JP2004044918A - Regenerator and its manufacturing method - Google Patents

Regenerator and its manufacturing method Download PDF

Info

Publication number
JP2004044918A
JP2004044918A JP2002203472A JP2002203472A JP2004044918A JP 2004044918 A JP2004044918 A JP 2004044918A JP 2002203472 A JP2002203472 A JP 2002203472A JP 2002203472 A JP2002203472 A JP 2002203472A JP 2004044918 A JP2004044918 A JP 2004044918A
Authority
JP
Japan
Prior art keywords
regenerator
hollow
composition
container
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002203472A
Other languages
Japanese (ja)
Inventor
Takuhiro Sasao
笹尾 卓弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIO KASEI KK
Inoac Corp
Original Assignee
NISHIO KASEI KK
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIO KASEI KK, Inoue MTP KK, Inoac Corp filed Critical NISHIO KASEI KK
Priority to JP2002203472A priority Critical patent/JP2004044918A/en
Publication of JP2004044918A publication Critical patent/JP2004044918A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerator having a high cold keeping effect and a reasonable method to manufacture such a regenerator. <P>SOLUTION: The regenerator 10 is structured so that a vessel 11 is filled with an object 21 including a regenerator agent 21, in which the rate of filling of the object 21 is made 90% or more with respect to the volume of the hollow part of the vessel 11. The manufacturing method for the coldness storing body consists of such processes as immersing the vessel 11 furnished with a filling hole 19 in the object 21, putting the object 21 in which the vessel 11 is immersed in a evacuated atmosphere, returning the object 21 quickly to the normal pressure atmosphere, thereby filling the vessel 11 with the object 21 from the hole 19, and then taking out the vessel 11 from the object 21, and sealing the hole 19. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、中空体容器の中空部に蓄冷剤配合物が充填された蓄冷体に関する。
【0002】
【従来の技術】
前記構成の蓄冷体は、従来、食品等の配送や保管等、種々の分野で多用されている。前記蓄冷体は、予め冷凍庫や冷蔵庫等で冷却された後、保冷対象物に接して、あるいは保冷対象物の近くに配置されて使用される。
【0003】
ところで、前記蓄冷体にあっては、中空体容器の中空部内に空気溜まりが存在すると保冷性能の低下を生じるため、前記蓄冷剤配合物の充填率は高い方が好ましい。また、前記中空体容器内への蓄冷剤配合物の充填は、前記中空体容器に形成された充填口を介して行われる。その際、前記充填口は、孔径の大きい方が、前記蓄冷剤配合物の充填を容易に行うことができる。しかし、その反面、充填後に、前記中空体容器から蓄冷剤配合物が漏出する可能性が高くなる。
【0004】
さらに、前記充填口の位置によっては、前記蓄冷剤配合物を中空体容器内に充填する際、前記充填口から中空体容器内に侵入した空気が前記中空体容器の一部に集中して、エア溜まりを形成し易くなることがある。しかも、前記充填口の位置の関係からエア溜まりの形成され易くなる部分が、前記保冷物に接して使用される部分だったりすると、保冷物に対する保冷作用の低下が著しくなる。さらに、前記充填口の位置によっては、前記充填口から万一蓄冷剤配合物が漏出した場合に、蓄冷剤配合物が保冷物に接触して保冷物を損ねることもあり得る。
【0005】
【発明が解決しようとする課題】
この発明は、前記の点に鑑みなされたもので、保冷作用が高い蓄冷体と、その合理的な製造方法を提供するものである。
【0006】
【課題を解決するための手段】
請求項1の発明は、中空体容器の中空部に蓄冷剤配合物が充填された蓄冷体において、前記中空部の容積に対して前記蓄冷剤配合物の充填率が90%以上であることを特徴とする。
【0007】
請求項2の発明は、請求項1において、中空体容器には、蓄冷剤配合物のための充填口が孔径5mm以下で形成されていることを特徴とする。
【0008】
請求項3の発明は、請求項1または2において、中空体容器には、上部外壁に保冷物収納用凹部が形成されていることを特徴とする。
【0009】
請求項4の発明は、請求項2または3において、中空体容器には、外壁に窪み部が形成され、前記窪み部に充填口が形成されていることを特徴とする。
【0010】
請求項5の発明は、充填口が形成された中空体容器を蓄冷剤配合物に浸漬する工程、前記中空体容器が浸漬した蓄冷剤配合物を減圧雰囲気下にする工程、前記中空体容器が浸漬した蓄冷剤配合物を常圧雰囲気下に戻すことにより、前記中空体容器内に前記充填口から前記蓄冷剤配合物を充填する工程、前記中空体容器が浸漬している前記蓄冷剤配合物から前記中空体容器を取り出し、前記充填口を封止する工程、とよりなることを特徴とする蓄冷体の製造方法に係る。
【0011】
請求項6の発明は、請求項5において、充填口の孔径が5mm以下であることを特徴とする。
【0012】
請求項7の発明は、請求項5または6において、中空体容器には、上部外壁に保冷物収納用凹部が形成されると共に、外壁に窪み部が形成されて前記窪み部に充填口が形成されていることを特徴とする。
【0013】
請求項8の発明は、請求項5から7のいずれか一項において、蓄冷剤配合物の粘度が23℃で1/10000〜10Pa・sであることを特徴とする。
【0014】
【発明の実施の形態】
以下添付の図面に従ってこの発明を詳細に説明する。
図1はこの発明の一実施例に係る蓄冷体の平面図、右側面図及び正面図であり、図2は図1に示した蓄冷体の底面図、2A−2A断面図、2B−2B断面図及び2C部拡大断面図であり、図3はこの発明の蓄冷体の製造工程を示す概略図である。
【0015】
図1及び図2に示すこの発明の一実施例に係る蓄冷体10は、中空体容器11と、前記中空体容器11に充填された蓄冷剤配合物21とからなり、予め冷蔵庫や冷凍庫等で冷却された後に使用される。
【0016】
前記中空体容器11は、器壁12が外壁12aと内壁12bとの二重壁で構成され、前記外壁12aと内壁12b間が中空部20とされたもので、ポリプロピレン、ポリエチレン、ABS樹脂等、適宜のプラスチックからなる一体品、あるいは別体の接合品からなる中空体で構成され、射出成形、ブロー成形、プレス成形等、公知の成形方法で形成されている。特にブロー成形の場合には、前記中空体容器11が一体品で構成されるため、接合作業が不要で、しかも接合部の強度低下を心配する必要がない。この例の中空体容器11は、厚み2mmのポリエチレン樹脂からなるブロー成形品で構成されている。前記外壁12aと内壁12b間の中空部20には、前記蓄冷剤配合物21が充填されている。
【0017】
前記中空体容器11の上部13は、縁を残して内側に窪んだ保冷物収納用凹部14となっている。前記保冷物収納用凹部14には、食品のように保冷の要求される保冷物が収納される。この例では、前記保冷物収納用凹部14に持ち帰り寿司用の寿司ネタが収納可能になっている。なお、前記中空体容器11の外形は適宜とされるが、この例では、平面視略長方形のトレイ形状となっている。さらに、この実施例では前記中空体容器11を複数段積み重ねる際、上下に隣接する中空体容器11間において上側に位置する中空体容器が、下側に位置する中空体容器に嵌ることができるように、側部17の下側半分が上側よりも外周形状が小さくされている。前記上側の中空体容器が下側の中空体容器に嵌ることによって、崩れ難く、しかもコンパクトに積み重ねできる。
【0018】
前記中空体容器11の外壁12aにおける所定位置、この例では短辺側の側部17aにおけるパーティング(成形型の合わせ部)中央部分の外壁12aに窪み部16が形成され、前記窪み部16に、前記蓄冷剤配合物21のための充填口19が形成されている。前記窪み部16の深さdは、深すぎると、前記蓄冷剤配合物21を後記のように充填する際に窪み部16付近にエアが残り易くなり、逆に浅すぎると、前記充填口19を熱溶着や超音波溶着等によってシールした際に、シール部位が前記底部15外面よりも突出し、その突出部によって前記中空体容器11の外観が損なわれる。それらの点から、前記窪み部16の深さdは3mm以下、特に3〜1.5mm程度が好ましい。前記充填口19の孔径eは、大きい程、前記蓄冷剤配合物21が前記中空体容器11から漏出する可能性が高くなるため、5mm以下が好ましい。特には3〜4mmの孔径とすれば、前記蓄冷剤配合物21を漏出し難くできるのみならず、前記蓄冷剤配合物21を前記充填口19から前記中空体容器11内へスムーズに充填できる。なお、この例の充填口19は短筒状になっている。
【0019】
前記中空体容器11の底部15は、前記外壁12aが複数箇所において内側へ筒状に陥没して内端で前記内壁12bと接触し、前記蓄冷剤配合物21の凍結膨張による容器11の変形を緩和している。
【0020】
前記蓄冷剤配合物21は、公知の配合からなる液状のもので構成される。例えば、塩化ナトリウム、塩化アンモニウム、塩化マグネシウムなどの無機塩の水溶液、又はメタノールやエタノールなどのアルコール水溶液、あるいは水溶性高分子に公知のゲル化剤を添加したもの等を挙げることができる。特にこの発明では、前記蓄冷剤配合物21は、23℃の粘度が1/10000〜10Pa・s(1/1000〜100ポアズ)のものが好ましい。この粘度範囲とすれば、蓄冷剤配合物21を、前記充填口19から前記中空体容器11内へ充填するのが、一層容易になる。
【0021】
また、前記蓄冷剤配合物21は、前記中空体容器11の外壁12aと内壁12b間の中空部20の容積に対して90%以上の充填率とされる。前記充填率は、100%が最も好ましいが、100%未満であっても90%以上であれば、前記外壁12aと内壁12b間の中空部20における前記蓄冷剤配合物21の不在部分が僅かとなり、不在部分のすぐ近くには蓄冷剤配合物21が存在することになるため、前記不在部分でも十分に保冷作用が得られる。特に、この実施例の蓄冷体10にあっては、前記中空体容器11の上部に保冷物収納用凹部14が形成されていて、前記保冷物収納用凹部14の上端付近まで保冷物が収納されることがあるため、前記蓄冷剤配合物21の充填率を90%以上にして前記保冷物収納用凹部14の上端付近まで充分に保冷できるようにするのが好ましい。
【0022】
次に、この発明における蓄冷体の製造方法を、前記蓄冷体10を例にし、図3を用いて説明する。前記蓄冷体の製造方法は、浸漬工程と、減圧工程と、常圧充填工程と、取出封止工程とよりなる。
【0023】
浸漬工程では、前記蓄冷剤配合物21がまだ充填されていない前記中空体容器11を、図3(A)のように前記蓄冷剤配合物21内に完全に浸漬する。このとき前記蓄冷剤配合物21は、所要の容器31に収容しておき、また、前記中空体容器11は、前記蓄冷剤配合物21から浮き上がって顔を出さないように、治具32を用いるのが好ましい。前記治具32は適宜のものとされるが、例として、図示のような前記中空体容器11を上方から前記蓄冷剤配合物21内に押し込む網状の蓋体、あるいは前記中空体容器11を保持して前記蓄冷剤配合物21内に沈む重い保持部材(図示せず)等を挙げることができる。
【0024】
減圧工程では、前記中空体容器11が浸漬している蓄冷剤配合物21を減圧雰囲気下にする。この例では、図3(B)のように、前記蓄冷剤配合物21が収容された容器31を、前記蓄冷剤配合物21中の前記中空体容器11と共に減圧装置41に収納し、その後、前記減圧装置41の吸気口42を閉じ、排気口43を開いて、真空ポンプ等の吸引装置Pで前記減圧装置41内の空気を外部に吸引することによって、前記蓄冷剤配合物21を常圧(1気圧)雰囲気下から減圧雰囲気下にしている。減圧の程度は、常圧(1気圧,1013hPa)以下であれば適宜とされるが、100hPa〜−0.1hPaとするのが、前記減圧時における前記中空体容器11の極端な変形防止や、その後の常圧充填工程時における前記蓄冷剤配合物の良好な充填の点で好ましい。なお、前記減圧装置41がタンク等からなって、前記蓄冷剤配合物21を漏出なく収容できるものであれば、前記浸漬工程において、前記蓄冷剤配合物21を減圧装置41に直接収容してもよい。
【0025】
常圧充填工程では、前記中空体容器11が浸漬している蓄冷剤配合物21を、前記の減圧雰囲気下から常圧雰囲気下に戻す。この例では、図3(C)のように、前記減圧装置41の排気口43を閉じて前記減圧装置41から空気を外部へ吸引するのを停止し、それと共に前記吸引口42を開いて外気を前記減圧装置41内に導入することにより、前記減圧装置41内の前記蓄冷剤配合物21を急激に常圧雰囲気下に戻す。それによって、前記蓄冷剤配合物21は加圧されて前記中空体容器11内よりも圧力が高くなり、前記中空体容器11の充填口19から前記中空体容器11内に勢いよく侵入して効率よく充填される。
【0026】
取出封止工程では、前記蓄冷剤配合物21の充填された前記中空体容器11を前記蓄冷剤配合物21から取り出して、前記充填口19を、熱板に押し付けることにより、あるいは超音波シール装置により封止する。これによって、図1及び図2に示した所望の蓄冷体10を得る。
【0027】
【実施例】
以下、具体的な実施例について説明する。まず、厚み2mmのポリエチレン樹脂をブロー成形した前記中空体容器11を用意した。前記中空体容器11は図1及び図2の形状からなり、外形が243×183×58mm、前記保冷物収納用凹部14の深さが33mm、前記充填口19の孔径eが3.5mm、前記窪み部16の深さdが2.5mmである。この中空体容器11の中空部20の容量は900mlであった。その容量値は、注射器で水を注入して満タンになった中空体容器11の製品重量と、空の中空体容器11の製品重量をそれぞれ測定して差を求めることにより得た。また、前記蓄冷剤配合物21として、配合が水100重量部、安息香酸ナトリウム0.1重量部、ポリアクリル酸ナトリウム1重量部からなり、23℃の粘度が5Pa・s(50ポアズ)のものを調製した。
【0028】
前記蓄冷剤配合物21の20リットルを、400×400×400mmからなる前記容器31に注入し、前記蓄冷剤配合物21に前記中空体容器11を浸漬した。その際、前記蓄冷剤配合物21の容器31には、前記治具32として中央部が下方へ屈曲したステンレス網を被せて、前記治具32によって前記中空体容器11を上方から前記蓄冷剤配合物21内に押し込み、前記蓄冷剤配合物21内に完全に埋没させた。
【0029】
次いで、前記蓄冷剤配合物21が収容されている前記容器32を、500×500×500mmの寸法からなる前記減圧装置41内に収納し、前記吸引口42を閉じて排気口43から前記減圧装置41内の空気を真空ポンプで吸引し、前記減圧装置41内を10hPaの減圧雰囲気下とした。
【0030】
30秒後、前記真空ポンプによる吸引を停止し、前記吸気口42を開き、前記減圧装置41内を常圧(1気圧)に戻した。それから5分後、前記減圧装置41から前記容器32を取り出し、さらに前記容器32内の蓄冷剤配合物21から中空体容器11を取り出した。次いで、前記中空体容器11外面に付着している蓄冷剤配合物21を拭き取った後、前記充填口19を超音波シールし、所望の蓄冷体10を得た。
【0031】
このようにして得られた蓄冷体について、前記蓄冷剤配合物21の充填率を測定したところ、95%であった。その測定は、製品重量を測定することによって行った。また、前記蓄冷剤配合物21は、前記中空体容器11における保冷物収納用凹部14の上端近くまで充填されていた。この確認は、前記蓄冷体10を太陽光に透かし、前記中空体容器11内における蓄冷剤配合物21の上面位置を、前記中空体容器11外から透かし見ることによって行った。
【0032】
【発明の効果】
以上図示し説明したように、この発明の蓄冷体によれば、中空体容器の中空部において蓄冷剤配合物の充填率が高いため、保冷効果に優れる。特に、食品等に対する保冷物収納用凹部を設けた蓄冷体にあっては、保冷物を長時間にわたって保冷することができ、持ち帰り寿司用のネタや、弁当、総菜等の容器として好適である。
【0033】
また、この発明の蓄冷体の製造方法によれば、蓄冷剤配合物内に中空体容器を浸漬して、蓄冷剤配合物と中空体容器内の圧力差で蓄冷剤配合物を中空体容器内に充填するため、蓄冷剤配合物の充填率が高く、しかも複雑な形状の中空体容器であっても、高い充填率が得られ、保冷作用に優れる蓄冷体を容易に得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例に係る蓄冷体の平面図、右側面図及び正面図である。
【図2】図1に示した蓄冷体の底面図、2A−2A断面図、2B−2B断面図及び2C部拡大断面図である。
【図3】この発明の蓄冷体の製造工程を示す概略図である。
【符号の説明】
10 蓄冷体
11 中空体容器
12a 外壁
12b 内壁
13 上部
14 保冷物収納用凹部
15 底部
16 窪み部
17 側部
19 充填口
20 中空部
21 蓄冷剤配合物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a regenerator having a hollow body container filled with a regenerator composition.
[0002]
[Prior art]
Conventionally, the regenerator having the above-mentioned configuration has been frequently used in various fields such as distribution and storage of foods and the like. The regenerator is used after being cooled in a freezer or a refrigerator in advance and placed in contact with or near the object to be kept cool.
[0003]
By the way, in the regenerator, the presence of an air pocket in the hollow portion of the hollow body container deteriorates the cool keeping performance. Therefore, the filling rate of the regenerator composition is preferably higher. The filling of the cold storage agent composition into the hollow container is performed via a filling port formed in the hollow container. At this time, the larger the pore size of the filling port, the easier the filling of the regenerator composition. However, on the other hand, after filling, the possibility of leakage of the regenerator composition from the hollow container increases.
[0004]
Further, depending on the position of the filling port, when filling the cold storage agent composition into the hollow body container, air that has entered the hollow body container from the filling port is concentrated on a part of the hollow body container, An air pocket may be easily formed. In addition, if the portion where the air reservoir is likely to be formed due to the position of the filling port is a portion used in contact with the cold insulator, the cooling effect on the cold insulator is significantly reduced. Further, depending on the position of the filling port, if the regenerator composition leaks from the filling port, the regenerator composition may come into contact with the regenerator and damage the regenerator.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and provides a regenerator having a high refrigerating action and a rational manufacturing method thereof.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a regenerator in which the hollow part of the hollow body container is filled with the regenerator composition, wherein the filling rate of the regenerator composition is 90% or more with respect to the volume of the hollow part. Features.
[0007]
A second aspect of the present invention is characterized in that, in the first aspect, the hollow body container has a filling port for a regenerator composition having a hole diameter of 5 mm or less.
[0008]
According to a third aspect of the present invention, in the first or second aspect, the hollow body container is provided with a recess for storing a cold insulator on an upper outer wall.
[0009]
According to a fourth aspect of the present invention, in the second or third aspect, the hollow body container has a hollow portion formed in an outer wall, and a filling port is formed in the hollow portion.
[0010]
The invention according to claim 5 is a step of immersing the hollow body container having the filling port formed therein in the regenerator composition, a step of bringing the regenerator composition in which the hollow body container is immersed into a reduced-pressure atmosphere, Returning the immersed cold storage composition to a normal pressure atmosphere, thereby filling the hollow storage vessel with the cold storage composition from the filling port, wherein the hollow storage vessel is immersed in the cold storage composition. Removing the hollow container from the container and sealing the filling port.
[0011]
The invention according to claim 6 is characterized in that in claim 5, the hole diameter of the filling port is 5 mm or less.
[0012]
According to a seventh aspect of the present invention, in the fifth or sixth aspect, the hollow body container is formed with a concave portion for storing cold insulation on an upper outer wall, and a hollow portion is formed on the outer wall, and a filling port is formed in the hollow portion. It is characterized by having been done.
[0013]
The invention of claim 8 is characterized in that, in any one of claims 5 to 7, the viscosity of the regenerator composition is 1/10000 to 10 Pa · s at 23 ° C.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a plan view, a right side view, and a front view of a regenerator according to an embodiment of the present invention. FIG. 2 is a bottom view, 2A-2A cross-sectional view, and 2B-2B cross-section of the regenerator shown in FIG. Fig. 3 is an enlarged sectional view of a part 2C, and Fig. 3 is a schematic view showing a manufacturing process of the regenerator according to the invention.
[0015]
A regenerator 10 according to one embodiment of the present invention shown in FIGS. 1 and 2 includes a hollow container 11 and a regenerator composition 21 filled in the hollow container 11, and is previously stored in a refrigerator or a freezer. Used after cooling.
[0016]
The hollow body container 11 has a container wall 12 formed of a double wall of an outer wall 12a and an inner wall 12b, and a hollow portion 20 between the outer wall 12a and the inner wall 12b. It is composed of an integral part made of an appropriate plastic or a hollow body made of a separate joined part, and is formed by a known molding method such as injection molding, blow molding, press molding or the like. In particular, in the case of blow molding, since the hollow body container 11 is formed as an integral product, no joining operation is required, and further, there is no need to worry about a decrease in the strength of the joined portion. The hollow body container 11 of this example is constituted by a blow-molded product made of a polyethylene resin having a thickness of 2 mm. The hollow portion 20 between the outer wall 12a and the inner wall 12b is filled with the regenerator composition 21.
[0017]
The upper part 13 of the hollow body container 11 is a concave part 14 for storing cold insulation, which is depressed inward leaving an edge. The insulated material storage concave portion 14 accommodates insulated materials such as foods that need to be insulated. In this example, the sushi material for take-out sushi can be stored in the insulated material storage recess 14. In addition, although the external shape of the hollow body container 11 is appropriately determined, in this example, the hollow body container 11 has a substantially rectangular tray shape in plan view. Further, in this embodiment, when the hollow containers 11 are stacked in a plurality of stages, the upper hollow container between the vertically adjacent hollow containers 11 can be fitted to the lower hollow container. In addition, the lower half of the side portion 17 has a smaller outer peripheral shape than the upper half. By fitting the upper hollow body container into the lower hollow body container, it is hard to collapse and can be stacked compactly.
[0018]
A hollow portion 16 is formed in a predetermined position on the outer wall 12a of the hollow container 11, in this example, an outer wall 12a at a parting (mating portion of a molding die) center portion on a short side portion 17a. A filling port 19 for the regenerator composition 21 is formed. If the depth d of the depression 16 is too deep, air tends to remain near the depression 16 when the regenerator composition 21 is filled as described below. Conversely, if the depth d is too shallow, the filling port 19 Is sealed by heat welding, ultrasonic welding, or the like, the sealing portion protrudes from the outer surface of the bottom portion 15, and the protruding portion impairs the appearance of the hollow body container 11. From these points, the depth d of the depression 16 is preferably 3 mm or less, particularly preferably about 3 to 1.5 mm. The larger the hole diameter e of the filling port 19 is, the higher the possibility that the regenerator composition 21 leaks from the hollow body container 11 becomes. In particular, if the hole diameter is 3 to 4 mm, not only can the regenerator composition 21 be hardly leaked, but also the regenerator composition 21 can be smoothly filled into the hollow container 11 from the filling port 19. The filling port 19 in this example has a short cylindrical shape.
[0019]
The bottom portion 15 of the hollow container 11 has the outer wall 12a cylindrically depressed inward at a plurality of locations and comes into contact with the inner wall 12b at an inner end thereof. It has eased.
[0020]
The regenerator composition 21 is composed of a liquid having a known composition. For example, an aqueous solution of an inorganic salt such as sodium chloride, ammonium chloride, or magnesium chloride, an aqueous alcohol solution such as methanol or ethanol, or a solution obtained by adding a known gelling agent to a water-soluble polymer can be used. In particular, in the present invention, the regenerator composition 21 preferably has a viscosity at 23 ° C. of 1/10000 to 10 Pa · s (1/1000 to 100 poise). With this viscosity range, it is easier to fill the regenerator composition 21 from the filling port 19 into the hollow body container 11.
[0021]
The regenerator composition 21 has a filling rate of 90% or more with respect to the volume of the hollow portion 20 between the outer wall 12a and the inner wall 12b of the hollow body container 11. The filling rate is most preferably 100%, but if it is less than 100%, it is 90% or more. In addition, since the regenerator composition 21 is present in the immediate vicinity of the absent portion, a sufficient cold-retaining effect can be obtained even in the absent portion. In particular, in the cold storage body 10 of this embodiment, the cold storage container recess 14 is formed in the upper portion of the hollow body container 11, and the cold storage material is stored near the upper end of the cold storage container recess 14. Therefore, it is preferable that the filling rate of the regenerator composition 21 is set to 90% or more so that the refrigerating material can be sufficiently cooled to near the upper end of the concave portion 14 for storing the refrigerating material.
[0022]
Next, a method for manufacturing a cool storage body according to the present invention will be described with reference to FIG. The method for manufacturing the regenerator includes a dipping step, a decompression step, a normal pressure filling step, and a removal sealing step.
[0023]
In the immersion step, the hollow container 11 not yet filled with the regenerator composition 21 is completely immersed in the regenerator composition 21 as shown in FIG. At this time, the regenerator composition 21 is housed in a required container 31, and the jig 32 is used so that the hollow body container 11 does not float out of the regenerator composition 21 and come out of the face. Is preferred. The jig 32 may be an appropriate one. For example, the jig 32 holds the hollow body container 11 as shown in the drawing, or a mesh-like lid body for pushing the hollow body container 11 into the regenerator composition 21 from above, or holds the hollow body container 11. And a heavy holding member (not shown) sinking in the cool storage agent composition 21.
[0024]
In the decompression step, the regenerator composition 21 in which the hollow body container 11 is immersed is placed under a reduced pressure atmosphere. In this example, as shown in FIG. 3 (B), the container 31 containing the cool storage agent composition 21 is housed in the decompression device 41 together with the hollow body container 11 in the cool storage agent composition 21. By closing the intake port 42 and opening the exhaust port 43 of the decompression device 41 and sucking the air in the decompression device 41 to the outside with a suction device P such as a vacuum pump, the regenerator composition 21 is kept at normal pressure. (1 atm) from the atmosphere to the reduced pressure atmosphere. The degree of the pressure reduction is appropriately set as long as the pressure is equal to or less than the normal pressure (1 atm, 1013 hPa). It is preferable in terms of good filling of the regenerator composition during the subsequent normal pressure filling step. In addition, if the decompression device 41 comprises a tank or the like and can store the regenerator composition 21 without leakage, the regenerator 21 may be directly stored in the decompression device 41 in the immersion step. Good.
[0025]
In the normal pressure filling step, the regenerator composition 21 in which the hollow body container 11 is immersed is returned from the reduced pressure atmosphere to the normal pressure atmosphere. In this example, as shown in FIG. 3C, the exhaust port 43 of the pressure reducing device 41 is closed to stop the suction of air from the pressure reducing device 41 to the outside, and at the same time, the suction port 42 is opened to open the outside air. Is introduced into the decompression device 41 to rapidly return the regenerator composition 21 in the decompression device 41 to the normal pressure atmosphere. Thereby, the regenerator composition 21 is pressurized to have a higher pressure than the inside of the hollow container 11, and vigorously penetrates into the hollow container 11 from the filling port 19 of the hollow container 11 to improve the efficiency. Well filled.
[0026]
In the removal sealing step, the hollow body container 11 filled with the cool storage agent composition 21 is taken out of the cool storage agent composition 21 and the filling port 19 is pressed against a hot plate, or an ultrasonic sealing device. Sealing. Thus, the desired regenerator 10 shown in FIGS. 1 and 2 is obtained.
[0027]
【Example】
Hereinafter, specific examples will be described. First, the hollow container 11 was prepared by blow molding a polyethylene resin having a thickness of 2 mm. The hollow body container 11 has the shape shown in FIGS. 1 and 2, and has an outer shape of 243 × 183 × 58 mm, a depth of the cold insulation storage recess 14 of 33 mm, a hole diameter e of the filling port 19 of 3.5 mm, The depth d of the recess 16 is 2.5 mm. The capacity of the hollow portion 20 of the hollow container 11 was 900 ml. The capacity value was obtained by measuring the product weight of the hollow body container 11 which was filled with water by a syringe and the product weight of the empty hollow body container 11, and calculating the difference. The regenerator composition 21 is composed of 100 parts by weight of water, 0.1 part by weight of sodium benzoate, and 1 part by weight of sodium polyacrylate, and has a viscosity at 23 ° C. of 5 Pa · s (50 poise). Was prepared.
[0028]
Twenty liters of the regenerator composition 21 was poured into the container 31 having a size of 400 × 400 × 400 mm, and the hollow container 11 was immersed in the regenerator composition 21. At this time, the container 31 of the cool storage agent composition 21 is covered with a stainless steel net whose central part is bent downward as the jig 32, and the jig 32 is used to cover the hollow body container 11 from above. And was completely buried in the regenerator composition 21.
[0029]
Next, the container 32 containing the regenerator composition 21 is housed in the decompression device 41 having a size of 500 × 500 × 500 mm, the suction port 42 is closed, and the decompression device is The air in 41 was sucked by a vacuum pump, and the inside of the decompression device 41 was placed under a reduced pressure atmosphere of 10 hPa.
[0030]
After 30 seconds, the suction by the vacuum pump was stopped, the suction port 42 was opened, and the inside of the pressure reducing device 41 was returned to normal pressure (1 atm). Five minutes later, the container 32 was taken out of the pressure reducing device 41, and the hollow container 11 was taken out of the regenerator composition 21 in the container 32. Next, after the cold storage agent compound 21 attached to the outer surface of the hollow body container 11 was wiped off, the filling port 19 was ultrasonically sealed to obtain a desired cold storage body 10.
[0031]
The thus obtained regenerator body was measured for a filling rate of the regenerator composition 21 to be 95%. The measurement was performed by measuring the product weight. Further, the regenerator composition 21 was filled up to the vicinity of the upper end of the cold storage container recess 14 in the hollow body container 11. This confirmation was performed by seeing the regenerator 10 through sunlight and seeing the upper surface position of the regenerator composition 21 in the hollow container 11 from outside the hollow container 11.
[0032]
【The invention's effect】
As shown and described above, according to the regenerator of the present invention, the filling rate of the regenerator composition is high in the hollow portion of the hollow container, so that the regenerative effect is excellent. In particular, in the case of a regenerator provided with a concave part for storing a cold insulator for food or the like, the cold insulator can be kept cool for a long time, and is suitable as a container for take-out sushi, a lunch box, a side dish, and the like.
[0033]
Further, according to the method for manufacturing a regenerator according to the present invention, the hollow container is immersed in the regenerator composition, and the regenerator composition is injected into the hollow container by a pressure difference between the regenerator composition and the hollow container. Therefore, even in a hollow container having a complicated shape having a high filling rate of the regenerator composition, a high refilling rate can be obtained and a regenerator having excellent cold-retaining effect can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a plan view, a right side view, and a front view of a regenerator according to an embodiment of the present invention.
FIG. 2 is a bottom view, a cross-sectional view of 2A-2A, a cross-sectional view of 2B-2B, and an enlarged cross-sectional view of a portion 2C of the regenerator shown in FIG.
FIG. 3 is a schematic view showing a process of manufacturing a regenerator according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Cold storage body 11 Hollow body container 12a Outer wall 12b Inner wall 13 Upper part 14 Recess part 15 for storing cool insulation bottom 16 Depression part 17 Side part 19 Filling port 20 Hollow part 21 Refrigerant compound

Claims (8)

中空体容器(11)の中空部(20)に蓄冷剤配合物(21)が充填された蓄冷体(10)において、前記中空部(20)の容積に対して前記蓄冷剤配合物(21)の充填率が90%以上であることを特徴とする蓄冷体。In the regenerator (10) in which the hollow part (20) of the hollow body container (11) is filled with the regenerator composition (21), the regenerator composition (21) is based on the volume of the hollow part (20). A regenerator characterized by having a filling rate of 90% or more. 中空体容器(11)には、蓄冷剤配合物(21)のための充填口(19)が孔径5mm以下で形成されていることを特徴とする請求項1に記載された蓄冷体。The regenerator according to claim 1, characterized in that the hollow body container (11) has a filling port (19) for the regenerator composition (21) with a hole diameter of 5 mm or less. 中空体容器(11)には、上部外壁に保冷物収納用凹部(14)が形成されていることを特徴とする請求項1または2に記載された蓄冷体。The regenerator according to claim 1 or 2, wherein the hollow body container (11) has a concave part (14) for storing a cold insulator on an upper outer wall. 中空体容器(11)には、外壁に窪み部(16)が形成され、前記窪み部(16)に充填口(19)が形成されていることを特徴とする請求項2または3に記載された蓄冷体。4. The hollow body container (11) according to claim 2, wherein a hollow (16) is formed in an outer wall, and a filling port (19) is formed in the hollow (16). Cold storage. 充填口(19)が形成された中空体容器(11)を蓄冷剤配合物(21)に浸漬する工程、
前記中空体容器(11)が浸漬した蓄冷剤配合物(21)を減圧雰囲気下にする工程、
前記中空体容器(11)が浸漬した蓄冷剤配合物(21)を常圧雰囲気下に戻すことにより、前記中空体容器(11)内に前記充填口(19)から前記蓄冷剤配合物(21)を充填する工程、
前記前記中空体容器(11)が浸漬している蓄冷剤配合物(21)から前記中空体容器(11)を取り出し、前記充填口(19)を封止する工程、
とよりなることを特徴とする蓄冷体の製造方法。
Immersing the hollow body container (11) in which the filling port (19) is formed in the regenerator composition (21);
Bringing the cold storage composition (21) in which the hollow body container (11) is immersed into a reduced-pressure atmosphere;
The cold storage agent composition (21) in which the hollow body container (11) is immersed is returned to normal pressure atmosphere, whereby the cold storage agent composition (21) is inserted into the hollow body container (11) from the filling port (19). ) Filling process,
Removing the hollow container (11) from the cold storage composition (21) in which the hollow container (11) is immersed, and sealing the filling port (19);
A method for producing a regenerative body, comprising:
充填口(19)の孔径が5mm以下であることを特徴とする請求項5に記載された蓄冷体の製造方法。The method for producing a regenerator according to claim 5, wherein the hole diameter of the filling port (19) is 5 mm or less. 中空体容器(11)には、上部外壁に保冷物収納用凹部(14)が形成されると共に、外壁に窪み部(16)が形成されて前記窪み部(16)に充填口(19)が形成されていることを特徴とする請求項5または6に記載された蓄冷体の製造方法。In the hollow body container (11), a concave part (14) for storing cold insulation is formed in an upper outer wall, and a hollow part (16) is formed in the outer wall, and a filling port (19) is formed in the hollow part (16). The method for producing a regenerator according to claim 5, wherein the regenerator is formed. 蓄冷剤配合物(21)の粘度が23℃で1/10000〜10Pa・sであることを特徴とする請求項5から7のいずれか一項に記載された蓄冷体の製造方法。The method for producing a regenerator according to any one of claims 5 to 7, wherein the viscosity of the regenerator composition (21) is 1/10000 to 10 Pa · s at 23 ° C.
JP2002203472A 2002-07-12 2002-07-12 Regenerator and its manufacturing method Pending JP2004044918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203472A JP2004044918A (en) 2002-07-12 2002-07-12 Regenerator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203472A JP2004044918A (en) 2002-07-12 2002-07-12 Regenerator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004044918A true JP2004044918A (en) 2004-02-12

Family

ID=31709328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203472A Pending JP2004044918A (en) 2002-07-12 2002-07-12 Regenerator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004044918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202822A (en) * 2010-03-24 2011-10-13 Inoac Corp Cooling tray
WO2012129463A3 (en) * 2011-03-23 2012-12-06 Biocision, Llc Phase change thermal-sink apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202822A (en) * 2010-03-24 2011-10-13 Inoac Corp Cooling tray
WO2012129463A3 (en) * 2011-03-23 2012-12-06 Biocision, Llc Phase change thermal-sink apparatus

Similar Documents

Publication Publication Date Title
CN107635748B (en) Ozone bonding process in the manufacture of insulated containers
EP0472298A1 (en) Keg for draft beer
JP2009538408A (en) Ice holding device
CN201634086U (en) Portable insulation can with detachable cold accumulation container
JP3914137B2 (en) Package and method for producing the same
JP2004044918A (en) Regenerator and its manufacturing method
CN105947415A (en) Volatile insulation box for cooling and insulation of cold fresh product
JP3615699B2 (en) Sealed battery and method for manufacturing the same
CN106865015A (en) The beverage storage tank that can be heated or freeze
CN206345235U (en) A kind of beverage storage tank for heating or freezing
CN216233569U (en) Vaccine storage box for disease control center
CN217478038U (en) Portable heat preservation box
CN208523633U (en) A kind of novel cryopreservation tube
KR100664279B1 (en) Vacuum isolation material for refrigerator cabinet and manufacturing method thereof and isolation structure of refrigerator cabinet applying the same
CN219612891U (en) Liquid nitrogen fumigating box
JP3627550B2 (en) Packing device seal aid for containers for cryopreservation
KR20190047913A (en) Ice pack chilling upward
CN212185687U (en) Fresh-keeping device of fortune dining car
CN215246547U (en) Soil sample storage device
KR100632010B1 (en) Apparatus for keeping food long term in refrigerator
JPH11223440A (en) Cold storage agent vessel
CN217995273U (en) Cold chain transport case
CN216658661U (en) Forming die of high compressive property foam case
CN215373070U (en) Ice box
CN218173013U (en) Cold-stored bucket structure of stereoplasm insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050708

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Effective date: 20071109

Free format text: JAPANESE INTERMEDIATE CODE: A02