil
JP2008150661A (en) Heating coil for tempering
JP7311811B2 (en) Transfer quenching device and transfer quenching method
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP2002194425A (en) Induction heating coil
JP2000326329A (en) Method and device for electromagnetic induction heating for cylindrical mold
JP2004010928A (en) Device for quenching internal circumferential surface
JP5446002B2 (en) Induction hardening equipment
JP2632106B2 (en) High frequency heating coil
JP6630577B2 (en) Quenching method
WO2024004027A1 (en) Traverse hardening device and traverse hardening method
JP5527154B2 (en) Induction hardening equipment for shaft-shaped members
JP5129494B2 (en) High frequency induction heating coil
JP2008169432A (en) Heat-treatment method and heat-treatment apparatus for steel ball
JP2007262461A (en) Method and apparatus for induction-heating using stepwise heating
JPH0553844B2 (en)
JP5903455B2 (en) Heat treatment apparatus and heat treatment method
JP2004277820A (en) High frequency induction heating method for crankshaft and its apparatus
JP6523053B2 (en) Annular work heating device
JP2004027311A (en) Method and apparatus of induction-heating and hardening for ring member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees