JP2004047312A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2004047312A
JP2004047312A JP2002204020A JP2002204020A JP2004047312A JP 2004047312 A JP2004047312 A JP 2004047312A JP 2002204020 A JP2002204020 A JP 2002204020A JP 2002204020 A JP2002204020 A JP 2002204020A JP 2004047312 A JP2004047312 A JP 2004047312A
Authority
JP
Japan
Prior art keywords
power supply
power
switch
terminal
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002204020A
Other languages
Japanese (ja)
Other versions
JP4082114B2 (en
Inventor
Hisami Usui
臼井 久視
Koji Soshin
宗進 耕児
Hirotsugu Minami
南 洋次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002204020A priority Critical patent/JP4082114B2/en
Publication of JP2004047312A publication Critical patent/JP2004047312A/en
Application granted granted Critical
Publication of JP4082114B2 publication Critical patent/JP4082114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe power supply system of which a receiving terminal of a connecting device does not become a charging part unless a power supply cap is connected with the connecting device. <P>SOLUTION: For a plug outlet 3, both terminal pieces 31a, 31b of a blade-rest fitting for grounding 31 are electrically connected when a power supply cap 7 is connected and a connecting tap blade 70 for grounding electrode of the power supply cap 7 is interposed between both terminal pieces 31a, 31b. With this, an input terminal of a not-gate NT is connected to the ground through the channel of the terminal piece 31a, the connecting tap blade for grounding 70, and the terminal piece 31b, and therefore, an output becomes "H" level. As a result, a gate command signal of a gate command generating part 50 is inputted into a drive circuit 51 through an and-gate AND. With this, a power converter part 4 starts operation, and impresses its converted output voltage between blade-rest fittings 30, 30 of a power supply-side electrode of the plug outlet 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンセント等の接続装置を用いて電気機器に電力を供給する電源システムに関するものである。
【0002】
【従来の技術】
直流若しくは交流の入力電源を交流若しくは直流に変換し、その変換した電力をコンセントやプラグのような接続装置を通じて電気機器へ供給する電源システムとしては、例えば、図14に示す構成のものがある。
【0003】
図14のシステムは、入力電源1と、電源装置2の出力部に接続される電気機器接続用の接続装置たるコンセント3とで構成される。
【0004】
ここで電源装置2は、例えばバッテリーや燃料電池、太陽電池などの直流電源からなる入力電源1の電力を入力して、商用周波の交流電力に変換する電力変換部4を備えたインバータ装置であるが、入力電源1として交流電源を用い、交流電力を直流電力に変換する電力変換部を備えた装置の場合もある。
【0005】
さて電力変換部4には、コンデンサやコイル、半導体スイッチング素子、ダイオードなどの部品が使用されており、この電力変換部4の制御を行う制御回路部5には、電力変換部4に用いる半導体スイッチング素子のゲート部を制御するためのゲート指令生成部50、ドライブ回路51、また電圧や電流のフィードバック制御をしたり保護動作をするための電圧検出部52、電流検出部53、更に制御用電源部(図示せず)等で構成される。
【0006】
このような電源装置2において上述のように電源装置2が直流電源を商用周波の交流に変換する電力変換部4を備える場合、コンセント3として図15に示すような電気機器6の電源キャップ7の電源極用接続子(以下接続栓刃と言う)71,71及びアース極用接続子(以下接続栓刃と言う)70を差し込み口3a,3b,3cを介して対応する電源極用受け端子(以下刃受け金具と言う)30,30,アース極用受け端子(以下刃受け金具と言う)31に差し込む所謂電源コンセントを用いることが多く、代表的なものとしては、UPS装置や太陽光発電用インバータ装置、車載用AC100V出力装置などがある。
【0007】
また図16のように電源装置2内に電力変換部4の出力とコンセント3との間に開閉接点80,80を挿入した電磁開閉器8を設けるとともに、電力変換部4の出力電圧が過大な電圧となったことを検出する過電圧検出部54と、出力電流が過大な電流となったことを検出する過電流検出部55と、これら検出部54、55の検出を受けて励磁コイル81への励磁電流を停止して電磁開閉器8を開極動作させる開閉器制御部56とを制御回路部5に備えたものや、更に図17のように漏電発生時に流れる不平衡電流を検出する零相変流器9を設けるとともに、制御回路部5に零相変流器9の出力から漏電を検出する漏電検出回路10を備えたものもある。
【0008】
図16の場合、過電圧検出部54や過電流検出部55の検出を受けて過電圧発生時や過電流が流れたときに、開閉器制御部56が電磁開閉器8を開極動作させてその開閉接点80,80を開離させ、電力変換部4とコンセント3との間の通電を遮断するものである。
【0009】
図17の場合は、図16の構成に加えて、零相変流器9の検出出力から漏電検出回路57が漏電を検出し、その漏電検出出力により開閉器制御部56が電磁開閉器8を開極動作させてその開閉接点80,80を開離させ、電力変換部4とコンセント3との間の通電を遮断することもできるようになっている。
【0010】
ところで上述の従来システムでは、電源装置2が動作中には、仮に電気機器6の電源キャップ7の接続栓刃71,71,70が接続装置たるコンセント3の差し込み口3a,3b,3cに差し込まれていない場合でも、常にコンセント3の電源極用受け端子(以下刃受け金具という)30,30には電圧が印加された状態にある。これは、図18のような一般の商用電源1’に接続されるコンセント3でも同様である。
【0011】
【発明が解決しようとする課題】
図14乃至18のような従来の構成の場合、コンセント3に電気機器6の電源キャップ7の接続栓刃71,71,70が接続されていない場合でも、電源装置2が動作している時はコンセント3の電源極用の刃受け金具30,30には電圧が印加されており、そのため例えば子供のいたずらなどの何らかの原因で、クリップのような金属物がコンセント3の電源極側差し込み口3a,3bに差し込まれると感電や極間短絡による発火、火傷などが発生する恐れがある。
【0012】
本発明は、前記問題点を解決するためになされたもので、その目的とするところは、電源キャップが接続装置に接続されない限り接続装置の電源極用の受け端子が充電部とならない安全な電源システムを提供することにある。
【0013】
【課題を解決するための手段】
上述の目的を達成するために請求項1の発明では、電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、
前記受け端子の少なくとも一つに、前記電源キャップの対応する接続子が接続されると作動するスイッチ手段を備え、該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備し、前記電源を、入力電源と、入力電源の電力変換を行う電力変換部及び該電力変換部を制御する制御回路部を備えた電源装置とで構成し、前記制御回路部には前記スイッチ手段が作動するとその作動中前記電力変換部から該電力変換部の変換出力電圧を前記接続装置の電源極用受け端子に印加させる前記通電制御手段を前記スイッチ手段に対応して具備していることを特徴とする。
【0014】
請求項2の発明では、請求項1の発明において、前記通電制御手段が、前記スイッチ手段の作動信号が入力したときに前記電力変換部のスイッチング素子に対して駆動信号を与えることを許可する手段であることを特徴とする。
【0015】
請求項3の発明では、請求項1の発明において、前記通電制御手段として、前記入力電源と電源装置との間の電路若しくは電源装置と接続装置の電源極用の受け端子とを接続する電路に開閉接点を直列挿入するとともに前記電源の出力端間に前記スイッチ手段を介して駆動コイルを接続し、前記スイッチ手段のオン時に前記入力電源若しくは電源装置からの電流で前記駆動コイルが励磁されて閉極動作する電磁開閉器を用いたことを特徴とする。
【0016】
請求項4の発明では、請求項1の発明において、前記通電制御手段として、前記入力電源と電源装置との間の電路若しくは電源装置と接続装置の電源極用の受け端子とを接続する電路に開閉接点を直列挿入し、前記スイッチ手段の作動中駆動されて閉極動作する開閉器を用い、
前記制御回路部には前記スイッチ手段が作動しているときに前記開閉器を閉極動作させる駆動信号を出力する開閉器制御部を備えていることを特徴とする。
【0017】
請求項5の発明では、請求項4の発明において、漏電を検出する漏電検出手段と、該漏電検出手段が漏電を検出した場合に、閉極動作中の前記開閉器に対する前記開閉制御部からの駆動信号の供給を止める手段とを備えていることを特徴とする。
【0018】
請求項6の発明では、電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、
前記電源キャップに設けられるアース極用接続子が挿入接続される前記接続装置のアース極用の受け端子を互いに絶縁された複数の端子片で構成し、これら端子片と、アース極用の受け端子に挿入接続されたときに前記複数の端子片に接触してこれら端子片間を同一電位に導通させる前記電源キャップのアース極用接続子とで機能するスイッチ手段を備え、
該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備していることを特徴とする。
【0019】
請求項7の発明では、電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、
前記電源キャップに設けられる少なくとも一つの接続子に対応する接 続装置の受け端子に、当該接続子が挿入接続されたときに当該接続子で押圧駆動される機械スイッチからなるスイッチ手段を備え、
該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備していることを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明の電源システムを実施形態により説明する。
【0021】
(実施形態1)
図1は本実施形態のシステム構成を示し、図2は本実施形態に用いる接続装置たるコンセント3の構成を示す。
【0022】
ここで本実施形態に用いるコンセント3は、図示するようにアース極用接続栓刃70付きの電源キャップ7に対応したもので、電源極用刃受け金具30,30と、アース用刃受け金具31を備えている。そしてアース用刃受け金具31は互いに絶縁された一対の端子片31a、31bにより構成され、端子片31a,31b間に電源キャップ7のアース極用接続栓刃70が挿入されるとアース極用接続栓刃70を通じて両端子片31a、31bが導通する構成となっている。つまり端子片31a、31b、アース極用接続栓刃70とでスイッチ手段S0を構成する。
【0023】
電源装置2は商用電源からなる入力電源1の交流を直流に変換する電力変換部4及び制御回路部5を備えたもので、入力電源1とともに電源を構成する。そして図1に示すように電力変換部4を制御する制御回路部5内に設けた各部へ動作電源+Vを供給する制御用電源部58の正極側出力を抵抗Rを通じてコンセント3のアース極用刃受け金具31の一方の端子片31aと、ノットゲートNTの入力端とに夫々接続し、負極側出力をグランドに接続してある。また交流を直流に変換する電力変換部4の半導体スイッチング素子(図示せず)を駆動するドライブ回路51を通じて半導体スイッチング素子の駆動信号を与えるためのゲート指令生成部50の出力を、ドライブ回路51の入力端に出力を接続したアンドゲートANDの一方の入力端に接続してある。アンドゲートANDは他方の入力端に前記ノットゲートNTの出力を接続しており、二つの入力の論理積をとるようなっている。
【0024】
尚制御回路部5には図示していないが、従来と同様にフィードバック制御のための電圧検出部、電流検出部を備え(図14参照)、また過電圧検出部、過電流検出部による保護機能を備えている(図16参照)。
【0025】
而して、コネクタ3の差し込み口3a〜3cに電源キャップ7の電源極用接続栓刃71,71及びアース極用接続栓刃70を差し込み接続しない状態では、ノットゲートNTの入力は”H”レベルで、その出力は”L”レベルとなっている。
【0026】
そのためアンドゲートANDの出力は”L”レベルとなり、ゲート指令生成部50からの出力はドライブ回路51で”L”レベルとなり、そのため電力変換部4は出力を零Vとした状態となる。従ってコンセント3の電源極側刃受け金具30,30間には電力変換部4の出力電圧が印加されない。そのため電源キャップ7を差し込み接続しない状態で、コンセント3の電源極側の差し込み口30a、30bに金属物が差し込まれても感電や極間短絡による発火、火傷などが発生する恐れが無い。
【0027】
次に電源キャップ7の接続栓刃70,71,71がコンセント3に接続されると、電源キャップ7のアース極用接続栓刃70がアース用刃受け金具31の両端子片31a、31b間に介在して両端子片31a、31bを電気的に接続する。つまりスイッチ手段S0が作動することになる。
【0028】
これによりノットゲートNTは入力端が端子片31a,アース極用接続栓刃70,端子片31bの経路を介してグランドに接続され、その出力が”H”レベルとなる。これによりアンドゲートANDを通じてゲート指令生成部50のゲート指令信号がドライブ回路51で”H”レベルとなり、そのため電力変換部4は動作を開始し、その変換出力電圧をコンセント3の電源極側刃受け金具30,30間に印加する。つまりノットゲートNT及びアンドゲートANDが通電制御手段として機能することになる。
【0029】
その結果電気機器6は電源キャップ7を通じて電力の供給を電源装置2から受けることになる。
【0030】
尚本実施形態では電力変換部4として直流−交流の電力変換部を用いた場合について説明したが、入力電源1が交流の場合には交流−直流の電力変換部が用いられることになる。つまり入力電源1,電力変換部4の構成は実施形態の構成に特に限定されるものではない。以下に説明する実施形態の場合も同様である。
【0031】
またアース用刃受け金具31は電源装置2が電気機器6へ供給する電源のグランドに対して接続されている。
【0032】
(実施形態2)
前記実施形態1では、コンセント3のアース極用刃受け金具31の端子片31a、31b間に電源キャップ7のアース極用接続栓刃70が接続挿入された際に接続栓刃70を端子片31a、31b間が導通し、この導通があると制御回路部5の制御の下で電力変換部4が動作を開始するものであったが、本実施形態はコンセント3の各刃受け金具30,30,31内に接続栓刃71,71,70が挿入されたときに作動する3つのスイッチ手段S1〜S3を図3に示すように設け、これらスイッチ手段S1〜S3の直列回路が導通したときに実施形態1と同様に制御回路部5内の上述したアンドゲートAND、ノットゲートNTからなる通電制御手段の働きにより電力変換部4を動作させるようにしたものである。
【0033】
つまり本実施形態では電源キャップ7の全ての接続栓刃71,71,70がコンセント3の刃受け金具30,30,31に確実に挿入接続された時に初めて電力変換部4を動作させるため、コンセント3の1極又は2極の差し込み口に誤って或いは悪戯で何かが差し込まれても電力変換部4が動作しないため、安全性がより高い。
【0034】
尚スイッチ手段S1〜S3以外は実施形態1と同じであるので同じ構成要素には同じ符号を付し、説明は省略する。
【0035】
スイッチ手段S1〜S3の具体例としては図4に示すように、例えば刃受け金具30の底部に絶縁体41を上下動自在に貫挿装着し、刃受け金具30の底部と絶縁体41の頭部41aとの間に縮設しているコイルばね42で常時絶縁体41を上方向(差し込み口方向)へ付勢し、接続栓刃71が刃受け金具30に挿入接続されていない状態では絶縁体41の下端面に設けた可動接点板43を、下方に配置している絶縁板45に設けられた一対の固定接点44、44から開離させる構成となっており、接続栓刃71が刃受け金具30に挿入接続されると、接続栓刃71の先端で絶縁体41が下方に押し下げられ、可動接点板43が固定接点44,44に接触して固定接点44,44間を導通させるスイッチを構成するのである。図4中46は刃受け金具用の接続端子、47,47はスイッチ出力用端子である。
【0036】
また刃受け金具31側のスイッチ手段S3の構成も同様な構成となっている。
【0037】
スイッチ手段S1〜S3を、例えば接続栓刃70,71で遮光されることで挿入接続を検知する光学的スイッチで構成しても良い。
【0038】
アース用刃受け金具31では接続端子46を用いて電力変換部4が電気機器6へ供給する電源のグランドに対して接続される。勿論光学的スイッチを利用する場合にもアース用刃受け金具31では電力変換部4が電気機器6へ供給する電源のグランドに対して接続される。
【0039】
また本実施形態では、3つの刃受け金具に対応してスイッチ手段S1〜S3を設けている構成であるが、何れか1つ又は2つの刃受け金具にスイッチ手段を設ける構成でも良い。勿論設けるスイッチ手段の数が多いほど安全性は高まる。機械的スイッチ(光学的スイッチ)を用いる以下の実施形態でも同様である。
【0040】
(実施形態3)
前記実施形態1,2は電源キャップ3の接続をスイッチ手段S0或いはS1〜S3が作動したことで検知し、その検知出力により電源装置2の制御回路部5が電力変換部3を動作させる構成であるが、本実施形態では、電源装置2の出力とコンセント3の電源極用刃受け金具30,30とを接続する電路に直列挿入した電磁開閉器8の開閉接点80,80を電源キャップ7の接続時のみ閉じさせるようにしたものである。
【0041】
つまり図5に示すように電源装置2の電力変換部4の出力をコンセント3へ供給する電路に開閉接点80,80を直列挿入するとともに、駆動コイル81の一端を電力変換部4の非アース側出力極に抵抗R0を介して接続し、他端をコンセント3のアース極用刃受け金具31へのアース極用接続栓刃70の挿入接続を検知してオンするスイッチ手段S0を介して電力変換部4のアース側出力極に接続する構成となっている。
【0042】
ここでスイッチ手段S0としては実施形態1の図2に示すように刃受け金具31を一対の端子片31a、31bで構成し、、アース極用接続栓刃70が挿入接続されることで両端子片31a、31bが導通する構成を用いる。
【0043】
而して本実施形態では、電源キャップ7がコンセント3に接続されない状態では、電源装置2の電力変換部4は動作しているものの、電磁開閉器8が開閉接点80,80を開いている開極状態にあるため、電力変換部4の出力電圧はコンセント3の電源極側の刃受け金具30,30には印加されない。
【0044】
次に電源キャップ7の各接続栓刃71,71,70が差し込み口3a,3b、3cを介してコンセント3の刃受け金具30,30,31に挿入接続され、前記刃受け金具31の端子片31a,31b間が導通すると、電磁開閉器8の駆動コイル81に抵抗R0を介して励磁電流が流れ、そのため電磁開閉器8は閉極動作し、開閉接点80,80を閉じる。これによって電力変換部4の変換出力電圧がコンセント3の電源極用刃受け金具30,30に印加され、そのため電源キャップ7を通じた電気機器6への電力供給が開始可能となる。つまり電磁開閉器8が通電制御手段として機能する。
【0045】
尚本実施形態を車載用電源システムとして用いる場合、電磁開閉器8とコンセント3とを一つの筐体に組み込んで、ユニット化し、例えば電源装置2を車内床やトランク内に設け、ユニットを電気機器6を使用しやす場所に設けるようにしても良い。
【0046】
(実施形態4)
前記実施形態3では電磁開閉器8の開閉接点80、80を電力変換部4の出力側に挿入するとともに、駆動コイル81の駆動電力を電源装置2の電力変換部4の出力で得る構成であったが、本実施形態は入力電源1に対応した、つまり直流であれば直流用、交流であれば交流用の電磁開閉器8を用いて、図6に示すように入力電源1と電力変換部2の入力端との間の電路に開閉接点80,80を挿入し、駆動コイル81の一端を入力電源1の非アース側出力極に抵抗R0を介して接続し、他端をコンセント3のアース極側の刃受け金具31側のスイッチ手段S0(実施形態3のスイッチ手段S0と同じ構成)を介して入力電源1のアース側出力極に接続してある。コンセント3のアース極側の刃受け金具31側のスイッチ手段の構成は実施形態3の構成と同様な構成を用いる。
【0047】
而して本実施形態では、電源キャップ7をコンセント3に接続しない状態にあっては、駆動コイル81には励磁電流が流れないため、電磁開閉器8はその開閉接点80,80を開いている開極状態にある。従って電源装置2の電力変換部4は変換出力電圧を発生せず、そのため電力変換部4の変化出力電圧はコンセント3の電源極側の刃受け金具30,30には印加されない。
【0048】
次に電源キャップ7の各接続栓刃71,71,70が差し込み口3a,3b、3cを介してコンセント3の刃受け金具30,30,31に挿入接続され、前記刃受け金具31の端子片31a,31b間が導通すると、電磁開閉器8の駆動コイル81に抵抗R0を介して励磁電流が流れ、そのため電磁開閉器8は閉極動作し、開閉接点80,80を閉じる。これによって電力変換部4が変換出力電圧を発生し、その変換出力電圧はコンセント3の電源極用刃受け金具30,30に印加され、そのため電源キャップ7を通じた電気機器6への電力供給が可能となる。
【0049】
(実施形態5)
実施形態3では電磁開閉器8の駆動コイル81に電力変換部4の出力を、また実施形態4では入力電源1の出力を夫々スイッチ手段S0を介して接続して電磁開閉器8を駆動する構成としていたが、本実施形態では、図7に示すように電源装置2内に電磁開閉器8を設けるとともに、電源装置2の起動や停止の動作、更には保護機能(図示せず)の動作に対応して電磁開閉器8の駆動信号をオン/オフする開閉器制御部56を制御回路部5内に設け、この開閉器制御部56の駆動信号出力端の内の非アース側出力端に抵抗R0を介して駆動コイル8の一端に接続し、駆動コイル8の他端をコンセント3のアース極用の刃受け金具31に設けるスイッチ手段を介してグランドに接続し、グランドを介して開閉器制御部56の駆動信号出力端の内のアース側出力端に接続したものである。尚開閉接点80,80は実施形態3と同様に電力変換部4からコンセント3への電路に直列挿入している。またコンセント3のアース極用の刃受け金具31に設けるスイッチ手段の構成は実施形態3に準ずるものとする。尚電磁開閉器8は電源装置2外に設けても良い。
【0050】
而して本実施形態では、保護機能が動作せず、電源装置2が正常動作状態にあるときには開閉器制御部56からは駆動信号が出力されているものの、電源キャップ7がコンセント3に接続されない状態では、電磁開閉器8の駆動コイル81には駆動信号による励磁電流が流れず、そのため電磁開閉器8は開閉接点80,80を開いている開極状態にある。従って電力変換部4の変換出力電圧はコンセント3の電源極側の刃受け金具30,30には印加されない。
【0051】
次に電源キャップ7の各接続栓刃71,71,70が差し込み口3a,3b、3cを介してコンセント3の刃受け金具30,30,31に挿入接続され、前記刃受け金具31の端子片31a,31b間が導通すると、電磁開閉器8の駆動コイル81には開閉器制御部56の駆動信号によって励磁電流が流れ、そのため電磁開閉器8は閉極動作し、開閉接点80,80を閉じる。これによって電力変換部4の変換出力電圧がコンセント3の電源極用刃受け金具30,30に印加され、電源キャップ7を通じた電気機器6への電力供給が可能となる。
【0052】
一方電源装置2の保護機能が働くか或いは、運転停止状態となると、開閉器制御部56は駆動信号の出力を停止する。そのため電源キャップ7がコンセント3に接続されている状態にあっても、電磁開閉器8は励磁電流が無くなるため開極動作してその開閉接点80,80を開き、電気機器6側への通電を停止する。
【0053】
尚電磁開閉器8の開閉接点80,80の挿入位置を入力電源1と電源装置2との間に挿入しても良い。この開閉接点80,80の挿入位置は以下の開閉器制御部56を設ける何れの実施形態にも適用できる。
【0054】
(実施形態6)
前記実施形態3では電磁開閉器8の駆動コイル81の励磁電流供給路にコンセント3のアース極用の刃受け金具31に付加するスイッチ手段(端子片31a,31b間の導通をアース極用接続栓刃70の接続挿入によってオンするスイッチ手段S0)を挿入する構成であったが、本実施形態では、図4で示す構成のスイッチ手段S1〜S3を実施形態2の場合と同様に図8に示すようにコンセント3の各刃受け金具30,30,31に付設して、これらスイッチ手段S1〜S3の直列回路を電磁開閉器8の駆動コイル81の励磁電流供給路に挿入したものである。勿論スイッチ手段S1〜S3に実施形態2で説明したような光学的スイッチを用いても良い。
【0055】
而して本実施形態では、電源キャップ7の接続栓刃71,71,70がコンセント3に接続されない状態では、電源装置2の電力変換部4は動作しているものの、電磁開閉器8が開閉接点80,80を開いている開極状態にあるため、電力変換部4の変換出力電圧はコンセント3の電源極側の刃受け金具30,30には印加されない。
【0056】
次に電源キャップ7の各接続栓刃71,71,70が差し込み口3a,3b、3cを介してコンセント3の刃受け金具30,30,31に挿入接続され、各スイッチ手段S1〜S3がオンすると、電磁開閉器8の駆動コイル81に抵抗R0を介して励磁電流が流れ、そのため電磁開閉器8は閉極動作し、開閉接点80,80を閉じる。これによって電力変換部4の変換出力電圧がコンセント3の電源極用刃受け金具30,30に印加され、電源キャップ7を通じた電気機器6への電力供給が可能となる。
【0057】
(実施形態7)
本実施形態は、実施形態4におけるコンセント3の刃受け金具31のスイッチ手段に替えて、図9に示すように実施形態6と同様なスイッチ手段S1〜S3を採用したものである。その他の構成は実施形態4に準ずる。
【0058】
而して本実施形態では、電源キャップ7をコンセント3に接続しない状態にあっては、駆動コイル81には励磁電流が流れないため、直流用の電磁開閉器8はその開閉接点80,80を開いている開極状態にある。従って電源装置2の電力変換部4は変換出力を発生せず、そのため電力変換部4の出力電圧はコンセント3の電源極側の刃受け金具30,30には印加されない。
【0059】
次に電源キャップ7の各接続栓刃70,71,71が差し込み口3a,3b、3cを介してコンセント3の刃受け金具31,30、30に挿入接続され、スイッチ手段S1〜S3がオンすると、電磁開閉器8の駆動コイル81に抵抗R0を介して励磁電流が流れ、そのため電磁開閉器8は閉極動作し、開閉接点80,80を閉じる。これによって電力変換部4が変換出力電圧を発生し、その変換出力電圧がコンセント3の電源極用刃受け金具30,30に印加され、そのため電源キャップ7を通じた電気機器6への電力供給が可能となる。
【0060】
(実施形態8)
本実施形態は、実施形態5におけるコンセント3の刃受け金具31のスイッチ手段に替えて、図10に示すように実施形態6と同様なスイッチ手段S1〜S3を採用したものである。その他の構成は実施形態5に準ずる。
【0061】
而して本実施形態では、保護機能が動作せず、電源装置2が正常動作状態にあるときには開閉器制御部56からは駆動信号が出力されている状態にある。
【0062】
そして電源キャップ7がコンセント3に接続されない状態では、電源装置2の電力変換部4は動作しているものの、電磁開閉器8が開閉接点80,80を開いている開極状態にあるため、電力変換部4の出力電圧はコンセント3の電源極側の刃受け金具30,30には印加されない。
【0063】
次に電源キャップ7の各接続栓刃71,71,70が差し込み口3a,3b、3cを介してコンセント3の刃受け金具30,30,31に挿入接続され、前記スイッチ手段S1〜S3がオンすると、電磁開閉器8の駆動コイル81には開閉器制御部56の駆動信号によって抵抗R0を介して励磁電流が流れ、そのため電磁開閉器8は閉極動作し、開閉接点80,80を閉じる。これによって電力変換部4の出力電圧がコンセント3の電源極用刃受け金具30,30に印加され、そのため電源キャップ7を通じた電気機器6への電力供給が可能となる。
【0064】
一方電源装置2の保護機能が働くか或いは、運転停止状態となると、開閉器制御部56は駆動信号の出力を停止する。そのため電源キャップ7がコンセント3に接続されている状態にあっても、電磁開閉器8は開極動作してその開閉接点80,80を開き、電気機器6側への通電を停止する。
【0065】
(実施形態9)
本実施形態は実施形態6又は8における電源装置2及び入力電源1の代わりに図11に示すように商用入力電源1’を用い、この商用電源6’からコンセント3に接続される電源キャップ7を通じて電気機器6へ電力供給を行うようにしたものである。
【0066】
電源キャップ7のコンセント3への接続時の動作は交流用の電磁開閉器8の駆動コイル81の励磁電流が商用入力電源1’から流れる他は基本的には実施形態6又は8と同じあるので、説明は省略する。
【0067】
(実施形態10)
本実施形態は、実施形態8の構成に、漏電検出時に電磁開閉器8を開極動作する漏電保護手段を付加したものであり、漏電保護手段は図12に示すように電磁開閉器8の開閉接点80,80とコンセント3との間の電路を一次巻線とする不平衡電流を検出するための零相変流器9と、この零相変流器9の二次出力が所定レベルに達したときに漏電検出信号を出力する漏電検出回路10と、この漏電検出回路10の漏電検出信号でオン動作するトランジスタQとで構成され、電磁開閉器8の駆動コイル81と開閉器制御部56の出力端との接続点と、グランドとの間に上記トランジスタQのコレクタ・エミッタ接続している。尚実施形態8と同じ構成要素には同じ符号を付し説明は省略する。
【0068】
而して正常時おける動作は実施形態8と同じであって、電源キャップ7がコンセント3に接続された場合、電磁開閉器8の駆動コイル81に開閉器制御部56からの駆動信号によりコンセント3のアース極用刃受け金具31のスイッチ手段を介して励磁電流が流れ、電磁開閉器8は閉極動作する。この閉極状態で電力変換部4の変換出力電圧が開閉接点80,80を介してコンセント3の電源極用の刃受け金具30,30に印加され、電源キャップ7を通じた電気機器6への電力供給が可能となる。
【0069】
電気機器6に対して電力が供給されている漏電が発生し、不平衡電流が電路に流れると、零相変流器9から二次出力が発生し、そのレベルが所定以上になると漏電検出回路10から漏電検出信号が抵抗R1を介してトランジスタQのベースに入力し、トランジスタQはオンすることになる。このオンによって開閉器制御部56から電磁開閉器8の駆動コイル81への励磁電流がバイパスされることになる。そのため電磁開閉器8は開極動作して開閉接点80,80を開く。これにより電力変換部4から電気機器6への電力供給が遮断されることになる。
【0070】
尚本実施形態では、電力変換部4が直流−交流の電力変換部であるので、上述のように零相変流器9を漏電検出に用いたが、交流−直流の電力変換部の場合には、変流器を用いた周知の直流の漏電検出方法を採用すれば良い。
【0071】
(実施形態11)
本実施形態は図13に示すように実施形態6の構成に実施形態10と同様な漏電保護手段を付加したものである。
【0072】
而して本実施形態においては、電源キャップ7がコンセント3に接続された場合の動作は実施形態6と同じ動作を為し、漏電発生時には実施形態10と同じ動作を為すことになる。
【0073】
【発明の効果】
請求項1の発明は、電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、前記受け端子の少なくとも一つに、前記電源キャップの対応する接続子が接続されると作動するスイッチ手段を備え、該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備し、前記電源を、入力電源と、入力電源の電力変換を行う電力変換部及び該電力変換部を制御する制御回路部を備えた電源装置とで構成し、前記制御回路部には前記スイッチ手段が作動するとその作動中前記電力変換部から該電力変換部の変換出力電圧を前記接続装置の電源極用受け端子に印加させる前記通電制御手段を前記スイッチ手段に対応して具備しているので、電源キャップの接続子を接続装置に受け端子に接続しない状態では、電力変換部からの変換出力電圧が電源極用の受け端子に電源電圧が印加されないため、接続装置の差し込み口から金属物などが差し込まれて感電や極間短絡による発火、火傷などが発生する恐れが無く、安全性の高い電源システムを提供できる。
【0074】
請求項2の発明は、請求項1の発明において、前記通電制御手段が、前記スイッチ手段の作動信号が入力したときに前記電力変換部のスイッチング素子に対して駆動信号を与えることを許可する手段であるので、通電制御手段が簡単な電子回路で構成できる。
【0075】
請求項3の発明は、請求項1の発明において、前記通電制御手段として、前記入力電源と電源装置との間の電路若しくは電源装置と接続装置の電源極用の受け端子とを接続する電路に開閉接点を直列挿入するとともに前記電源の出力端間に前記スイッチ手段を介して駆動コイルを接続し、前記スイッチ手段のオン時に前記電源からの電流で前記駆動コイルが励磁されて閉極動作する電磁開閉器を用いたので、電磁開閉器によって電源と接続装置との間の通電を制御することができ、しかも特別な制御回路を設けることなく電磁開閉器を動作させることができので、請求項1の発明と同様な効果を奏する電源システムを簡単な構成で実現できる。
【0076】
請求項4の発明は、請求項1の発明において、前記通電制御手段として、前記入力電源と電源装置との間の電路若しくは電源装置と接続装置の電源極用の受け端子とを接続する電路に開閉接点を直列挿入し、前記スイッチ手段の作動中駆動されて閉極動作する開閉器を用い、前記制御回路部には前記スイッチ手段が作動しているときに前記開閉器を閉極動作させる駆動信号を出力する開閉器制御部を備えているので、請求項1の発明と同様な効果を奏する電源システムを実現でき、しかも電源装置に備わった保護機能によって駆動される開閉器との共用が図ることが可能となる。
【0077】
請求項5の発明は、請求項4の発明において、漏電を検出する漏電検出手段と、該漏電検出手段が漏電を検出した場合に、閉極動作中の前記開閉器に対する前記開閉制御部からの駆動信号の供給を止める手段とを備えているので、漏電時の通電遮断のため手段を開閉器で兼用でき、より安全性の高い電源システムを提供できる。
【0078】
請求項6の発明は、電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、前記電源キャップに設けられるアース極用接続子が挿入接続される前記接続装置のアース極用の受け端子を互いに絶縁された複数の端子片で構成し、これら端子片と、アース極用の受け端子に挿入接続されたときに前記複数の端子片に接触してこれら端子片間を同一電位に導通させる前記電源キャップのアース極用接続子とで機能するスイッチ手段を備え、該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備しているので、電源キャップの接続子が確実に接続装置の受け端子に挿入接続されたことで、電源から接続装置への通電が開始されることにより、安全性を高めることができるものであって、請求項1の発明と同様に安全性の高い電源システムを提供できる。
【0079】
請求項7の発明は、電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、前記電源キャップに設けられる少なくとも一つの接続子に対応する接 続装置の受け端子に、当該接続子が挿入接続されたときに当該接続子で押圧駆動される機械スイッチからなるスイッチ手段を備え、該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備しているので、電源キャップの接続子が確実に接続装置の受け端子に挿入接続されたことで、電源から接続装置への通電が開始されることにより、安全性を高めることができるものであって、請求項1の発明と同様に安全性の高い電源システムを提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態1の回路構成図である。
【図2】同上の概要構成図である。
【図3】本発明の実施形態2の回路構成図である。
【図4】同上に用いるスイッチ手段の構成図である。
【図5】本発明の実施形態3の回路構成図である。
【図6】本発明の実施形態4の回路構成図である。
【図7】本発明の実施形態5の回路構成図である。
【図8】本発明の実施形態6の回路構成図である。
【図9】本発明の実施形態7の回路構成図である。
【図10】本発明の実施形態8の回路構成図である。
【図11】本発明の実施形態9の回路構成図である。
【図12】本発明の実施形態10の回路構成図である。
【図13】本発明の実施形態11の回路構成図である。
【図14】従来例の回路構成図である。
【図15】同上の概要構成図である。
【図16】別の従来例の回路構成図である。
【図17】他の従来例の回路構成図である。
【図18】その他の従来例の回路構成図である。
【符号の説明】
1 入力電源
2 電源装置
3 コンセント
3a〜3c 差し込み口
4 電力変換部
5 制御回路部
50 ゲート指令生成部
51 ドライブ回路
58 制御用電源部
AND アンドゲート
NT  ノットゲート
R   抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply system for supplying electric power to an electric device using a connection device such as an outlet.
[0002]
[Prior art]
As a power supply system for converting a DC or AC input power to AC or DC and supplying the converted power to an electric device through a connection device such as an outlet or a plug, for example, there is a power supply system shown in FIG.
[0003]
The system shown in FIG. 14 includes an input power supply 1 and an outlet 3 serving as a connection device for connecting an electric device connected to an output unit of a power supply device 2.
[0004]
Here, the power supply device 2 is an inverter device provided with a power conversion unit 4 that receives the power of an input power supply 1 composed of a DC power supply such as a battery, a fuel cell, or a solar cell and converts the input power into a commercial frequency AC power. However, there is a case in which an AC power supply is used as the input power supply 1 and a power conversion unit that converts AC power into DC power is provided.
[0005]
The power conversion unit 4 uses components such as a capacitor, a coil, a semiconductor switching element, and a diode. A control circuit unit 5 that controls the power conversion unit 4 includes a semiconductor switching device used in the power conversion unit 4. A gate command generation unit 50 for controlling the gate unit of the element, a drive circuit 51, a voltage detection unit 52 for performing feedback control of voltage and current or performing a protection operation, a current detection unit 53, and a control power supply unit (Not shown).
[0006]
In such a power supply device 2, as described above, when the power supply device 2 includes the power conversion unit 4 that converts a DC power supply into a commercial frequency alternating current, as the outlet 3, the power supply cap 7 of the electric device 6 as illustrated in FIG. The power supply terminal connectors (hereinafter referred to as connection blades) 71 and 71 and the ground electrode connector (hereinafter referred to as connection blades) 70 are connected to the corresponding power electrode receiving terminals (through the insertion ports 3a, 3b and 3c). A so-called power outlet is often used to be inserted into blade receiving brackets 30, 30 and a ground terminal (hereinafter, blade receiving bracket) 31. Typical ones are UPS devices and photovoltaic power generation devices. There are an inverter device, a vehicle AC100V output device, and the like.
[0007]
Further, as shown in FIG. 16, an electromagnetic switch 8 having switching contacts 80, 80 inserted between the output of the power conversion unit 4 and the outlet 3 is provided in the power supply device 2, and the output voltage of the power conversion unit 4 is excessive. An overvoltage detection unit 54 that detects that the voltage has become a voltage, an overcurrent detection unit 55 that detects that the output current has become an excessive current, and a detection signal from the detection units 54 and 55 A switch control unit 56 for stopping the excitation current and opening the electromagnetic switch 8 in the control circuit unit 5 or a zero-phase detector for detecting an unbalanced current flowing when leakage occurs as shown in FIG. In some cases, the current transformer 9 is provided, and the control circuit unit 5 includes a leakage detection circuit 10 that detects leakage from the output of the zero-phase current transformer 9.
[0008]
In the case of FIG. 16, when an overvoltage occurs or an overcurrent flows upon detection of the overvoltage detection unit 54 or the overcurrent detection unit 55, the switch control unit 56 opens the electromagnetic switch 8 to open and close the electromagnetic switch 8. The contacts 80 and 80 are opened to cut off the power supply between the power conversion unit 4 and the outlet 3.
[0009]
In the case of FIG. 17, in addition to the configuration of FIG. 16, a leakage detection circuit 57 detects leakage from the detection output of the zero-phase current transformer 9, and the switch control unit 56 controls the electromagnetic switch 8 based on the leakage detection output. The opening / closing contacts 80, 80 are opened by opening the electrodes, so that the power supply between the power converter 4 and the outlet 3 can be cut off.
[0010]
By the way, in the above-described conventional system, while the power supply device 2 is operating, the connection blades 71, 71, 70 of the power supply cap 7 of the electric device 6 are temporarily inserted into the insertion ports 3a, 3b, 3c of the outlet 3 as the connection device. Even if not, the voltage is always applied to the power electrode receiving terminals (hereinafter referred to as blade receiving brackets) 30 of the outlet 3. This is the same for the outlet 3 connected to the general commercial power supply 1 'as shown in FIG.
[0011]
[Problems to be solved by the invention]
In the case of the conventional configuration as shown in FIGS. 14 to 18, even when the connection blades 71, 71, 70 of the power supply cap 7 of the electric device 6 are not connected to the outlet 3, when the power supply device 2 is operating. A voltage is applied to the blades 30, 30 for the power pole of the outlet 3, so that a metal object, such as a clip, may be attached to the power pole side insertion port 3a, 3 If it is inserted into 3b, fire, burns, and the like may occur due to electric shock or short circuit between poles.
[0012]
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a safe power supply in which a receiving terminal for a power supply electrode of a connection device does not become a charging unit unless a power supply cap is connected to the connection device. It is to provide a system.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a power source and a voltage of the power source are applied to a power source receiving terminal, and a power source connector of a power cap is connected to the power source receiving terminal. A power supply system comprising: a connection device that supplies power to the electric device from the power supply through the power supply cap when the power supply is performed.
At least one of the receiving terminals is provided with switch means that is activated when a corresponding connector of the power supply cap is connected, and when the switch means is activated, the voltage of the power supply is used as a power pole receiving terminal. A power supply comprising: an input power supply; a power conversion section for performing power conversion of the input power supply; and a control circuit section for controlling the power conversion section. The control circuit is configured to apply the converted output voltage of the power converter to the power supply receiving terminal of the connection device from the power converter when the switch is operated. Means are provided corresponding to the switch means.
[0014]
According to a second aspect of the present invention, in the first aspect of the present invention, the energization control unit permits the drive signal to be given to the switching element of the power conversion unit when the activation signal of the switch unit is input. It is characterized by being.
[0015]
According to a third aspect of the present invention, in the first aspect of the present invention, the energization control means includes an electric path between the input power supply and a power supply or an electric path connecting a power supply and a receiving terminal for a power supply pole of a connection device. An open / close contact is inserted in series and a drive coil is connected between the output terminals of the power supply via the switch means. When the switch means is turned on, the drive coil is excited by a current from the input power supply or a power supply device and closed. It is characterized by using an electromagnetic switch that performs pole operation.
[0016]
According to a fourth aspect of the present invention, in the first aspect of the present invention, the power supply control means includes an electric path between the input power supply and a power supply or an electric path connecting the power supply and a receiving terminal for a power supply pole of a connection device. Using a switch that inserts an open / close contact in series and is driven during the operation of the switch means to perform a closing operation,
The control circuit unit includes a switch control unit that outputs a drive signal for closing the switch when the switch means is operating.
[0017]
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, there is provided a leakage detecting means for detecting a leakage, and when the leakage detecting means detects a leakage, the switching control unit controls the switch during the closing operation. Means for stopping supply of the drive signal.
[0018]
In the invention according to claim 6, the power supply and the voltage of the power supply are applied to the power supply electrode receiving terminal, and the power supply terminal is connected to the power supply terminal when the connector for the power supply electrode of the power supply cap is connected to the power supply electrode receiving terminal. In a power supply system configured with a connection device that supplies power to an electric device through a power supply cap,
A ground electrode receiving terminal of the connection device into which the ground electrode connector provided in the power supply cap is inserted and connected is constituted by a plurality of terminal pieces insulated from each other, and these terminal pieces and a ground electrode receiving terminal are formed. Switch means functioning as a ground electrode connector of the power supply cap, which contacts the plurality of terminal pieces when inserted and connected to conduct the same potential between the terminal pieces,
An energization control unit for applying the voltage of the power supply to the power supply electrode receiving terminal when the switch unit is operating is provided corresponding to the switch unit.
[0019]
In the invention according to claim 7, the power supply and the voltage of the power supply are applied to the power supply electrode receiving terminal, and when the power supply electrode connector of the power supply cap is connected to the power supply electrode receiving terminal, the power supply receives the power from the power supply. In a power supply system configured with a connection device that supplies power to an electric device through a power supply cap,
Switch means comprising a mechanical switch which is pressed and driven by the connector when the connector is inserted and connected to a receiving terminal of the connection device corresponding to at least one connector provided on the power supply cap,
An energization control unit for applying the voltage of the power supply to the power supply electrode receiving terminal when the switch unit is operating is provided corresponding to the switch unit.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a power supply system according to the present invention will be described with reference to embodiments.
[0021]
(Embodiment 1)
FIG. 1 shows a system configuration of the present embodiment, and FIG. 2 shows a configuration of an outlet 3 which is a connection device used in the present embodiment.
[0022]
The outlet 3 used in the present embodiment corresponds to the power supply cap 7 with the grounding connection plug blade 70 as shown in the figure, and includes the power supply electrode blade receiving brackets 30 and 30 and the grounding blade receiving bracket 31. It has. The earth blade receiving bracket 31 is composed of a pair of terminal pieces 31a and 31b insulated from each other. When the earth electrode connecting plug blade 70 of the power supply cap 7 is inserted between the terminal pieces 31a and 31b, the earth electrode connection is made. The terminal strips 31a and 31b are electrically connected through the plug blade 70. In other words, the switch means S0 is composed of the terminal strips 31a and 31b and the connection plug blade 70 for the ground electrode.
[0023]
The power supply device 2 includes a power conversion unit 4 for converting AC of an input power supply 1 composed of a commercial power supply into DC, and a control circuit unit 5, and constitutes a power supply together with the input power supply 1. As shown in FIG. 1, the positive side output of a control power supply section 58 for supplying operating power + V to each section provided in a control circuit section 5 for controlling the power conversion section 4 is connected to a ground electrode blade of the outlet 3 through a resistor R. One terminal piece 31a of the receiving bracket 31 is connected to the input terminal of the knot gate NT, and the negative output is connected to the ground. The output of the gate command generator 50 for providing a drive signal for the semiconductor switching element through a drive circuit 51 for driving a semiconductor switching element (not shown) of the power converter 4 for converting AC to DC is output from the drive circuit 51. It is connected to one input terminal of an AND gate AND whose output is connected to the input terminal. The AND gate AND has the other input terminal connected to the output of the NOT gate NT, and takes the logical product of two inputs.
[0024]
Although not shown in the control circuit section 5, a voltage detection section and a current detection section for feedback control are provided as in the conventional case (see FIG. 14), and a protection function by the overvoltage detection section and the overcurrent detection section is provided. (See FIG. 16).
[0025]
Thus, in a state where the power supply electrode connection blades 71, 71 and the earth electrode connection blade 70 of the power supply cap 7 are not inserted and connected to the insertion ports 3a to 3c of the connector 3, the input of the NOT gate NT is "H". Level, the output is at "L" level.
[0026]
Therefore, the output of the AND gate AND is at "L" level, the output from the gate command generation unit 50 is at "L" level in the drive circuit 51, and the output of the power conversion unit 4 is set to zero volt. Therefore, the output voltage of the power conversion unit 4 is not applied between the power pole side blade holders 30 of the outlet 3. Therefore, even if a metal object is inserted into the outlets 30a and 30b on the power pole side of the outlet 3 in a state where the power cap 7 is not inserted and connected, there is no danger of fire or burns due to electric shock or short circuit between the poles.
[0027]
Next, when the connection blades 70, 71, 71 of the power supply cap 7 are connected to the outlet 3, the connection blade 70 for the ground electrode of the power supply cap 7 is placed between the two terminal pieces 31a, 31b of the metal blade receiving bracket 31. The two terminal pieces 31a and 31b are electrically connected with the interposition therebetween. That is, the switch means S0 operates.
[0028]
As a result, the input end of the knot gate NT is connected to the ground via the path of the terminal piece 31a, the grounding connection blade 70, and the terminal piece 31b, and the output thereof becomes "H" level. As a result, the gate command signal of the gate command generation unit 50 becomes “H” level in the drive circuit 51 through the AND gate AND, so that the power conversion unit 4 starts operating, and converts the converted output voltage to the power pole side blade of the outlet 3. The voltage is applied between the metal fittings 30, 30. That is, the NOT gate NT and the AND gate AND function as the power supply control means.
[0029]
As a result, the electric device 6 receives power supply from the power supply device 2 through the power supply cap 7.
[0030]
In this embodiment, the case where a DC-AC power converter is used as the power converter 4 has been described. However, when the input power supply 1 is AC, an AC-DC power converter is used. That is, the configuration of the input power supply 1 and the power conversion unit 4 is not particularly limited to the configuration of the embodiment. The same applies to the embodiments described below.
[0031]
The grounding bracket 31 is connected to the ground of the power supplied from the power supply device 2 to the electric device 6.
[0032]
(Embodiment 2)
In the first embodiment, when the earthing pole connecting blade 70 of the power supply cap 7 is connected and inserted between the terminal pieces 31a and 31b of the grounding blade receiving bracket 31 of the outlet 3, the connecting blade 70 is connected to the terminal piece 31a. , 31b, the power conversion unit 4 starts operating under the control of the control circuit unit 5 when this continuity is established. In this embodiment, the blade holders 30, 30 of the outlet 3 are used. , 31 are provided as shown in FIG. 3 with three switch means S1 to S3 which operate when the connection blade 71, 71, 70 is inserted, and when the series circuit of these switch means S1 to S3 becomes conductive. Similar to the first embodiment, the power conversion unit 4 is operated by the function of the power supply control unit including the AND gate AND and the NOT gate NT in the control circuit unit 5.
[0033]
That is, in the present embodiment, the power conversion unit 4 is operated only when all the connection blades 71, 71, 70 of the power supply cap 7 are securely inserted and connected to the blade receiving brackets 30, 30, 31 of the outlet 3. Even if something is mistakenly or mischievously inserted into the one-pole or two-pole insertion hole of No. 3, the power conversion unit 4 does not operate, so that the safety is higher.
[0034]
The components other than the switch means S1 to S3 are the same as those of the first embodiment, and therefore the same components are denoted by the same reference numerals, and description thereof will be omitted.
[0035]
As a specific example of the switch means S1 to S3, as shown in FIG. 4, for example, an insulator 41 is inserted through the bottom of the blade holder 30 so as to be vertically movable, and the bottom of the blade holder 30 and the head of the insulator 41 are mounted. The insulator 41 is constantly urged upward (toward the insertion port) by the coil spring 42 contracted between the portion 41a and the insulating member 41 when the connecting blade 71 is not inserted and connected to the blade receiving member 30. The movable contact plate 43 provided on the lower end surface of the body 41 is separated from a pair of fixed contacts 44 provided on an insulating plate 45 disposed below. When the connector 41 is inserted and connected, the insulator 41 is pushed down by the tip of the connection blade 71, and the movable contact plate 43 contacts the fixed contacts 44, 44 to make the fixed contacts 44, 44 conductive. It constitutes. In FIG. 4, reference numeral 46 denotes a connection terminal for a blade receiving bracket, and reference numerals 47, 47 denote switch output terminals.
[0036]
The configuration of the switch means S3 on the side of the blade holder 31 has the same configuration.
[0037]
The switch means S1 to S3 may be constituted by, for example, an optical switch that detects insertion connection by being shielded from light by the connection blades 70 and 71.
[0038]
The power conversion unit 4 is connected to the ground of the power supply supplied to the electric device 6 by using the connection terminal 46 in the grounding blade holder 31. Of course, even when an optical switch is used, the power conversion unit 4 is connected to the ground of the power supply to the electric device 6 in the ground blade bracket 31.
[0039]
In the present embodiment, the switch means S1 to S3 are provided in correspondence with the three blade receiving fittings. However, the switch means may be provided in any one or two of the blade receiving fittings. Of course, the greater the number of switch means provided, the higher the security. The same applies to the following embodiments using a mechanical switch (optical switch).
[0040]
(Embodiment 3)
The first and second embodiments have a configuration in which the connection of the power supply cap 3 is detected by actuation of the switch means S0 or S1 to S3, and the control circuit unit 5 of the power supply device 2 operates the power conversion unit 3 based on the detection output. However, in the present embodiment, the switching contacts 80, 80 of the electromagnetic switch 8, which are inserted in series in the electric circuit connecting the output of the power supply device 2 and the power pole blade holders 30, 30, of the outlet 3, are connected to the power cap 7 by It is designed to be closed only when connected.
[0041]
That is, as shown in FIG. 5, switching contacts 80, 80 are inserted in series into an electric path for supplying the output of the power converter 4 of the power supply device 2 to the outlet 3, and one end of the drive coil 81 is connected to the non-ground side of the power converter 4. It is connected to the output electrode via a resistor R0, and the other end is connected to a ground electrode blade receiving bracket 31 of the outlet 3 by detecting the insertion connection of the ground electrode connecting plug blade 70 and turned on by a switch means S0 for turning on the power. It is configured to be connected to the ground-side output electrode of the unit 4.
[0042]
Here, as the switch means S0, as shown in FIG. 2 of the first embodiment, the blade receiving member 31 is constituted by a pair of terminal pieces 31a and 31b, and the connection plug blade 70 for the earth pole is inserted and connected to both terminals. A configuration in which the pieces 31a and 31b conduct is used.
[0043]
Thus, in the present embodiment, when the power supply cap 7 is not connected to the outlet 3, the power switch 4 of the power supply device 2 operates, but the electromagnetic switch 8 opens and closes the switching contacts 80, 80. Since the power converter 4 is in the pole state, the output voltage of the power converter 4 is not applied to the blade holders 30 on the power pole side of the outlet 3.
[0044]
Next, the connecting plug blades 71, 71, 70 of the power supply cap 7 are inserted and connected to the blade receiving brackets 30, 30, 31 of the outlet 3 through the insertion ports 3a, 3b, 3c, and the terminal strips of the blade receiving bracket 31 are connected. When the connection between 31a and 31b is conducted, an exciting current flows through the drive coil 81 of the electromagnetic switch 8 via the resistor R0, so that the electromagnetic switch 8 performs a closing operation and closes the switching contacts 80 and 80. As a result, the converted output voltage of the power conversion unit 4 is applied to the power pole blade holders 30 of the outlet 3, so that power supply to the electric device 6 through the power cap 7 can be started. That is, the electromagnetic switch 8 functions as an energization control unit.
[0045]
When the present embodiment is used as a vehicle-mounted power supply system, the electromagnetic switch 8 and the outlet 3 are integrated into one housing to form a unit. For example, the power supply device 2 is provided on the floor of a vehicle or in a trunk, and the unit is connected to the electrical equipment 6. May be provided at a place where it is easy to use.
[0046]
(Embodiment 4)
In the third embodiment, the switching contacts 80 of the electromagnetic switch 8 are inserted into the output side of the power converter 4 and the driving power of the drive coil 81 is obtained from the output of the power converter 4 of the power supply device 2. However, the present embodiment uses the electromagnetic switch 8 for the input power supply 1, that is, for direct current for DC and for AC for AC, as shown in FIG. The switching contacts 80 and 80 are inserted into the electric circuit between the input terminal 2 and the input terminal 2 of the power supply 2, one end of the drive coil 81 is connected to the non-ground side output electrode of the input power supply 1 via the resistor R 0, It is connected to the earth-side output pole of the input power supply 1 via the switch means S0 (the same configuration as the switch means S0 of the third embodiment) on the pole-side blade holder 31 side. The configuration of the switch means on the side of the blade holder 31 on the ground electrode side of the outlet 3 uses the same configuration as the configuration of the third embodiment.
[0047]
Thus, in the present embodiment, when the power supply cap 7 is not connected to the outlet 3, no exciting current flows through the drive coil 81, so that the electromagnetic switch 8 has its switching contacts 80, 80 open. The contact is open. Therefore, the power conversion unit 4 of the power supply device 2 does not generate a converted output voltage, so that the changed output voltage of the power conversion unit 4 is not applied to the blade holders 30 on the power pole side of the outlet 3.
[0048]
Next, the connecting plug blades 71, 71, 70 of the power supply cap 7 are inserted and connected to the blade receiving brackets 30, 30, 31 of the outlet 3 through the insertion ports 3a, 3b, 3c, and the terminal strips of the blade receiving bracket 31 are connected. When the connection between 31a and 31b is conducted, an exciting current flows through the drive coil 81 of the electromagnetic switch 8 via the resistor R0, so that the electromagnetic switch 8 performs a closing operation and closes the switching contacts 80 and 80. As a result, the power conversion unit 4 generates a converted output voltage, and the converted output voltage is applied to the power-supply electrode blade holders 30, 30 of the outlet 3, so that power can be supplied to the electric device 6 through the power supply cap 7. It becomes.
[0049]
(Embodiment 5)
In the third embodiment, the output of the power converter 4 is connected to the drive coil 81 of the electromagnetic switch 8, and in the fourth embodiment, the output of the input power supply 1 is connected via the switch means S <b> 0 to drive the electromagnetic switch 8. However, in the present embodiment, the electromagnetic switch 8 is provided in the power supply device 2 as shown in FIG. 7, and the operation of starting and stopping the power supply device 2 and the operation of a protection function (not shown) are performed. Correspondingly, a switch control section 56 for turning on / off the drive signal of the electromagnetic switch 8 is provided in the control circuit section 5, and a resistor is connected to the non-earth side output terminal among the drive signal output terminals of the switch control section 56. One end of the drive coil 8 is connected via R0, the other end of the drive coil 8 is connected to the ground via switch means provided on the blade holder 31 for the earth pole of the outlet 3, and the switch is controlled via the ground. Of the drive signal output terminals of the unit 56 Which are connected to the ground side output terminal. The switching contacts 80, 80 are inserted in series in the electric path from the power converter 4 to the outlet 3 as in the third embodiment. The configuration of the switch means provided on the blade holder 31 for the earth pole of the outlet 3 conforms to the third embodiment. Note that the electromagnetic switch 8 may be provided outside the power supply device 2.
[0050]
Thus, in the present embodiment, when the protection function does not operate and the power supply device 2 is in a normal operation state, a drive signal is output from the switch control unit 56, but the power supply cap 7 is not connected to the outlet 3. In this state, no exciting current is applied to the drive coil 81 of the electromagnetic switch 8 by the drive signal, so that the electromagnetic switch 8 is in an open state in which the switching contacts 80 and 80 are open. Therefore, the converted output voltage of the power converter 4 is not applied to the blade holders 30 on the power pole side of the outlet 3.
[0051]
Next, the connecting plug blades 71, 71, 70 of the power supply cap 7 are inserted and connected to the blade receiving brackets 30, 30, 31 of the outlet 3 through the insertion ports 3a, 3b, 3c, and the terminal strips of the blade receiving bracket 31 are connected. When the connection between 31a and 31b is conducted, an exciting current flows through the drive coil 81 of the electromagnetic switch 8 by the drive signal of the switch control unit 56, so that the electromagnetic switch 8 performs a closing operation and closes the switching contacts 80 and 80. . As a result, the converted output voltage of the power conversion unit 4 is applied to the power electrode blade holders 30 of the outlet 3, and power can be supplied to the electric device 6 through the power cap 7.
[0052]
On the other hand, when the protection function of the power supply device 2 is activated or the operation of the power supply device 2 is stopped, the switch control unit 56 stops outputting the drive signal. Therefore, even when the power supply cap 7 is connected to the outlet 3, the electromagnetic switch 8 opens its contacts and opens its switching contacts 80, 80 because there is no exciting current. Stop.
[0053]
Incidentally, the insertion positions of the switching contacts 80 of the electromagnetic switch 8 may be inserted between the input power supply 1 and the power supply device 2. The insertion positions of the switching contacts 80, 80 can be applied to any of the embodiments in which the following switch controller 56 is provided.
[0054]
(Embodiment 6)
In the third embodiment, a switch means (for connecting the ground between the terminal strips 31a and 31b to the ground pole connection plug for the ground pole blade fitting 31 of the outlet 3) is provided in the excitation current supply path of the drive coil 81 of the electromagnetic switch 8 in the excitation current supply path. Although the switch means S0) which is turned on by connection and insertion of the blade 70 is inserted, in this embodiment, the switch means S1 to S3 having the structure shown in FIG. 4 are shown in FIG. 8 as in the case of the second embodiment. In this manner, a series circuit of these switch means S1 to S3 is inserted into the exciting current supply path of the drive coil 81 of the electromagnetic switch 8 by being attached to each blade receiving fitting 30, 30, 31 of the outlet 3. Of course, an optical switch as described in the second embodiment may be used for the switch means S1 to S3.
[0055]
Thus, in the present embodiment, when the connection blades 71, 71, 70 of the power supply cap 7 are not connected to the outlet 3, the power converter 4 of the power supply device 2 operates, but the electromagnetic switch 8 opens and closes. Since the contacts 80 are open, the converted output voltage of the power converter 4 is not applied to the blade holders 30 on the power pole side of the outlet 3.
[0056]
Next, the connection plug blades 71, 71, 70 of the power supply cap 7 are inserted and connected to the blade holders 30, 30, 31 of the outlet 3 via the insertion ports 3a, 3b, 3c, and the switch means S1 to S3 are turned on. Then, an exciting current flows through the drive coil 81 of the electromagnetic switch 8 via the resistor R0, so that the electromagnetic switch 8 performs a closing operation and closes the switching contacts 80,80. As a result, the converted output voltage of the power conversion unit 4 is applied to the power electrode blade holders 30 of the outlet 3, and power can be supplied to the electric device 6 through the power cap 7.
[0057]
(Embodiment 7)
In the present embodiment, as shown in FIG. 9, switch means S1 to S3 similar to the sixth embodiment are employed in place of the switch means of the blade holder 31 of the outlet 3 in the fourth embodiment. Other configurations are the same as in the fourth embodiment.
[0058]
In the present embodiment, when the power supply cap 7 is not connected to the outlet 3, no exciting current flows through the drive coil 81. Therefore, the electromagnetic switch 8 for DC connects the switching contacts 80, 80 thereof. The contacts are open. Therefore, the power conversion unit 4 of the power supply device 2 does not generate a conversion output, so that the output voltage of the power conversion unit 4 is not applied to the blade fittings 30 on the power pole side of the outlet 3.
[0059]
Next, the connecting plug blades 70, 71, 71 of the power supply cap 7 are inserted and connected to the blade receiving fittings 31, 30, 30 of the outlet 3 through the insertion ports 3a, 3b, 3c, and the switch means S1 to S3 are turned on. Then, an exciting current flows through the drive coil 81 of the electromagnetic switch 8 via the resistor R0, so that the electromagnetic switch 8 performs a closing operation and closes the switching contacts 80. As a result, the power converter 4 generates a converted output voltage, and the converted output voltage is applied to the power electrode blade holders 30 of the outlet 3, so that power can be supplied to the electric device 6 through the power cap 7. It becomes.
[0060]
(Embodiment 8)
In the present embodiment, as shown in FIG. 10, switch means S1 to S3 similar to the sixth embodiment are employed instead of the switch means of the blade holder 31 of the outlet 3 in the fifth embodiment. Other configurations are the same as in the fifth embodiment.
[0061]
Thus, in the present embodiment, when the protection function does not operate and the power supply device 2 is in the normal operation state, the drive signal is output from the switch control unit 56.
[0062]
In a state where the power supply cap 7 is not connected to the outlet 3, the power converter 4 of the power supply device 2 is operating but the electromagnetic switch 8 is in an open state in which the switching contacts 80 and 80 are open. The output voltage of the converter 4 is not applied to the blade holders 30 on the power supply electrode side of the outlet 3.
[0063]
Next, the connection plug blades 71, 71, 70 of the power supply cap 7 are inserted and connected to the blade holders 30, 30, 31 of the outlet 3 through the insertion ports 3a, 3b, 3c, and the switch means S1 to S3 are turned on. Then, an exciting current flows through the resistor R0 in the drive coil 81 of the electromagnetic switch 8 by the drive signal of the switch control unit 56, so that the electromagnetic switch 8 performs a closing operation and closes the switching contacts 80, 80. As a result, the output voltage of the power conversion unit 4 is applied to the power electrode blade holders 30 of the outlet 3, so that power can be supplied to the electric device 6 through the power cap 7.
[0064]
On the other hand, when the protection function of the power supply device 2 is activated or the operation of the power supply device 2 is stopped, the switch control unit 56 stops outputting the drive signal. Therefore, even when the power supply cap 7 is in the state of being connected to the outlet 3, the electromagnetic switch 8 performs the opening operation to open the switching contacts 80, 80, and stops the power supply to the electric device 6 side.
[0065]
(Embodiment 9)
This embodiment uses a commercial input power supply 1 ′ as shown in FIG. 11 in place of the power supply device 2 and the input power supply 1 in the sixth or eighth embodiment, and a power supply cap 7 connected from the commercial power supply 6 ′ to the outlet 3. The power is supplied to the electric device 6.
[0066]
The operation when the power supply cap 7 is connected to the outlet 3 is basically the same as that of the sixth or eighth embodiment except that the exciting current of the drive coil 81 of the electromagnetic switch 8 for AC flows from the commercial input power supply 1 '. The description is omitted.
[0067]
(Embodiment 10)
In the present embodiment, a leakage protection means for opening the electromagnetic switch 8 when a leakage is detected is added to the configuration of the eighth embodiment, and the leakage protection means is configured to open and close the electromagnetic switch 8 as shown in FIG. A zero-phase current transformer 9 for detecting an unbalanced current whose primary winding is an electric path between the contacts 80 and 80 and the outlet 3, and a secondary output of the zero-phase current transformer 9 reaches a predetermined level; And a transistor Q that is turned on by the leakage detection signal of the leakage detection circuit 10. The driving coil 81 of the electromagnetic switch 8 and the switch control unit 56 The collector and the emitter of the transistor Q are connected between the connection point with the output terminal and the ground. Note that the same components as those of the eighth embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0068]
The normal operation is the same as that of the eighth embodiment. When the power supply cap 7 is connected to the outlet 3, the drive coil 81 of the electromagnetic switch 8 is connected to the outlet 3 by the drive signal from the switch control unit 56. Excitation current flows through the switch means of the blade holder 31 for the earth pole, and the electromagnetic switch 8 performs the closing operation. In this closed state, the converted output voltage of the power conversion unit 4 is applied to the power-supply blade holders 30, 30 of the outlet 3 via the switching contacts 80, 80, and the electric power to the electric device 6 through the power cap 7 is supplied. Supply becomes possible.
[0069]
When a leakage occurs when electric power is supplied to the electric device 6 and an unbalanced current flows in the electric circuit, a secondary output is generated from the zero-phase current transformer 9. The leakage detection signal is input from 10 to the base of the transistor Q via the resistor R1, and the transistor Q is turned on. By this turning on, the exciting current from the switch control unit 56 to the drive coil 81 of the electromagnetic switch 8 is bypassed. Therefore, the electromagnetic switch 8 performs an opening operation to open the switching contacts 80, 80. As a result, the power supply from the power conversion unit 4 to the electric device 6 is cut off.
[0070]
In the present embodiment, since the power converter 4 is a DC-AC power converter, the zero-phase current transformer 9 is used for leakage detection as described above. However, in the case of an AC-DC power converter, May employ a well-known DC leakage detection method using a current transformer.
[0071]
(Embodiment 11)
In the present embodiment, as shown in FIG. 13, the same leakage protection means as that of the tenth embodiment is added to the configuration of the sixth embodiment.
[0072]
Thus, in the present embodiment, the operation when the power supply cap 7 is connected to the outlet 3 performs the same operation as in the sixth embodiment, and performs the same operation as in the tenth embodiment when a leakage occurs.
[0073]
【The invention's effect】
The invention according to claim 1 is a power supply, wherein a voltage of the power supply is applied to a power supply electrode receiving terminal, and the power supply terminal of the power supply cap is connected to the power supply electrode receiving terminal. A power supply system configured with a connection device that supplies power to an electric device through a power supply cap, wherein at least one of the receiving terminals includes a switch unit that operates when a corresponding connector of the power supply cap is connected; An energization control means for applying the voltage of the power supply to the power pole receiving terminal when the switch means is operating is provided corresponding to the switch means, wherein the power supply is an input power supply, and a power supply of the input power supply. A power conversion unit for performing the conversion, and a power supply device including a control circuit unit for controlling the power conversion unit. The power supply control means for applying the converted output voltage of the power conversion unit to the power supply electrode receiving terminal of the connection device corresponding to the switch means, so that the connector of the power supply cap is received by the connection device. When not connected to the terminal, the converted output voltage from the power conversion unit is not applied to the receiving terminal for the power supply electrode, so a metal object or the like is inserted from the insertion port of the connection device and fires due to electric shock or short circuit between the electrodes It is possible to provide a highly safe power supply system without fear of burns or the like.
[0074]
According to a second aspect of the present invention, in the first aspect of the present invention, the energization control unit permits a drive signal to be given to a switching element of the power conversion unit when an operation signal of the switch unit is input. Therefore, the power supply control means can be constituted by a simple electronic circuit.
[0075]
According to a third aspect of the present invention, in the first aspect of the present invention, the energization control means includes an electric path between the input power supply and a power supply or an electric path connecting a power supply and a receiving terminal for a power supply pole of a connection device. A drive coil is connected between the output terminals of the power supply via the switch means, and the drive coil is excited by a current from the power supply when the switch means is turned on. Since the switch is used, energization between the power supply and the connecting device can be controlled by the electromagnetic switch, and the electromagnetic switch can be operated without providing a special control circuit. A power supply system having the same effects as those of the invention can be realized with a simple configuration.
[0076]
According to a fourth aspect of the present invention, in the first aspect, the energization control means includes an electric path between the input power supply and the power supply or an electric path connecting the power supply and a receiving terminal for a power pole of a connection device. A switch for inserting a switching contact in series and performing a closing operation by being driven during the operation of the switch means, wherein the control circuit unit is configured to perform a closing operation of the switch when the switching means is operating. Since a switch control unit for outputting a signal is provided, a power supply system having the same effect as that of the first aspect of the present invention can be realized, and the switch can be shared with a switch driven by a protection function provided in the power supply device. It becomes possible.
[0077]
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, there is provided an electric leakage detecting means for detecting an electric leakage, and when the electric leakage detecting means detects the electric leakage, Since there is provided a means for stopping the supply of the drive signal, the means can be used also as a switch for shutting off the supply of electricity in the event of a leak, and a more secure power supply system can be provided.
[0078]
The invention according to claim 6, wherein the power supply and the voltage of the power supply are applied to a power supply electrode receiving terminal, and the power supply terminal of the power supply cap is connected to the power supply electrode receiving terminal when the power supply terminal is connected to the power supply. In a power supply system comprising a connection device for supplying electric power to an electric device through a power supply cap, a ground electrode receiving terminal of the connection device into which a ground electrode connector provided in the power supply cap is inserted and connected is insulated from each other. The power supply cap comprising a plurality of terminal pieces, and the terminal piece and the plurality of terminal pieces, when inserted and connected to the receiving terminal for the ground electrode, contact the plurality of terminal pieces to conduct the same potential between the terminal pieces. Switch means functioning with the ground electrode connector. When the switch means is operating, the power supply control means for applying the voltage of the power supply to the power electrode receiving terminal is provided by the switch. Since the connector is provided corresponding to the means, the connector of the power supply cap is securely inserted and connected to the receiving terminal of the connection device, so that energization from the power supply to the connection device is started, thereby enhancing safety. A power supply system with high safety can be provided as in the first aspect of the present invention.
[0079]
The invention according to claim 7, wherein the power supply and the voltage of the power supply are applied to the power supply electrode receiving terminal, and the power supply terminal of the power supply cap is connected to the power supply electrode receiving terminal when the power supply terminal is connected to the power supply terminal. In a power supply system including a connection device that supplies electric power to an electric device through a power supply cap, the connection device is inserted and connected to a receiving terminal of the connection device corresponding to at least one connection device provided in the power supply cap. Switch means comprising a mechanical switch which is pressed and driven by the connector when the switch is turned on, and when the switch means is operated, the power supply control means for applying the voltage of the power supply to the power supply electrode receiving terminal is provided by the switch. Since the connector is provided corresponding to the means, the connection of the power supply cap is securely inserted into the receiving terminal of the connection device, so that the power supply to the connection device is started from the power supply. As a result, safety can be enhanced, and a power supply system with high safety can be provided as in the first aspect of the present invention.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of the above.
FIG. 3 is a circuit configuration diagram according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a switch means used in the first embodiment.
FIG. 5 is a circuit configuration diagram according to a third embodiment of the present invention.
FIG. 6 is a circuit configuration diagram according to a fourth embodiment of the present invention.
FIG. 7 is a circuit configuration diagram according to a fifth embodiment of the present invention.
FIG. 8 is a circuit configuration diagram according to a sixth embodiment of the present invention.
FIG. 9 is a circuit configuration diagram according to a seventh embodiment of the present invention.
FIG. 10 is a circuit configuration diagram according to an eighth embodiment of the present invention.
FIG. 11 is a circuit diagram of a ninth embodiment of the present invention.
FIG. 12 is a circuit configuration diagram according to a tenth embodiment of the present invention.
FIG. 13 is a circuit configuration diagram according to an eleventh embodiment of the present invention.
FIG. 14 is a circuit diagram of a conventional example.
FIG. 15 is a schematic configuration diagram of the above.
FIG. 16 is a circuit configuration diagram of another conventional example.
FIG. 17 is a circuit configuration diagram of another conventional example.
FIG. 18 is a circuit configuration diagram of another conventional example.
[Explanation of symbols]
1 Input power
2 Power supply
3 outlets
3a ~ 3c insertion port
4 Power conversion unit
5 Control circuit section
50 Gate command generator
51 Drive circuit
58 Power supply for control
AND AND gate
NT knot gate
R resistance

Claims (7)

電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、
前記受け端子の少なくとも一つに、前記電源キャップの対応する接続子が接続されると作動するスイッチ手段を備え、該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備し、
前記電源を、入力電源と、入力電源の電力変換を行う電力変換部及び該電力変換部を制御する制御回路部を備えた電源装置とで構成し、前記制御回路部には前記スイッチ手段が作動するとその作動中前記電力変換部から該電力変換部の変換出力電圧を前記接続装置の電源極用受け端子に印加させる前記通電制御手段を具備していることを特徴とする電源システム。
A power source, and a voltage of the power source is applied to a power terminal receiving terminal; and when a power terminal connector of a power cap is connected to the power terminal receiving terminal, power is supplied from the power source to the electric device through the power source cap. And a connection device for supplying
At least one of the receiving terminals is provided with switch means that is activated when a corresponding connector of the power supply cap is connected, and when the switch means is activated, the voltage of the power supply is used as a power pole receiving terminal. Power supply control means for applying to the switch means corresponding to the switch means,
The power supply includes an input power supply, a power supply unit including a power conversion unit that performs power conversion of the input power supply, and a control circuit unit that controls the power conversion unit, wherein the switch unit operates in the control circuit unit. Then, the power supply system comprises the energization control means for applying the converted output voltage of the power conversion unit to the power supply electrode receiving terminal of the connection device during the operation.
前記通電制御手段が、前記スイッチ手段の作動信号が入力したときに前記電力変換部のスイッチング素子に対して駆動信号を与えることを許可する手段であることを特徴とする請求項1記載の電源システム。2. The power supply system according to claim 1, wherein said power supply control means is means for permitting a drive signal to be given to a switching element of said power converter when an operation signal of said switch means is input. . 前記通電制御手段として、前記入力電源と電源装置との間の電路若しくは電源装置と接続装置の電源極用の受け端子とを接続する電路に開閉接点を直列挿入するとともに前記電源の出力端間に前記スイッチ手段を介して駆動コイルを接続し、前記スイッチ手段のオン時に前記入力電源若しくは電源装置からの電流で前記駆動コイルが励磁されて閉極動作する電磁開閉器を用いたことを特徴とする請求項1記載の電源システム。As the energization control means, an open / close contact is inserted in series in an electric path between the input power supply and the power supply or a power supply connecting the power supply and the receiving terminal for the power supply pole of the connection device, and between the output end of the power supply. A drive coil is connected via the switch means, and when the switch means is turned on, the drive coil is excited by a current from the input power supply or a power supply device, and an electromagnetic switch which performs a closing operation is used. The power supply system according to claim 1. 前記通電制御手段として、前記入力電源と電源装置との間の電路若しくは電源装置と接続装置の電源極用の受け端子とを接続する電路に開閉接点を直列挿入し、前記スイッチ手段の作動中駆動されて閉極動作する開閉器を用い、
前記制御回路部には前記スイッチ手段が作動しているときに前記開閉器を閉極動作させる駆動信号を出力する開閉器制御部を備えていることを特徴とする請求項1記載の電源システム。
As the energization control means, an open / close contact is inserted in series in an electric path between the input power supply and a power supply or a power path connecting the power supply and a receiving terminal for a power supply pole of a connection device, and the switch is driven while the switch is operating. Using a switch that is closed and operates
The power supply system according to claim 1, wherein the control circuit unit includes a switch control unit that outputs a drive signal for closing the switch when the switch unit is operating.
漏電を検出する漏電検出手段と、該漏電検出手段が漏電を検出した場合に、閉極動作中の前記開閉器に対する前記開閉制御部からの駆動信号の供給を止める手段とを備えていることを特徴とする請求項4に記載の電源システム。An earth leakage detecting unit that detects an earth leakage, and a unit that stops supply of a drive signal from the switching control unit to the switch during closing operation when the earth leakage detecting unit detects an earth leakage. The power supply system according to claim 4, characterized in that: 電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、
前記電源キャップに設けられるアース極用接続子が挿入接続される前記接続装置のアース極用の受け端子を互いに絶縁された複数の端子片で構成し、これら端子片と、アース極用の受け端子に挿入接続されたときに前記複数の端子片に接触してこれら端子片間を同一電位に導通させる前記電源キャップのアース極用接続子とで機能するスイッチ手段を備え、
該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備していることを特徴とする電源システム。
A power source, and a voltage of the power source is applied to a power terminal receiving terminal; and when a power terminal connector of a power cap is connected to the power terminal receiving terminal, power is supplied from the power source to the electric device through the power source cap. And a connection device for supplying
A ground electrode receiving terminal of the connection device into which the ground electrode connector provided in the power supply cap is inserted and connected is constituted by a plurality of terminal pieces insulated from each other, and these terminal pieces and a ground electrode receiving terminal are formed. Switch means functioning as a ground electrode connector of the power supply cap, which contacts the plurality of terminal pieces when inserted and connected to conduct the same potential between the terminal pieces,
A power supply system, comprising: a power supply control means corresponding to the switch means for applying the voltage of the power supply to the power supply electrode receiving terminal when the switch means is operating.
電源と、該電源の電圧が電源極用受け端子に印加され、前記電源極用受け端子に電源キャップの電源極用の接続子が接続されたときに前記電源から前記電源キャップを通じて電気機器に電力を供給する接続装置とで構成される電源システムにおいて、
前記電源キャップに設けられる少なくとも一つの接続子に対応する接 続装置の受け端子に、当該接続子が挿入接続されたときに当該接続子で押圧駆動される機械スイッチからなるスイッチ手段を備え、
該スイッチ手段が作動しているときに、前記電源の電圧を電源極用受け端子に印加させる通電制御手段を前記スイッチ手段に対応して具備していることを特徴とする電源システム。
A power source, and a voltage of the power source is applied to a power terminal receiving terminal; and when a power terminal connector of a power cap is connected to the power terminal receiving terminal, power is supplied from the power source to the electric device through the power source cap. And a connection device for supplying
Switch means comprising a mechanical switch which is pressed and driven by the connector when the connector is inserted and connected to a receiving terminal of the connection device corresponding to at least one connector provided on the power supply cap,
A power supply system, comprising: a power supply control means corresponding to the switch means for applying the voltage of the power supply to the power supply electrode receiving terminal when the switch means is operating.
JP2002204020A 2002-07-12 2002-07-12 Power system Expired - Fee Related JP4082114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204020A JP4082114B2 (en) 2002-07-12 2002-07-12 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204020A JP4082114B2 (en) 2002-07-12 2002-07-12 Power system

Publications (2)

Publication Number Publication Date
JP2004047312A true JP2004047312A (en) 2004-02-12
JP4082114B2 JP4082114B2 (en) 2008-04-30

Family

ID=31709728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204020A Expired - Fee Related JP4082114B2 (en) 2002-07-12 2002-07-12 Power system

Country Status (1)

Country Link
JP (1) JP4082114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251133A (en) * 2009-03-27 2010-11-04 Well Shin Technology Co Ltd Circuit of electric shock preventing socket
JP2013511794A (en) * 2009-10-21 2013-04-04 ディール、アーカーオー、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフト Multi-function power outlet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251133A (en) * 2009-03-27 2010-11-04 Well Shin Technology Co Ltd Circuit of electric shock preventing socket
JP2013511794A (en) * 2009-10-21 2013-04-04 ディール、アーカーオー、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフト Multi-function power outlet

Also Published As

Publication number Publication date
JP4082114B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US6605881B2 (en) AC interconnection apparatus supplying AC power from a commercial power system and from a solar cell
JP6159259B2 (en) Protection device for photovoltaic system
US7733069B2 (en) Power converting apparatus and power generating apparatus
US6713890B2 (en) Power generation apparatus and its control method
WO2003012966A8 (en) Fuel cell inverter
US11196272B2 (en) Rapid de-energization of DC conductors with a power source at both ends
US20140167655A1 (en) Secure battery element
JP2014531886A (en) Safety devices for photovoltaic systems
JP6460479B2 (en) Control power supply device and power storage system
KR20170000404U (en) Battery disconnect unit
US9735777B2 (en) Disconnection of solar modules
KR102238607B1 (en) Battery pack
CN100474725C (en) Method and system for providing power to circuit breakers
JPH09274993A (en) Discharge lamp lighting circuit
EP3179575B1 (en) Ac/dc plug and equipment including such a plug
JP4405654B2 (en) Power converter and power generator
JP5903593B2 (en) Input circuit and power converter
JP2012115006A (en) Charging device
JP2004047312A (en) Power supply system
JP3319264B2 (en) Solar power system
US20070165341A1 (en) Overvoltage-protective automotive power generation control circuit
CN105024492B (en) A kind of no storage battery alternating current generator and its undervoltage protection device
CN213959826U (en) Teaching projection power supply control system
KR100549081B1 (en) power supply for a motor
JP3568796B2 (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080204

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees