JP2004051460A - Lightweight cellular concrete having high moisture condensation resistance - Google Patents

Lightweight cellular concrete having high moisture condensation resistance Download PDF

Info

Publication number
JP2004051460A
JP2004051460A JP2002214472A JP2002214472A JP2004051460A JP 2004051460 A JP2004051460 A JP 2004051460A JP 2002214472 A JP2002214472 A JP 2002214472A JP 2002214472 A JP2002214472 A JP 2002214472A JP 2004051460 A JP2004051460 A JP 2004051460A
Authority
JP
Japan
Prior art keywords
water vapor
cellular concrete
lightweight cellular
raw material
vapor adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002214472A
Other languages
Japanese (ja)
Other versions
JP2004051460A5 (en
JP4430286B2 (en
Inventor
Norihiro Yakida
八木田 典広
Kensuke Aoki
青木 謙介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2002214472A priority Critical patent/JP4430286B2/en
Publication of JP2004051460A publication Critical patent/JP2004051460A/en
Publication of JP2004051460A5 publication Critical patent/JP2004051460A5/ja
Application granted granted Critical
Publication of JP4430286B2 publication Critical patent/JP4430286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lightweight cellular concrete having high moisture condensation resistance. <P>SOLUTION: The lightweight cellular concrete having high moisture condensation resistance is manufactured by using siliceous raw materials and calcareous raw materials as main raw materials, adding silicone oil to the raw materials, and subjecting the raw materials to steam curing at and under a high temperature and high pressure, in which the water vapor absorbed amount (S.T.P.) obtained by water vapor adsorption measurement is ≤10 mL/g in the difference between the water vapor absorbed amount (S.T.P.) at the time of relative pressure 0.9 and the water vapor absorbed amount (S.T.P.) at the time of relative pressure 0.95. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の壁や屋根、床などに使用される耐結露性の高い軽量気泡コンクリートに関するものである。
【0002】
【従来の技術】
軽量気泡コンクリートは珪石等の珪酸質原料とセメントや生石灰等の石灰質原料を主原料とし、必要に応じて界面活性剤を添加し、これらの微粉末原料に水と発泡剤としてのアルミニウム粉末等の添加物を加えてスラリー状とした後、アルミニウム粉末の反応によって発泡させ、石灰質原料の反応により半硬化させて、所定寸法に切断して成形したのち、オートクレーブによる高温高圧水蒸気養生を行って製造され、軽量で生産性、耐火性、断熱性、施工性に優れているため、建築材料として広く使用されている。
【0003】
軽量気泡コンクリートの特徴である断熱性は、軽量気泡コンクリートの内部の含水率が増大することにより、その優れた断熱性が低下する場合がある。
軽量気泡コンクリートの一般的な使用環境では、結露が発生しても、短期間で少量であれば断熱性へ影響するほど蓄積される前に乾燥する。また、軽量気泡コンクリートの内部に蓄積された水分も、少量であれば拡散し、断熱性低下となる程の高含水率にはならない。しかし、常に多量の水蒸気などの水分が供給される用途の建物では、軽量気泡コンクリート内部に蓄積された水が乾燥や拡散できずに蓄積され、断熱性能の低下を生じる場合があり、また、軽量気泡コンクリート内部の含水率が増大することによってカビが発生する場合がある等の問題があった。
【0004】
また、特許第2993375号公報には特定範囲のアルキル基と、特定範囲の重合度と、スラリーへの分散性を改良する特定範囲の親水性のアルコキシ基とを有するシリコーンオイルを添加することによって、優れた撥水性を有する硬化体が得られることが開示され、撥水性を有する硬化体は知られている。しかし、水蒸気吸着性についての検討は開示されておらず、上記手法により、具体的に開示された硬化体では、水蒸気吸着性を低減することは出来ず、耐結露性の向上は望めない。
【0005】
【発明が解決しようとする課題】
そこで、本発明の課題は、オートクレーブによる高温高圧水蒸気養生を行って製造された軽量気泡コンクリートの軽量で生産性、耐火性に優れるという特徴を損なうことなく、軽量気泡コンクリート内部での結露を低減させ断熱性能の低下を生じ難く、また、カビの発生を低減することが出来る軽量気泡コンクリートを提供することである。
【0006】
【課題を解決するための手段】
本発明者は、上記目的を達成するため鋭意検討を行った結果、珪酸質原料と石灰質原料等を主原料として、発泡後、高温高圧下において水蒸気養生して製造される軽量気泡コンクリートにおいて、原料混合時、事前に珪酸質原料に水を添加してスラリー状とした珪酸質原料スラリーにシリコーンオイルを0.8〜5重量%(対固形分)添加して攪拌することによって耐結露性の高い軽量気泡コンクリートが得られることを知見し、本発明をなすに至った。
【0007】
本発明は、珪酸質原料と石灰質原料とを主原料として、原料にシリコーンオイルを添加して、発泡後、高温高圧下において水蒸気養生して製造される軽量気泡コンクリートにおいて、該軽量気泡コンクリート中の細孔表面にシリコーンオイルが物理吸着、若しくは化学吸着されており、水蒸気吸着測定で得られる水蒸気吸着量(S.T.P.)が、相対圧0.9の時の水蒸気吸着量(S.T.P.)と相対圧0.95の時の水蒸気吸着量(S.T.P.)との差が10ml/g以下であることを特徴とする耐結露性の高い軽量気泡コンクリートである。
【0008】
軽量気泡コンクリートは珪石等の珪酸質原料とセメントや生石灰等の石灰質原料を主原料とし、もし、必要ならば界面活性剤を添加し、これらの微粉末原料に水と発泡剤としてのアルミニウム粉末等の添加物を加えてスラリー状とした後、アルミニウム粉末の反応によって発泡させ、石灰質原料の反応により半硬化させて、所定寸法に切断して成形したのち、オートクレーブによる高温高圧水蒸気養生を行って製造されている。
【0009】
ここで水蒸気吸着測定で得られる水蒸気吸着量(S.T.P.)が、相対圧0.95の時の水蒸気吸着量(S.T.P.)と相対圧0.9の時の水蒸気吸着量(S.T.P.)との差が10ml/g以下とするには、軽量気泡コンクリートを製造するにあたり、珪酸質原料と石灰質原料等を水と混合するとき、スラリーを調整する原料混合段階で上記原料と一緒若しくは、原料混合後スラリー状とした時にシリコーンオイルを0.8〜5重量%(対固形分)添加することによって提供することが出来る。
【0010】
シリコーンオイルを珪酸質原料や石灰質原料等に混合する時、事前に珪酸質原料に水を添加してスラリー状とした珪酸質原料スラリーに、シリコーンオイルを0.8〜5重量%(対固形分)添加して攪拌することが必要である。珪酸質原料スラリーにシリコーンオイルを添加するのは、珪酸質原料スラリーのpHが中性に近くシリコーンオイルの分散性が良くなるため、シリコーンオイルの添加量が少なくて耐結露性を向上させることができるからである。
【0011】
ここで使用するシリコーンオイルは、側鎖部分に水素や任意分子量のアルキル基、メトキシ基、カルボニル基、フェニル基などを含む変性シリコーンさらにこれらの官能基を複合した変性シリコーンのいずれにおいても同様の効果が得られる。シリコーンオイルの重合度及び分子量については原料段階で混入する場合に原料スラリー中によく分散する範囲であれば、同様の効果が得られる。
【0012】
シリコーンオイルの添加量については、上記の原料(固形分)に対して0.8〜5重量%(固形分)の添加量、好ましくは0.8〜3重量%(固形分)であれば、耐結露性がみられる。0.8重量%(固形分)未満では耐結露性を十分に引き出すことが出来ない。また、5重量%(固形分)を超えると、製造工程での発泡時、気泡の安定性が低下し、よって、製品の独立気泡性が低くなり、外観の見栄えが悪くなり、商品性が下がってしまう。
【0013】
本発明のシリコーンオイルを軽量気泡コンクリート中の細孔表面に物理吸着または化学吸着させる方法としては、オートクレーブ中における高温処理が妥当である。高温処理の方法としては100〜300℃程度で処理時間は1〜20時間程度が適当である。実際の軽量気泡コンクリートの生産工程においては、オートクレーブによる高温高圧水蒸気養生と同時にシリコーンオイルの高温処理をする方法が都合良い。高温処理が100℃未満だったり、1時間未満だったりすると、シリコーンオイルが細孔表面に十分に吸着しない。また、300℃を超えたり、20時間を超えたりする場合には、シリコーンオイルが分解して効果を失うため、好ましくない。
【0014】
【発明の実施の形態】
以下、実施例に基づいて本発明をさらに説明するが、本発明は下記の実施例に制限されるものではない。また、実施例、及び比較例の水蒸気吸着等温線の測定法は次のように行った。
<水蒸気吸着等温線>
実施例および比較例で作製した各供試体を微粉砕した後、真空乾燥し、市販の水蒸気吸着等温線測定装置(日本ベル(株)製BELSORP18PLUS)により測定した。
【0015】
【実施例1】
珪石原料43重量%(固形分)に水を加えスラリー状にした後、該スラリーにアルキル変性シリコーンを0.8重量%(固形分)混合したスラリーにセメントを30重量%(固形分)、生石灰を5重量%(固形分)、石膏を2重量(固形分)、リサイクル原料を20重量%(固形分)の粉体原料を混合し、水固体比0.73とした後、アルミニウム粉末を粉体原料の外割で0.06重量%(固形分)添加して、原料スラリーとし、よく攪拌、混合した。原料スラリーを発泡後、オートクレーブ処理して、軽量気泡コンクリートを得た。そして、該軽量気泡コンクリートの一部を取り出し、所定の処理を行った後、水蒸気吸着測定を行った。結果を図1、表1に記した。
【0016】
【実施例2】
実施例1と同様の原料スラリーにアルキル変性シリコーンを1.0重量%(固形分)添加した。その他は実施例1と同様に行い、軽量気泡コンクリートを得た。そして、該軽量気泡コンクリートの一部を取り出し、所定の処理を行った後、水蒸気吸着測定を行った。結果を図1、表1に記した。
【0017】
【実施例3】
実施例1と同様の原料スラリーにアルキル変性シリコーンを2.0重量%(固形分)添加した。その他は実施例1と同様に行い、軽量気泡コンクリートを得た。そして、該軽量気泡コンクリートの一部を取り出し、所定の処理を行った後、水蒸気吸着測定を行った。結果を図1、表1に記した。
【0018】
【比較例1】
実施例1と同様の原料スラリーにアルキル変性シリコーンを添加しなかった。その他は実施例1と同様に行い、軽量気泡コンクリートを得た。そして、該軽量気泡コンクリートの一部を取り出し、所定の処理を行った後、水蒸気吸着測定を行った。結果を図2、表1に記した。
【0019】
【比較例2】
実施例1と同様の原料スラリーにアルキル変性シリコーンを0.5重量%(固形分)添加した。その他は実施例1と同様に行い、軽量気泡コンクリートを得た。そして、該軽量気泡コンクリートの一部を取り出し、所定の処理を行った後、水蒸気吸着測定を行った。結果を図2、表1に記した。
【0020】
【比較例3】
珪石を43重量%(固形分)、セメントを30重量%(固形分)、生石灰を5重量%(固形分)、石膏を2重量%(固形分)、リサイクル原料を20重量%(固形分)の粉体原料を混合し、水固体比0.73とした後、シリコーンオイルを1.0重量%(固形分)、アルミニウム粉末を粉体材料の外割で0.06重量%(固形分)添加し、原料スラリーとし、よく攪拌、混合した。その他は実施例1と同様に行い、軽量気泡コンクリートを得た。そして、該軽量気泡コンクリートの一部を取り出し、所定の処理を行った後、水蒸気吸着測定を行った。結果を図2、表1に記した。
【0021】
【表1】

Figure 2004051460
【0022】
表1の実施例2,比較例2より、シリコーンオイルの添加方法は、原料混合時、事前に珪酸質原料に水を添加してスラリー状とした珪酸質原料スラリーにシリコーンオイルを添加して攪拌することによって耐結露性に優れた軽量気泡コンクリートを得ることが出来た。
また、表1の実施例1〜3、比較例1、2の結果より、シリコーンオイルを0.8重量%(固形分)以上添加することによって、耐結露性に優れた軽量気泡コンクリートを得ることが出来た。
【0023】
実施例1〜3の水蒸気吸着等温曲線を図1に、比較例1〜3の水蒸気吸着等温線を図2に示す。また、相対圧が0.9、0.95の時の水蒸気吸着量(S.T.P.)を求め、表1に記した。このとき、相対圧0.9に相当する水蒸気吸着量(S.T.P.)が存在しない場合、横軸に相対圧、縦軸に水蒸気吸着量(S.T.P.)をプロットした場合、相対圧0.9よりも大きく且つ0.9に最も近い点と0.9よりも小さく且つ0.9に最も近い点の2点を持つ一次式を求め、この一次式に相対圧0.9を代入したときに求められる水蒸気吸着量(S.T.P.)を0.9に相当する水蒸気吸着量(S.T.P.)にする。相対圧0.95に相当する水蒸気吸着量(S.T.P.)が存在しない場合も、上記データ処理法を行って求める。また、相対圧0.9、相対圧0.95に相当する水蒸気吸着量(S.T.P.)の差を求め、表1に併せて記載した。
【0024】
【参考例】
珪石原料43重量%(固形分)に水を加えスラリー状にした後、該スラリーにアルキル変性シリコーンを7重量%(固形分)混合したスラリーにセメントを30重量%(固形分)、生石灰を5重量%(固形分)、石膏を2重量(固形分)、リサイクル原料を20重量%(固形分)の粉体原料を混合し、水固体比0.73とした後、アルミニウム粉末を粉体原料の外割で0.06重量%(固形分)添加して、原料スラリーとし、よく攪拌、混合した。原料スラリーを発泡後、オートクレーブ処理して、軽量気泡コンクリートを得た。該軽量気泡コンクリートは、製造工程での発泡時、気泡の安定性が下がり、製品の独立気泡性が低くなり、外観の見栄えが悪くなった。
【0025】
【発明の効果】
以上、詳細に説明したように、本発明によれば、オートクレーブによる高温高圧水蒸気養生を行って製造された軽量気泡コンクリートの軽量で生産性、耐火性に優れるという特徴を損なうことなく、軽量気泡コンクリート内部での結露を低減でき、断熱性能の低下を生じ難い軽量気泡コンクリートを提供することができる。
【図面の簡単な説明】
【図1】実施例1〜3の水蒸気吸着等温曲線を示すグラフである。
【図2】比較例1〜3の水蒸気吸着等温線を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to lightweight cellular concrete having high dew condensation resistance and used for walls, roofs, floors and the like of buildings.
[0002]
[Prior art]
Light-weight aerated concrete is mainly composed of siliceous raw materials such as silica stone and calcareous raw materials such as cement and quicklime, and surfactants are added as necessary, and water and aluminum powder as a foaming agent are added to these fine powder raw materials. Additives are added to form a slurry, foamed by the reaction of aluminum powder, semi-cured by the reaction of calcareous raw materials, cut to a predetermined size, molded, and then subjected to high-temperature, high-pressure steam curing using an autoclave. Because of its light weight and excellent productivity, fire resistance, heat insulation and workability, it is widely used as a building material.
[0003]
As for the heat insulating property which is a feature of the lightweight cellular concrete, the excellent thermal insulating property may be reduced by increasing the water content inside the lightweight cellular concrete.
In the general use environment of lightweight cellular concrete, even if dew condensation occurs, if it is a small amount in a short period of time, it will dry before it accumulates enough to affect the heat insulating properties. In addition, the moisture accumulated in the lightweight cellular concrete also diffuses in a small amount, and does not have a high moisture content that lowers the heat insulating property. However, in buildings that are constantly supplied with a large amount of moisture such as water vapor, the water accumulated inside the lightweight cellular concrete cannot be dried or diffused and accumulates, which may cause a decrease in heat insulation performance. There is a problem that mold may be generated due to an increase in the water content inside the cellular concrete.
[0004]
Japanese Patent No. 2993753 discloses a silicone oil having a specific range of alkyl groups, a specific range of polymerization degree, and a specific range of hydrophilic alkoxy groups for improving dispersibility in a slurry, It is disclosed that a cured product having excellent water repellency can be obtained, and a cured product having water repellency is known. However, no study on the water vapor adsorbability is disclosed, and the above-described method cannot reduce the water vapor adsorbability of the specifically disclosed cured product, and cannot improve the dew condensation resistance.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to reduce dew condensation inside lightweight aerated concrete without impairing the features of lightweight, productivity and excellent fire resistance of lightweight aerated concrete manufactured by performing high-temperature and high-pressure steam curing using an autoclave. It is an object of the present invention to provide a lightweight cellular concrete which is less likely to cause a decrease in heat insulation performance and can reduce the occurrence of mold.
[0006]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to achieve the above object, and as a result, using foamed material as a main material, foaming, and then steam-curing under high temperature and high pressure to produce a lightweight cellular concrete, At the time of mixing, water is added to the siliceous raw material in advance and 0.8 to 5% by weight (based on solid content) of silicone oil is added to the slurry of the siliceous raw material and stirred, so that condensation resistance is high. The inventors have found that lightweight cellular concrete can be obtained, and have accomplished the present invention.
[0007]
The present invention relates to a lightweight cellular concrete manufactured by adding a silicone oil to a raw material, using a siliceous raw material and a calcareous raw material as main raw materials, foaming, and then steam curing under high temperature and high pressure. Silicone oil is physically or chemically adsorbed on the pore surface, and the water vapor adsorption amount (STP) obtained by water vapor adsorption measurement is the water vapor adsorption amount (S.P.) at a relative pressure of 0.9. (T.P.) and a water vapor adsorption amount (STP) at a relative pressure of 0.95 are 10 ml / g or less. .
[0008]
Light-weight aerated concrete is mainly made of siliceous raw materials such as silica stone and calcareous raw materials such as cement and quicklime, and if necessary, a surfactant is added. Water and aluminum powder as a foaming agent are added to these fine powder raw materials. After adding the additives to form a slurry, foamed by the reaction of aluminum powder, semi-cured by the reaction of calcareous raw material, cut to a predetermined size and molded, then subjected to high-temperature and high-pressure steam curing with an autoclave, and manufactured Have been.
[0009]
Here, the water vapor adsorption amount (STP) obtained by the water vapor adsorption measurement is the water vapor adsorption amount (STP) at a relative pressure of 0.95 and the water vapor adsorption amount (STP) at a relative pressure of 0.9. In order to make the difference with the amount of adsorption (STP) 10 ml / g or less, in producing a lightweight cellular concrete, when mixing a silicate material and a calcareous material with water, a raw material for adjusting a slurry is used. It can be provided by adding 0.8 to 5% by weight (based on solid content) of silicone oil when mixed with the above-mentioned raw materials in the mixing stage or in a slurry state after mixing the raw materials.
[0010]
When the silicone oil is mixed with the siliceous raw material or calcareous raw material, etc., the silicon oil is added to the siliceous raw material slurry in advance by adding water to the slurry at 0.8 to 5% by weight (based on solid content). ) It is necessary to add and stir. Adding silicone oil to the siliceous raw material slurry can improve the dew condensation resistance by adding a small amount of silicone oil because the pH of the siliceous raw material slurry is close to neutral and the dispersibility of the silicone oil is improved. Because you can.
[0011]
The silicone oil used here has the same effect on modified silicones containing hydrogen, an alkyl group of any molecular weight, methoxy group, carbonyl group, phenyl group, etc. in the side chain portion, and modified silicones in which these functional groups are combined. Is obtained. With regard to the degree of polymerization and the molecular weight of the silicone oil, the same effects can be obtained as long as the silicone oil is mixed well in the raw material stage, as long as it is well dispersed in the raw material slurry.
[0012]
Regarding the addition amount of the silicone oil, if the addition amount is 0.8 to 5% by weight (solid content), preferably 0.8 to 3% by weight (solid content) with respect to the above-mentioned raw material (solid content), Dew resistance is observed. If it is less than 0.8% by weight (solid content), the dew condensation resistance cannot be sufficiently brought out. On the other hand, if the content exceeds 5% by weight (solid content), the stability of cells during foaming in the production process is reduced, so that the closed cell properties of the product are reduced, the appearance is deteriorated, and the marketability is reduced. Would.
[0013]
As a method of physically or chemically adsorbing the silicone oil of the present invention on the surface of pores in lightweight cellular concrete, high-temperature treatment in an autoclave is appropriate. A suitable high-temperature treatment method is about 100 to 300 ° C. and the treatment time is about 1 to 20 hours. In the actual production process of lightweight cellular concrete, a method of performing high-temperature treatment of silicone oil at the same time as high-temperature and high-pressure steam curing by an autoclave is convenient. If the high-temperature treatment is performed at less than 100 ° C. or for less than 1 hour, the silicone oil will not be sufficiently adsorbed on the pore surface. If the temperature exceeds 300 ° C. or exceeds 20 hours, the silicone oil is decomposed and loses its effect, which is not preferable.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be further described based on examples, but the present invention is not limited to the following examples. Moreover, the measuring method of the water vapor adsorption isotherm of an Example and a comparative example was performed as follows.
<Water vapor adsorption isotherm>
Each specimen prepared in Examples and Comparative Examples was pulverized, dried in vacuum, and measured by a commercially available water vapor adsorption isotherm measuring apparatus (BELSORP18PLUS, manufactured by Bell Japan Co., Ltd.).
[0015]
Embodiment 1
Water is added to 43% by weight (solid content) of the silica material to form a slurry, and then 30% by weight (solid content) of cement is added to a slurry obtained by mixing 0.8% by weight (solid content) of the alkyl-modified silicone with the slurry. Was mixed with a powder material of 5% by weight (solid content), a gypsum of 2% by weight (solid content), and a recycled material of 20% by weight (solid content) to obtain a water-solid ratio of 0.73. 0.06% by weight (solid content) of the raw material was added to obtain a raw material slurry, which was well stirred and mixed. After the raw material slurry was foamed, it was autoclaved to obtain a lightweight cellular concrete. Then, a part of the lightweight cellular concrete was taken out, subjected to a predetermined treatment, and then subjected to water vapor adsorption measurement. The results are shown in FIG.
[0016]
Embodiment 2
To the same raw material slurry as in Example 1, 1.0% by weight (solid content) of an alkyl-modified silicone was added. Others were carried out similarly to Example 1, and obtained lightweight cellular concrete. Then, a part of the lightweight cellular concrete was taken out, subjected to a predetermined treatment, and then subjected to water vapor adsorption measurement. The results are shown in FIG.
[0017]
Embodiment 3
To the same raw material slurry as in Example 1, 2.0% by weight (solid content) of an alkyl-modified silicone was added. Others were carried out similarly to Example 1, and obtained lightweight cellular concrete. Then, a part of the lightweight cellular concrete was taken out, subjected to a predetermined treatment, and then subjected to water vapor adsorption measurement. The results are shown in FIG.
[0018]
[Comparative Example 1]
No alkyl-modified silicone was added to the same raw material slurry as in Example 1. Others were carried out similarly to Example 1, and obtained lightweight cellular concrete. Then, a part of the lightweight cellular concrete was taken out, subjected to a predetermined treatment, and then subjected to water vapor adsorption measurement. The results are shown in FIG.
[0019]
[Comparative Example 2]
To the same raw material slurry as in Example 1, 0.5% by weight (solid content) of an alkyl-modified silicone was added. Others were carried out similarly to Example 1, and obtained lightweight cellular concrete. Then, a part of the lightweight cellular concrete was taken out, subjected to a predetermined treatment, and then subjected to water vapor adsorption measurement. The results are shown in FIG.
[0020]
[Comparative Example 3]
43% by weight (solid content) of silica stone, 30% by weight (solid content) of cement, 5% by weight (solid content) of quicklime, 2% by weight (solid content) of gypsum, 20% by weight (solid content) of recycled material And a water solids ratio of 0.73, silicone oil is 1.0% by weight (solid content), and aluminum powder is 0.06% by weight (solid content) of the powder material. The mixture was added to obtain a raw material slurry, which was well stirred and mixed. Others were the same as in Example 1 to obtain a lightweight cellular concrete. Then, a part of the lightweight cellular concrete was taken out, subjected to a predetermined treatment, and then subjected to water vapor adsorption measurement. The results are shown in FIG.
[0021]
[Table 1]
Figure 2004051460
[0022]
From Example 2 and Comparative Example 2 in Table 1, the method of adding the silicone oil is as follows. At the time of mixing the raw materials, water is added to the siliceous raw material in advance and the silicone oil is added to the slurry of the siliceous raw material and stirred. As a result, a lightweight cellular concrete with excellent dew condensation resistance was obtained.
Further, from the results of Examples 1 to 3 and Comparative Examples 1 and 2 in Table 1, it is possible to obtain lightweight cellular concrete excellent in dew condensation resistance by adding 0.8% by weight (solid content) of silicone oil. Was completed.
[0023]
FIG. 1 shows water vapor adsorption isotherms of Examples 1 to 3, and FIG. 2 shows water vapor adsorption isotherms of Comparative Examples 1 to 3. Further, the water vapor adsorption amounts (STP) at relative pressures of 0.9 and 0.95 were determined and are shown in Table 1. At this time, when there is no water vapor adsorption amount (STP) corresponding to a relative pressure of 0.9, the horizontal axis plots the relative pressure, and the vertical axis plots the water vapor adsorption amount (STP). In this case, a linear equation having two points, a point larger than 0.9 and closest to 0.9 and a point smaller than 0.9 and closest to 0.9 is calculated. Then, the water vapor adsorption amount (STP) obtained when .9 is substituted is set to the water vapor adsorption amount (STP) corresponding to 0.9. Even when there is no water vapor adsorption amount (STP) corresponding to a relative pressure of 0.95, the water vapor adsorption amount is obtained by performing the above data processing method. Further, the difference between the water vapor adsorption amounts (STP) corresponding to the relative pressure of 0.9 and the relative pressure of 0.95 was determined, and the results are also shown in Table 1.
[0024]
[Reference example]
Water is added to 43% by weight (solid content) of the silica stone raw material to form a slurry, and then, 30% by weight (solid content) of cement and 5% of quicklime are added to a slurry obtained by mixing 7% by weight (solid content) of alkyl-modified silicone with the slurry. % By weight (solid content), 2% by weight of gypsum (solid content), and 20% by weight of the recycled material (solid content) were mixed to obtain a water-solid ratio of 0.73. 0.06% by weight (solid content) was added to obtain a raw material slurry, which was well stirred and mixed. After the raw material slurry was foamed, it was autoclaved to obtain a lightweight cellular concrete. When the lightweight cellular concrete was foamed in the production process, the stability of the cells was reduced, the closed cell properties of the product were reduced, and the appearance was poor.
[0025]
【The invention's effect】
As described above in detail, according to the present invention, lightweight cellular concrete produced by performing high-temperature and high-pressure steam curing by an autoclave, without impairing the features of light weight, productivity, and excellent fire resistance, lightweight cellular concrete It is possible to provide lightweight cellular concrete in which dew condensation in the interior can be reduced and heat insulation performance does not easily deteriorate.
[Brief description of the drawings]
FIG. 1 is a graph showing water vapor adsorption isotherms of Examples 1 to 3.
FIG. 2 is a graph showing water vapor adsorption isotherms of Comparative Examples 1 to 3.

Claims (2)

珪酸質原料と石灰質原料とを主原料として、原料にシリコーンオイルを添加して、発泡後、高温高圧下において水蒸気養生して製造される軽量気泡コンクリートにおいて、水蒸気吸着測定で得られる水蒸気吸着量(S.T.P.)が、相対圧0.9の時の水蒸気吸着量(S.T.P.)と相対圧0.95の時の水蒸気吸着量(S.T.P.)との差が10ml/g以下であることを特徴とする耐結露性の高い軽量気泡コンクリート。In a lightweight aerated concrete manufactured by adding a silicone oil to a raw material of a siliceous raw material and a calcareous raw material, adding silicone oil to the raw material, foaming, and then steam-curing under high temperature and high pressure, the water vapor adsorption amount obtained by the water vapor adsorption measurement ( (STP) is the difference between the water vapor adsorption amount (STP) when the relative pressure is 0.9 and the water vapor adsorption amount (STP) when the relative pressure is 0.95. Lightweight cellular concrete with high condensation resistance, characterized in that the difference is 10 ml / g or less. シリコーンオイルを0.8〜5重量%(対固形分)添加することを特徴とする請求項1記載の耐結露性の高い軽量気泡コンクリート。2. The lightweight cellular concrete having high dew condensation resistance according to claim 1, wherein 0.8 to 5% by weight (based on solid content) of silicone oil is added.
JP2002214472A 2002-07-23 2002-07-23 Method for producing lightweight cellular concrete with high condensation resistance Expired - Fee Related JP4430286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214472A JP4430286B2 (en) 2002-07-23 2002-07-23 Method for producing lightweight cellular concrete with high condensation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214472A JP4430286B2 (en) 2002-07-23 2002-07-23 Method for producing lightweight cellular concrete with high condensation resistance

Publications (3)

Publication Number Publication Date
JP2004051460A true JP2004051460A (en) 2004-02-19
JP2004051460A5 JP2004051460A5 (en) 2005-10-27
JP4430286B2 JP4430286B2 (en) 2010-03-10

Family

ID=31936791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214472A Expired - Fee Related JP4430286B2 (en) 2002-07-23 2002-07-23 Method for producing lightweight cellular concrete with high condensation resistance

Country Status (1)

Country Link
JP (1) JP4430286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104960086A (en) * 2015-06-10 2015-10-07 江苏东浦管桩有限公司 Production method of non-surplus-slurry and non-autoclaved prestressed concrete pipe pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104960086A (en) * 2015-06-10 2015-10-07 江苏东浦管桩有限公司 Production method of non-surplus-slurry and non-autoclaved prestressed concrete pipe pile

Also Published As

Publication number Publication date
JP4430286B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4708542B2 (en) Water-repellent composition and method for producing water-repellent substrate
FI70879B (en) FOERFARANDE FOER FRAMSTAELLNING AV TEGEL ELLER BYGGDELAR
KR101782845B1 (en) High thermal insulating and light-weight aerated concrete mix using hydrophilic nano aerogel powder and preparing method of light-weight aerated concrete
JP4430286B2 (en) Method for producing lightweight cellular concrete with high condensation resistance
KR100915018B1 (en) Preparation of nano pore control type Alc panel
JP2011026146A (en) Method for producing autoclaved lightweight cellular concrete
JP3212586B1 (en) Humidity control building materials
JP3212587B1 (en) Humidity control building materials
JP2001206762A (en) Calcium silicate-based formed body excellent in frost damage resistance and workability
JP2011184222A (en) Method for reducing drying shrinkage of concrete, and method of producing concrete
KR20080105773A (en) Preparation of nano pore control type alc panel
JP3618001B2 (en) Porous open cell concrete molded body and method for producing the same composite
JP2005104791A (en) Method of manufacturing lightweight cellular concrete
CN117735946B (en) Magnesium oxychloride low-carbon gel material with excellent carbonization resistance and preparation method thereof
JP3065607B1 (en) Humidity control building materials
RU2719804C1 (en) Crude mixture for production of non-autoclave foam concrete
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
JP2011157243A (en) Method for producing lightweight cellular concrete
RU2215714C2 (en) Raw mixture for preparing heat-insulating cellular concrete of non-autoclave hardening
JP4481556B2 (en) Lightweight cellular concrete with excellent carbonation resistance
JP2007269592A (en) Xonotlite-based lightweight calcium silicate hydrate formed body
JP4619649B2 (en) Low hygroscopic lightweight cellular concrete and its manufacturing method
RU2167114C2 (en) Method of preparing binder
JPS6021839A (en) Manufacture of cement moldings
JP2001172072A (en) Lightweight cellular concrete excellent in carbonization resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4430286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees