JP2004044650A - Constant-quantity feeding device for high-pressure gas - Google Patents

Constant-quantity feeding device for high-pressure gas Download PDF

Info

Publication number
JP2004044650A
JP2004044650A JP2002201110A JP2002201110A JP2004044650A JP 2004044650 A JP2004044650 A JP 2004044650A JP 2002201110 A JP2002201110 A JP 2002201110A JP 2002201110 A JP2002201110 A JP 2002201110A JP 2004044650 A JP2004044650 A JP 2004044650A
Authority
JP
Japan
Prior art keywords
gas
pressure
flow path
supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201110A
Other languages
Japanese (ja)
Other versions
JP4163908B2 (en
Inventor
Takeki Hata
秦 多計城
Takeshi Sasaki
佐々木 丈志
Yasuaki Akai
赤井 康昭
Takeshi Hayashi
健 林
Toru Sakai
坂井 徹
Tadashi Yasuda
安田 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tansan Co Ltd
Taiyo Toyo Sanso Co Ltd
Original Assignee
Nippon Tansan Co Ltd
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tansan Co Ltd, Taiyo Toyo Sanso Co Ltd filed Critical Nippon Tansan Co Ltd
Priority to JP2002201110A priority Critical patent/JP4163908B2/en
Publication of JP2004044650A publication Critical patent/JP2004044650A/en
Application granted granted Critical
Publication of JP4163908B2 publication Critical patent/JP4163908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed amount supplying device for high-pressure gas capable of supplying a fixed amount of high-pressure gas such as a foaming agent as it is in a gas state. <P>SOLUTION: A gaseous foaming agent 13 such as carbon dioxide is pressurized and fed under pressure by a pump 6a disposed in a gas flow passage 2. The quantity of the foaming agent fed from a gas feeding flow passage 4 to a resin foam forming machine 3 is regulated and kept accurately by a flow control valve 7 by keeping the differential pressure between the primary side and the secondary side not more than 30 kg/cm<SP>2</SP>by pressure regulating valves 8a, 8b. The feeding passage 4 and a gas circulating flow passage 5 are opened/closed alternately in a short time cycle by a flow passage switching means 9 such as a three way switching valve. The flow and pressure of the foaming agent 13 is kept constant by the control valve 7 and a pressure regulating valve 10, and allowed to flow from the flow passage 2 to the feeding passage 4 or the circulating passage 5 by the switching means 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高圧ガスの定量供給装置に関するものである。
【0002】
【従来の技術】
例えば、樹脂発泡成形工程においては、炭酸ガス等を発泡剤として樹脂発泡成形機に一定サイクルで間欠的に定量供給させるが、かかる発泡剤は高圧ガスであるため、樹脂発泡成形機への定量供給を安定且つ正確に行うことが困難であった。
【0003】
すなわち、樹脂発泡成形機へのガス供給ラインを開閉した場合、ラインの開閉に伴い圧力変動が生じるため、ラインからのガス供給量を流量調整器によって一定に保持することが困難である。樹脂発泡成形工程においては発泡剤の供給が短時間サイクルで間欠的に行われることが多いが、このような場合、ラインの閉塞から開放までの時間及び/又は開放から閉塞までの時間が短いことから、ガス圧力がライン開閉閉に伴って激しく変動して、樹脂発泡成形機へのガス供給量及びガス圧を安定させることができない。特に、発泡剤として超臨界流体である炭酸ガスを使用する場合には、圧力変動により膨張,凝固が生じるため、定量供給は不可能であった。
【0004】
このため、従来においては、特開2000−218647公報に開示される如く、発泡剤102をガス状態で輸送,供給させず、液状態(液化ガス)で樹脂発泡成形機106に供給させるように工夫されたものが提案されている。すなわち、かかる定量供給装置(以下「従来装置」という)は、図8に示す如く、液化ガス(液化二酸化炭素)である発泡剤102の充填タンク101から樹脂発泡成形機106に至る供給ライン105に、冷却器108(冷凍機109により冷却された冷媒との熱交換により冷却するもの)及び定量ポンプ107を配設して、発泡剤102を冷却器108により冷却保温させた液状態のまま定量ポンプ107により樹脂発泡成形機106に定量供給するように構成されている。
【0005】
【発明が解決しようとする課題】
このような従来装置によれば、発泡剤102をガス状態で供給させる場合のような問題は生じないが、極低温の高圧液102を扱う定量ポンプ107や高圧液102を極低温に保持するための冷却器108やライン105の保温手段を必要とするため、装置全体のイニシャルコスト,ランニングコストが高騰し、定量供給を経済的に行うことができない。また、最終的にガス状態で樹脂発泡成形機等の高圧ガス使用部106に供給させる必要のある場合には、液化ガス102を気化する必要があるが、かかる場合、気化ガスの流量,圧力制御については、前述した問題がそのまま残ることになる。
【0006】
本発明は、上記した問題を生じることなく、高圧ガスをガス状態のまま定量供給することができる高圧ガスの定量供給装置を提供することを目的とするものである。
【0007】
本発明は、上記の目的を達成すべく、特に、ガス供給源から導かれたガス流路と、ガス流路の下流端から分岐された2つの流路であって、下流端が高圧ガス使用部に導かれたガス供給流路及び下流端がガス流路の上流側部分に接続されたガス循環流路と、ガス流路におけるガス循環流路の下流端接続部より下流側に配設されており、ガス流路内のガスを昇圧,圧送するポンプ手段と、ガス流路におけるポンプ手段の下流側に配設されており、ガス供給流路から高圧ガス使用部へのガス供給量を制御する流量調整手段並びにその一次側と二次側との差圧を一定以下に保持する差圧調整手段と、ガス供給流路とガス循環流路とを交互に開閉する流路切り替え手段と、ガス循環流路における流路切り替え手段の下流側に配設されており、差圧調整手段の下流側におけるガス圧を所定圧に保持する圧力調整手段と、を具備して、ガス供給流路を開放させることにより流量及び圧力を一定に保持されたガスが高圧ガス使用部に供給されるように構成したことを特徴とする高圧ガスの定量供給装置を提案する。
【0008】
好ましい実施の形態にあっては、ポンプ手段を、ガスを昇圧,圧送させるガスポンプとその二次側に配したバッファタンクとを具備するものに構成して、ポンプ下流側における脈動を防止するように工夫しておくことが好ましい。また、ガス供給源におけるガスとしては、液化ガスを使用することも可能である。かかる場合、ガス供給源は、液化ガスの貯留部及び当該液化ガスの気化手段を具備するものに構成される。
【0009】
また、本発明の高圧ガスの定量供給装置は、高圧ガス使用部が樹脂発泡成形機であり、ガス供給流路から樹脂発泡成形機に供給されるガスが発泡剤である場合に、より好適に使用される。かかる場合、発泡剤としては炭酸ガス又は窒素ガスが使用される。
【0010】
さらに、本発明の高圧ガスの定量供給装置にあって、ポンプ手段により昇圧されるガスが炭酸ガス等の超臨界流体である場合には、ガス流路におけるガス循環流路の下流端接続部より上流側に、ガス循環流路内のガス圧を当該超臨界流体が凝固しない範囲の圧力に保持する保圧手段を配設しておくことが好ましく、更には、少なくともガス循環流路に、当該超臨界流体が凝固しない範囲の温度に保持する保温手段を配設しておくことが好ましい。また、差圧調整手段は、流量調整手段の一次側と二次側との差圧を30kg/cm以下に保持するものに構成しておくことが好ましい(高圧ガス使用部に供給すべきガスが炭酸ガス等である場合においては、10kg/cm以下に保持することがより好ましい)。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図7に基づいて説明する。
【0012】
図1及び図2は第1の実施の形態を示したもので、この実施の形態における本発明に係る高圧ガスの定量供給装置(以下「第1定量供給装置」という)は、発泡剤を樹脂発泡成形機に定量供給するためのものである。
【0013】
すなわち、第1定量供給装置は、図1に示す如く、ガス供給源1から導かれたガス流路2と、高圧ガス使用部たる樹脂発泡成形機3に導かれたガス供給流路4と、ガス流路2に接続されたガス循環流路5と、流路2,4,5に配設されたポンプ手段6、流量調整手段7、差圧調整手段8、流路切り替え手段9、圧力調整手段10、保圧手段11及び保温手段12を具備するものであり、炭酸ガス13aを発泡剤13として樹脂発泡成形機3に定量供給するものである。
【0014】
ガス供給源1は、炭酸ガス13aを充填するガスタンク1aで構成されており、ガスタンク1aにはガス流路2が接続されている。
【0015】
ガス流路2の下流端には、ガス供給流路4の上流端及びガス循環流路5の上流端が分岐接続されている。そして、ガス供給流路4の下流端は、高圧ガス使用部である樹脂発泡成形機3の発泡剤供給部に導かれている。また、ガス循環流路5の下流端は、ガス流路2の上流側部分に分岐接続されている。
【0016】
ポンプ手段6は、ガス流路2におけるガス循環流路5の下流端接続部より下流側に配設されており、ガスタンク1aから供給されるガス状の発泡剤(炭酸ガス)13を昇圧させるポンプ6aと、ポンプ6aの下流側に配したバッファタンク6bとで構成される。ポンプ6aとしては、樹脂発泡成形機3で要求される発泡剤圧力に応じた能力のガスブースタポンプ等が使用される。バッファタンク6bは、主として、ポンプ6aにより圧送される高圧ガス13の脈動を防止するために設けられる。
【0017】
流量調整手段7は、ガス流路2におけるポンプ手段6の下流側(バッファタンク6aの下流側)に配設されており、ガス供給流路4から高圧ガス使用部3へのガス供給量を制御するニードル弁等の流量調整弁で構成されている。流量調整弁7による流量調整は、当該ガス供給量が樹脂発泡成形機3において必要とされる発泡剤量に応じた一定量(以下「設定流量」という)となるように行われる。
【0018】
差圧調整手段8は、ポンプ手段6(バッファタンク6b)と流量調整弁7との間においてガス流路2に配設された一次側圧力調整弁8aと、流量調整弁7の下流側においてガス流路2に配設された二次側圧力調整弁8bとで構成されており、流量調整弁7の一次側(ガス流入側)と二次側(ガス流出側)との差圧を一定以下に調整,保持するものである。
【0019】
ところで、流量調整弁7に流入したガス13は狭窄部である流量調整部を通過した後に膨張することになるため、一次側(流入側)と二次側(流出側)との差圧が大きい場合には、正確な流量調整を行うことができない。さらに、ガス13として炭酸ガス等の超臨界流体が使用されている場合には、このような炭酸ガス等が流量調整弁7の通過時に凝固する虞れがある。差圧調整手段8は、このような問題を防止して、流量調整弁7による正確な流量調整を実現するためのものである。例えば、発泡剤13として炭酸ガス13aを使用する場合には、両圧力調整弁8a,8bにより流量調整弁7の両側における差圧を30kg/cm以下(より好ましくは10kg/cm以下)に保持しておくことが好ましい。
【0020】
流路切り替え手段9は、ガス供給流路4とガス循環流路5とを交互に開閉するものであり、三方切り替え弁等で構成される。この例では、流路切り替え手段9が、図2に示す如く、両流路4,5に夫々第1及び第2開閉弁9a,9bを配設して、両開閉弁9a,9bが連動して交互に開閉されるように構成されている。すなわち、ガス供給流路4の第1開閉弁9aが開放されると、流量調整弁7で調整された一定量(設定流量)の発泡剤13がガス流路2からガス供給流路4を経て樹脂発泡成形機3に供給され、同時に、ガス循環流路5の第2開閉弁9bが閉塞されて、ガス流路2からガス循環流路5へのガス流動が停止される(このようにガス供給流路4が開放され且つガス循環流路5が閉塞された状態を以下「ガス供給状態」という)。また、第1開閉弁9aが閉塞されると、ガス供給流路4から樹脂発泡成形機3への発泡剤供給が停止され、同時に、第2開閉弁9bが開放されて、発泡剤13がガス流路2の下流端からガス循環流路5を経てガス流路2の上流側部分(ポンプ6aの一次側)に循環される(このようにガス供給流路4が閉塞され且つガス循環流路5が開放された状態を、以下「ガス供給停止状態」という)。なお、ガス供給状態からガス供給停止状態に移行した場合、ガス循環流路5からガス流路2へのガス循環量は使用部3への供給量相当分だけ不足することになるが、かかる不足分はガスタンク1aから補充されることになる。ところで、樹脂発泡成形機3には、一般的な成形機の他、押出ガス発泡を行う押出機、ビーズ発泡を行う圧力容器又はウレタン発泡を行う混合器等があるが、何れの場合にも、一般には、発泡剤13の供給が短時間サイクルで間欠的に行われることが多い。例えば、樹脂発泡成形機3への発泡剤供給が行われる時間(以下「ガス供給時間」という)Tは数秒〜十数秒とされ、発泡剤供給のスパン(発泡剤供給が停止される時間であり、以下「ガス供給停止時間」という)tは1分〜数分とされる。この例では、流路切り替え手段9を、第1及び第2開閉弁9a,9bがこのような短時間サイクルで交互に開閉されるように構成してある。
【0021】
圧力調整手段10は、ガス循環流路5における流路切り替え手段9の下流側(この例では、図2に示す如く、第2開閉弁9bの下流側)に配設されており、差圧調整手段8の下流側におけるガス圧つまり二次側圧力調整弁8bの下流側におけるガス圧を所定圧(高圧ガス使用部3において要求される供給ガス圧)に保持する圧力調整弁である。すなわち、圧力調整弁10は、ガス供給状態及びガス供給停止状態の何れにおいても、二次側圧力調整弁8bの下流側におけるガス圧を樹脂発泡成形機3において要求される発泡剤供給圧に応じた一定圧(以下「設定圧」という)に保持するものである。したがって、流路切り替え手段9によるガス供給状態からガス供給停止状態への移行時及びガス供給停止状態からガス供給状態への移行時の何れにおいても、ガス供給流路4におけるガス圧は変動せず、上記設定圧に保持されることになる。
【0022】
保圧手段11及び保温手段12は、高圧ガス使用部3に供給させるガス13として炭酸ガス等の超臨界流体を使用する場合に必要とされるものであり、ポンプ6aにより昇圧された高圧ガス13が圧力条件及び/又は温度条件によって凝固することを防止するためのものである。
【0023】
保圧手段11は、図1に示す如く、ガス流路2におけるガス循環流路5の下流端接続部より上流側に配設された圧力調整弁であり、ガス循環流路5内のガス圧を当該超臨界流体が凝固しない範囲の圧力に保持するものである。すなわち、ガス供給状態からガス供給停止状態に移行した場合、上述した如く、ガス循環流路5からのみならずガスタンク1aからもガス流路2にガス13が流入して、ガス循環流路5のガス圧が降下することがあり、かかる圧力降下により炭酸ガス等の超臨界流体が凝固する虞れがあるが、かかる虞れは圧力調整弁11により防止される。
【0024】
保温手段12は、図1に示す如く、ガス循環流路5の適所(圧力調整弁10の下流側)に加熱器12aを配置し、更には必要に応じて、加熱器12aに至るガスライン(例えば、バッファタンク6bから使用部3及び加熱器12aに至るガスライン)を断熱ないし保熱構造となすことによって、ガス13が炭酸ガス13aの如き超臨界流体である場合においても、ガス温度の低下による超臨界流体の凝固を防止するように構成されている。すなわち、保温手段12は、少なくともガス循環流路5に加熱器12aを設けることにより、超臨界流体のガス温度を凝固しない範囲に保持しておくものである。
【0025】
また、図3は第2の実施の形態を示したもので、この実施の形態における本発明に係る高圧ガスの定量供給装置(以下「第2定量供給装置」という)は、次の点を除いて、第1定量供給装置と同一構成をなすものである。
【0026】
すなわち、第2定量供給装置にあっては、図3に示す如く、ガス供給源1が窒素ガス13bを充填するガスタンク1bで構成されており、窒素ガス13bを発泡剤13として樹脂発泡成形機3に定量供給するように構成されている。したがって、第2定量供給装置では、炭酸ガス13aを使用した場合における如く圧力,温度変化によるガス凝固を考慮する必要がないことから、保圧手段11及び保温手段12を設けていない。かかる点以外は、第1定量供給装置と同一構成をなすことから、第1定量供給装置と同一部材については、図3において同一の符号を付して、その説明を省略することとする。なお、第2定量供給装置にあっても、両圧力調整弁8a,8bにより流量調整弁7の両側における差圧を30kg/cm以下に保持しておくことが好ましい。また流路切り替え手段9は、第1定量供給装置と同様に、図2に示す如く、第1及び第2開閉弁9a,9bで構成されている。
【0027】
また、図4は第3の実施の形態を示したもので、この実施の形態における本発明に係る高圧ガスの定量供給装置(以下「第3定量供給装置」という)は、次の点を除いて、第1定量供給装置と同一構成をなすものである。
【0028】
すなわち、第3定量供給装置では、図4に示す如く、ガス供給源1を炭酸ガス13aの充填タンク1a及び窒素ガス13bの充填タンク1bで構成し、ガス流路2の上流端部分を各充填タンク1a,1bに接続される第1ガス流路部分2a及び第2ガス流路部分2bに分岐すると共に、その分岐部分にガス切り替え弁(三方切り替え弁等)14を設けて、樹脂発泡成形機3に供給される発泡剤13として炭酸ガス13a又は窒素ガス13bを選択できるように工夫されている。すなわち、発泡剤13として炭酸ガス13aを使用する場合は、ガス切り替え弁14により第2ガス流路部分2bを閉塞して、発泡剤13を第1ガス流路部分2aからポンプ6aにより樹脂発泡成形機3に供給させる。この場合には、第1定量供給装置と同様に、第1ガス流路部分2aに設けた保圧手段11及びガス循環流路5等に設けた保温手段12により、炭酸ガス13aの凝固が防止される。一方、発泡剤13として窒素ガス13bを使用する場合は、ガス切り替え弁14により第1ガス流路部分2aを閉塞して、発泡剤13を第2ガス流路部分2bからポンプ6aにより樹脂発泡成形機3に供給させる。この場合には、第2定量供給装置と同様に、保圧手段11及び保温手段12は必要とされないから、第2ガス流路部分2bには第1ガス流路部分2aにおける如き保圧手段11は設けられておらず、また加熱器12aによる発泡剤13の加熱,保温機能は停止される。かかる点以外は、第1定量供給装置と同一構成をなすことから、第1定量供給装置と同一部材については、図4において同一の符号を付して、その説明を省略することとする。なお、第3定量供給装置にあっても、流路切り替え手段9は、第1定量供給装置と同様に、図2に示す如く、第1及び第2開閉弁9a,9bで構成されている。
【0029】
また、図5は第4の実施の形態を示したもので、この実施の形態における本発明に係る高圧ガスの定量供給装置(以下「第4定量供給装置」という)は、液化二酸化炭素13cを気化させた炭酸ガス13aを発泡剤13として使用するようにした点を除いて、第1定量供給装置と同一構成をなすものである。すなわち、第4定量供給装置では、ガス供給源1を液化二酸化炭素13cの貯蔵タンク1cとこれに接続されたガス流路2に配設した気化器(蒸発器)1eとで構成してあり、この点を除いて、図2に示す流路切り替え手段9の構成及びガス流路2における気化器1eの下流側に保圧手段11を配設した構成を含めて第1定量供給装置と同一構成をなす。
【0030】
また、図6は第5の実施の形態を示したもので、この実施の形態における本発明に係る高圧ガスの定量供給装置(以下「第5定量供給装置」という)は、液化窒素13dを気化させた窒素ガス13bを発泡剤13として使用するようにした点を除いて、第2定量供給装置と同一構成をなすものである。すなわち、第5定量供給装置では、ガス供給源1を液化窒素13dの貯蔵タンク1dとこれに接続されたガス流路2に配設した気化器(蒸発器)1fとで構成してあり、この点を除いて、図2に示す流路切り替え手段9の構成を含めて第2定量供給装置と同一構成をなす。
【0031】
また、図7は第6の実施の形態を示したもので、この実施の形態における本発明に係る高圧ガスの定量供給装置(以下「第6定量供給装置」という)は、液化二酸化炭素13c又は液化窒素13dを気化させたガス13a,13bを選択的に発泡剤13として使用するようにした点を除いて、第3定量供給装置と同一構成をなすものである。すなわち、第6定量供給装置では、ガス供給源1を液化二酸化炭素13cの貯蔵タンク1c及び液化窒素13dの貯蔵タンク1dと各ガス流路部分2a,2bに配設した気化器(蒸発器)1e,1fとで構成してあり、この点を除いて、図2に示す流路切り替え手段9の構成及び第1ガス流路部分2aにおける気化器1eの下流側に保圧手段11を配設した構成を含めて第3定量供給装置と同一構成をなす。
【0032】
以上のように構成された第1〜第6定量供給装置によれば、炭酸ガス13a又は窒素ガス13bを予め設定された流量,圧力に保持させた状態で間欠的に供給させることができ、良質の樹脂発泡成形品を得ることができる。
【0033】
すなわち、ガス供給流路4が閉塞されたガス供給停止状態においては、ポンプ6aにより昇圧されたガス状の発泡剤13は、ガス流路2とガス循環流路5との間で循環流動されており、両流路2,5とガス供給流路4との接続部分におけるガス圧は圧力調整弁10により設定圧に保持されている。そして、この状態からガス供給流路4が開放されてガス供給状態に移行すると、発泡剤13が上記接続部分からガス供給流路4を介して樹脂発泡成形機(高圧ガス使用部)3へと供給されるが、上記接続部分におけるガス圧はガス供給状態への移行前と変動することがない。同様に、ガス供給状態からガス供給停止状態に移行したときにも、上記接続部分のガス圧は設定圧に保持され、変動することがない。したがって、流路切り替え手段9による流路切り替え(ガス供給状態とガス供給停止状態との切り替え)が短時間サイクルで繰り返される場合においても、流路切り替え時に圧力変動が生じず、ガス供給流路4からは一定圧(設定圧)の発泡剤13が供給されることになる。一方、流量調整弁7の一次側と二次側との差圧が圧力調整弁8a,8bにより一定圧以下(例えば30kg/cm以下)に保持されていることから、二次側圧力調整弁8bの下流側である上記接続部分のガス圧が上記した如く一定に保持されていることとも相俟って、流量調整弁7による流量制御が正確に行われ、ガス供給流路4からの供給量は一定(設定流量)に保持される。
【0034】
また、発泡剤13として炭酸ガス13aのような超臨界流体を使用する場合にも、第1、第3、第4又は第6定量供給装置における如く保圧手段(圧力調整弁)11及び保温手段12(加熱器12a等)を設けておくことにより、差圧調整手段8による差圧低減機能と相俟って、発泡剤13の凝固を確実に防止することができ、上記した設定流量,設定圧力を確保することができる。
【0035】
したがって、発泡剤供給が短時間サイクルで間欠的に行われる場合(例えば、ガス供給時間Tが数秒〜十数秒であり、ガス供給停止時間tが1分〜数分である場合)にも、発泡剤13の樹脂発泡成形機3への供給流量,供給圧力を予め設定された値に保持させておくことができ、発泡剤13の定量供給を良好且つ適正に行うことができる。その結果、発泡剤13として炭酸ガス13a又は窒素ガス13bの何れが使用される場合にも、樹脂発泡成形機3において良質の成形品を得ることができる。
【0036】
ところで、冒頭で述べた従来装置では、発泡剤102を液状で樹脂発泡成形機106に供給させることから、複数種の発泡剤102を必要に応じて選択使用することができない。一方、第3又は第6定量供給装置では、複数種の発泡剤(例えば、炭酸ガス13a及び窒素ガス13b)を選択使用することができるから、樹脂発泡成形機3が発泡剤13の変更により複数種の発泡樹脂製品を成形しうる汎用機である場合にも、充分に対応することができる。
【0037】
本発明に係る高圧ガスの定量供給装置は、上記した各実施の形態に限定されず、本発明の基本原理を逸脱しない範囲において適宜に改良,変更することができる。例えば、上記した第1〜第6定量供給装置は、炭酸ガス,窒素ガス又はその他のガスを樹脂発泡成形機以外の高圧ガス使用部3に定量供給させる場合にも、好適に使用することができ、高圧ガス13の定量供給を短時間サイクルで間欠的に行う必要のある場合において特に好適する。また、上記した第3又は第6定量供給装置は、高圧ガス使用部3において複数種の高圧ガスを選択使用する必要のある場合にも、好適に使用することができるが、選択使用するガス種類が3種以上である場合には、ガス充填タンク1a,1b又は液化ガス貯蔵タンク1c,1dの数を増加すればよい。
【0038】
【発明の効果】
以上の説明から容易に理解されるように、本発明の高圧ガスの定量供給装置によれば、冒頭で述べた問題を生じることなく、炭酸ガスや窒素ガス等を予め設定された流量,圧力に適正に保持させたガス状態で確実に定量供給することができ、樹脂発泡成形等において短時間サイクルでガス供給を発停させる必要のある場合にも、良好な定量供給を行うことができる。
【図面の簡単な説明】
【図1】第1定量供給装置を示す系統図である。
【図2】図1の要部(流路切り替え手段)を具体的に示す詳細図である。
【図3】第2定量供給装置を示す系統図である。
【図4】第3定量供給装置を示す系統図である。
【図5】第4定量供給装置を示す系統図である。
【図6】第5定量供給装置を示す系統図である。
【図7】第6定量供給装置を示す系統図である。
【図8】従来装置を示す系統図である。
【符号の説明】
1…ガス供給源、1a,1b…ガス充填タンク、1c,1d…液化ガス貯蔵タンク、1e,1f…気化器、2…ガス流路、3…ガス使用部(樹脂発泡成形機)、4…ガス供給流路、5…ガス循環流路、6…ポンプ手段、6a…ポンプ、6b…バッファタンク、7…流量調整手段(流量調整弁)、8…差圧調整手段、8a…一次側圧力調整弁、8b…二次側圧力調整弁、9…流路切り替え手段、9a,9b…開閉弁、10…圧力調整手段(圧力調整弁)、11…保圧手段(圧力調整弁)、12…保温手段、12a…加熱器、13…高圧ガス(発泡剤)、13a…炭酸ガス、13b…窒素ガス、13c…液化二酸化炭素、13d…液化窒素。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-pressure gas quantitative supply device.
[0002]
[Prior art]
For example, in the resin foam molding process, a fixed amount of carbon dioxide gas or the like is supplied intermittently to the resin foam molding machine in a fixed cycle as a foaming agent. However, since such a foaming agent is a high-pressure gas, it is quantitatively supplied to the resin foam molding machine. It was difficult to carry out stably and accurately.
[0003]
That is, when the gas supply line to the resin foam molding machine is opened and closed, a pressure fluctuation occurs with the opening and closing of the line, so that it is difficult to keep the gas supply amount from the line constant by the flow regulator. In the resin foam molding process, the supply of the foaming agent is often performed intermittently in a short cycle, but in such a case, the time from line closing to opening and / or the time from opening to closing is short. Therefore, the gas pressure fluctuates drastically with the opening and closing of the line, and the gas supply amount and gas pressure to the resin foam molding machine cannot be stabilized. In particular, when carbon dioxide, which is a supercritical fluid, is used as a foaming agent, constant pressure supply is impossible because expansion and solidification occur due to pressure fluctuation.
[0004]
Therefore, conventionally, as disclosed in Japanese Patent Application Laid-Open No. 2000-218647, the foaming agent 102 is not transported and supplied in a gas state, but is supplied to the resin foam molding machine 106 in a liquid state (liquefied gas). What has been proposed. That is, as shown in FIG. 8, such a fixed amount supply device (hereinafter referred to as “conventional device”) is provided on a supply line 105 extending from a filling tank 101 of a foaming agent 102 which is a liquefied gas (liquefied carbon dioxide) to a resin foam molding machine 106. , A cooler 108 (for cooling by heat exchange with the refrigerant cooled by the refrigerator 109) and a metering pump 107, and the metering pump in a liquid state in which the foaming agent 102 is cooled and kept warm by the cooler 108. 107 is configured to supply a fixed amount to the resin foam molding machine 106.
[0005]
[Problems to be solved by the invention]
According to such a conventional apparatus, there is no problem such as when the blowing agent 102 is supplied in a gaseous state. However, since the metering pump 107 that handles the cryogenic high-pressure liquid 102 and the high-pressure liquid 102 are maintained at a cryogenic temperature. Since the cooler 108 and the heat retaining means for the line 105 are required, the initial cost and running cost of the entire apparatus are increased, and the quantitative supply cannot be performed economically. When it is necessary to finally supply the gaseous state to the high-pressure gas use section 106 of a resin foam molding machine or the like, it is necessary to vaporize the liquefied gas 102. In such a case, the flow rate and pressure control of the vaporized gas are required. For, the above-mentioned problem remains.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-pressure gas quantitative supply apparatus capable of quantitatively supplying a high-pressure gas in a gas state without causing the above-described problem.
[0007]
In order to achieve the above object, the present invention particularly provides a gas flow path led from a gas supply source and two flow paths branched from a downstream end of the gas flow path, wherein the downstream end uses a high-pressure gas. A gas supply passage and a downstream end which are led to the gas circulation passage connected to an upstream portion of the gas passage, and a gas circulation passage provided downstream from a downstream end connection portion of the gas circulation passage. The pump means is provided downstream of the pump means in the gas flow path, and controls the amount of gas supplied from the gas supply flow path to the high-pressure gas use part. Flow rate adjusting means and a differential pressure adjusting means for maintaining a differential pressure between a primary side and a secondary side thereof equal to or lower than a certain value, a flow path switching means for alternately opening and closing a gas supply flow path and a gas circulation flow path, It is disposed downstream of the flow path switching means in the circulation flow path, and is provided with a differential pressure adjusting means. Pressure regulating means for maintaining the gas pressure on the downstream side of the gas at a predetermined pressure, and by opening the gas supply flow path, the gas whose flow rate and pressure are kept constant is supplied to the high-pressure gas use section. We propose a high-pressure gas quantitative supply device characterized by having such a configuration.
[0008]
In a preferred embodiment, the pump means is provided with a gas pump for pressurizing and pumping gas and a buffer tank disposed on the secondary side thereof so as to prevent pulsation on the downstream side of the pump. It is preferable to devise it. Also, a liquefied gas can be used as the gas in the gas supply source. In such a case, the gas supply source is configured to include a storage section for the liquefied gas and a means for vaporizing the liquefied gas.
[0009]
Further, the high-pressure gas metering device of the present invention is more preferably used when the high-pressure gas using section is a resin foam molding machine and the gas supplied from the gas supply channel to the resin foam molding machine is a foaming agent. used. In such a case, carbon dioxide or nitrogen gas is used as the foaming agent.
[0010]
Furthermore, in the high-pressure gas quantitative supply device of the present invention, when the gas pressurized by the pump means is a supercritical fluid such as carbon dioxide, On the upstream side, it is preferable to provide a pressure-holding means for maintaining the gas pressure in the gas circulation channel at a pressure within a range where the supercritical fluid does not solidify, and further, at least in the gas circulation channel, It is preferable to provide a heat retaining means for maintaining a temperature in a range where the supercritical fluid does not solidify. Further, it is preferable that the pressure difference adjusting means is configured to maintain the pressure difference between the primary side and the secondary side of the flow rate adjusting means at 30 kg / cm 2 or less (gas to be supplied to the high pressure gas use part). Is more preferably 10 kg / cm 2 or less.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0012]
FIGS. 1 and 2 show a first embodiment, in which a high-pressure gas quantitative supply device (hereinafter, referred to as a “first quantitative supply device”) according to the present invention uses a foaming agent made of resin. This is for supplying a fixed amount to a foam molding machine.
[0013]
That is, as shown in FIG. 1, the first fixed supply device includes a gas flow path 2 guided from a gas supply source 1, a gas supply flow path 4 guided to a resin foam molding machine 3 which is a high-pressure gas use unit, Gas circulation channel 5 connected to gas channel 2, pump means 6, flow rate adjusting means 7, differential pressure adjusting means 8, channel switching means 9, pressure adjustment provided in channels 2, 4, 5 It comprises a means 10, a pressure keeping means 11 and a heat keeping means 12, and supplies a fixed amount of carbon dioxide gas 13a as a foaming agent 13 to the resin foam molding machine 3.
[0014]
The gas supply source 1 includes a gas tank 1a filled with carbon dioxide gas 13a, and a gas flow path 2 is connected to the gas tank 1a.
[0015]
The upstream end of the gas supply passage 4 and the upstream end of the gas circulation passage 5 are branched and connected to the downstream end of the gas passage 2. The downstream end of the gas supply passage 4 is guided to a foaming agent supply section of the resin foam molding machine 3 which is a high pressure gas use section. The downstream end of the gas circulation channel 5 is branched and connected to the upstream portion of the gas channel 2.
[0016]
The pump means 6 is disposed downstream from the downstream end connection of the gas circulation flow path 5 in the gas flow path 2, and is a pump for increasing the pressure of the gaseous foaming agent (carbon dioxide) 13 supplied from the gas tank 1 a. 6a and a buffer tank 6b disposed downstream of the pump 6a. As the pump 6a, a gas booster pump or the like having a capacity corresponding to the foaming agent pressure required by the resin foam molding machine 3 is used. The buffer tank 6b is provided mainly for preventing pulsation of the high-pressure gas 13 pumped by the pump 6a.
[0017]
The flow rate adjusting means 7 is disposed downstream of the pump means 6 in the gas flow path 2 (downstream of the buffer tank 6 a), and controls a gas supply amount from the gas supply flow path 4 to the high-pressure gas use unit 3. And a flow control valve such as a needle valve. The flow rate adjustment by the flow rate adjusting valve 7 is performed so that the gas supply amount becomes a constant amount (hereinafter, referred to as “set flow amount”) corresponding to the amount of the foaming agent required in the resin foam molding machine 3.
[0018]
The differential pressure adjusting means 8 includes a primary pressure adjusting valve 8 a provided in the gas flow path 2 between the pump means 6 (buffer tank 6 b) and the flow adjusting valve 7, and a gas downstream of the flow adjusting valve 7. And a secondary-side pressure regulating valve 8b disposed in the flow path 2. The differential pressure between the primary side (gas inflow side) and the secondary side (gas outflow side) of the flow rate regulating valve 7 is equal to or less than a certain value. It is adjusted and maintained.
[0019]
By the way, since the gas 13 flowing into the flow control valve 7 expands after passing through the flow control part which is a constriction part, the differential pressure between the primary side (inflow side) and the secondary side (outflow side) is large. In such a case, accurate flow rate adjustment cannot be performed. Further, when a supercritical fluid such as carbon dioxide is used as the gas 13, there is a possibility that such carbon dioxide or the like solidifies when passing through the flow control valve 7. The differential pressure adjusting means 8 is for preventing such a problem and realizing accurate flow rate adjustment by the flow rate adjusting valve 7. For example, when carbon dioxide gas 13a is used as the foaming agent 13, the pressure difference on both sides of the flow control valve 7 is reduced to 30 kg / cm 2 or less (more preferably 10 kg / cm 2 or less) by the two pressure control valves 8a and 8b. It is preferable to keep it.
[0020]
The flow path switching means 9 alternately opens and closes the gas supply flow path 4 and the gas circulation flow path 5 and includes a three-way switching valve and the like. In this example, as shown in FIG. 2, the flow path switching means 9 arranges the first and second on-off valves 9a and 9b in the two flow paths 4 and 5, respectively, and the two on-off valves 9a and 9b are interlocked. It is configured to be opened and closed alternately. That is, when the first opening / closing valve 9 a of the gas supply flow path 4 is opened, a constant amount (set flow rate) of the foaming agent 13 adjusted by the flow rate adjustment valve 7 passes from the gas flow path 2 through the gas supply flow path 4. The gas is supplied to the resin foam molding machine 3, and at the same time, the second on-off valve 9b of the gas circulation channel 5 is closed, so that the gas flow from the gas channel 2 to the gas circulation channel 5 is stopped (in this manner, the gas The state in which the supply flow path 4 is opened and the gas circulation flow path 5 is closed is hereinafter referred to as “gas supply state”. When the first on-off valve 9a is closed, the supply of the blowing agent from the gas supply flow path 4 to the resin foam molding machine 3 is stopped. At the same time, the second on-off valve 9b is opened, and the blowing agent 13 The gas is circulated from the downstream end of the flow path 2 to the upstream portion of the gas flow path 2 (primary side of the pump 6a) via the gas circulation flow path 5 (the gas supply flow path 4 is closed and the gas circulation flow path The state in which 5 is opened is hereinafter referred to as “gas supply stopped state”). When the gas supply state is shifted to the gas supply stop state, the gas circulation amount from the gas circulation flow path 5 to the gas flow path 2 is insufficient by an amount corresponding to the supply amount to the use unit 3. The minute will be replenished from the gas tank 1a. Incidentally, the resin foam molding machine 3 includes, in addition to a general molding machine, an extruder for performing extrusion gas foaming, a pressure vessel for performing bead foaming, a mixer for performing urethane foaming, and the like. Generally, the supply of the foaming agent 13 is frequently performed intermittently in a short cycle. For example, the time T during which the blowing agent is supplied to the resin foam molding machine 3 (hereinafter referred to as “gas supply time”) is set to several seconds to several tens of seconds, and is the span of the blowing agent supply (the time during which the blowing agent supply is stopped). , Hereinafter referred to as “gas supply stop time”) is 1 minute to several minutes. In this example, the flow path switching means 9 is configured such that the first and second on-off valves 9a and 9b are alternately opened and closed in such a short cycle.
[0021]
The pressure adjusting means 10 is disposed downstream of the flow path switching means 9 in the gas circulation flow path 5 (in this example, downstream of the second on-off valve 9b as shown in FIG. 2), This is a pressure regulating valve that maintains the gas pressure downstream of the means 8, that is, the gas pressure downstream of the secondary pressure regulating valve 8b, at a predetermined pressure (supply gas pressure required in the high-pressure gas use section 3). That is, in both the gas supply state and the gas supply stop state, the pressure regulating valve 10 changes the gas pressure downstream of the secondary pressure regulating valve 8b according to the foaming agent supply pressure required in the resin foam molding machine 3. The pressure is maintained at a constant pressure (hereinafter, referred to as “set pressure”). Therefore, the gas pressure in the gas supply flow path 4 does not fluctuate both in the transition from the gas supply state to the gas supply stop state by the flow path switching means 9 and in the transition from the gas supply stop state to the gas supply state. , Is maintained at the set pressure.
[0022]
The pressure keeping means 11 and the heat keeping means 12 are required when a supercritical fluid such as carbon dioxide gas is used as the gas 13 to be supplied to the high pressure gas use part 3, and the high pressure gas 13 pressurized by the pump 6a is used. To prevent solidification under pressure and / or temperature conditions.
[0023]
As shown in FIG. 1, the pressure maintaining means 11 is a pressure regulating valve disposed upstream of the downstream end connection portion of the gas circulation flow path 5 in the gas flow path 2. Is maintained at a pressure within a range where the supercritical fluid does not solidify. That is, when the gas supply state shifts to the gas supply stop state, as described above, the gas 13 flows into the gas flow path 2 not only from the gas circulation flow path 5 but also from the gas tank 1a. The gas pressure may drop, and there is a possibility that a supercritical fluid such as carbon dioxide gas solidifies due to the pressure drop. Such a risk is prevented by the pressure regulating valve 11.
[0024]
As shown in FIG. 1, the heat retaining means 12 arranges a heater 12a at an appropriate position in the gas circulation flow path 5 (downstream of the pressure regulating valve 10), and furthermore, a gas line (if necessary) to the heater 12a. For example, a gas line from the buffer tank 6b to the use section 3 and the heater 12a) has a heat insulating or heat retaining structure, so that the gas temperature can be reduced even when the gas 13 is a supercritical fluid such as carbon dioxide gas 13a. Is configured to prevent solidification of the supercritical fluid due to That is, the heat retaining means 12 maintains the gas temperature of the supercritical fluid in a range where it does not solidify by providing a heater 12a at least in the gas circulation flow path 5.
[0025]
FIG. 3 shows a second embodiment, and the high-pressure gas quantitative supply device according to the present invention (hereinafter, referred to as “second quantitative supply device”) according to the present embodiment has the following exceptions. Thus, it has the same configuration as the first fixed-quantity supply device.
[0026]
That is, in the second metering device, as shown in FIG. 3, the gas supply source 1 is composed of a gas tank 1b filled with a nitrogen gas 13b, and the nitrogen gas 13b is used as a foaming agent 13 in the resin foam molding machine 3. It is configured to supply a fixed amount to the container. Accordingly, in the second constant-volume supply device, since it is not necessary to consider gas coagulation due to pressure and temperature changes as in the case where the carbon dioxide gas 13a is used, the pressure keeping means 11 and the heat keeping means 12 are not provided. Except for this point, since the configuration is the same as that of the first constant-amount supply device, the same members as those of the first constant-amount supply device are denoted by the same reference numerals in FIG. 3 and the description thereof will be omitted. In addition, it is preferable that the differential pressure on both sides of the flow control valve 7 is maintained at 30 kg / cm 2 or less by the two pressure control valves 8 a and 8 b even in the second fixed supply device. As shown in FIG. 2, the flow path switching means 9 is composed of first and second on-off valves 9a and 9b as in the first fixed supply device.
[0027]
FIG. 4 shows a third embodiment. The high-pressure gas quantitative supply device according to the present invention (hereinafter, referred to as a “third quantitative supply device”) according to the third embodiment is different from the third embodiment in the following points. Thus, it has the same configuration as the first fixed-quantity supply device.
[0028]
That is, in the third quantitative supply device, as shown in FIG. 4, the gas supply source 1 is constituted by a filling tank 1a of carbon dioxide gas 13a and a filling tank 1b of nitrogen gas 13b, and the upstream end of the gas flow path 2 is filled with each gas. A resin foam molding machine is provided which branches into a first gas passage portion 2a and a second gas passage portion 2b which are connected to the tanks 1a and 1b, and is provided with a gas switching valve (such as a three-way switching valve) 14 at the branch portion. The carbon dioxide gas 13a or the nitrogen gas 13b is designed to be selected as the foaming agent 13 supplied to 3. That is, when carbon dioxide gas 13a is used as the foaming agent 13, the second gas passage portion 2b is closed by the gas switching valve 14, and the foaming agent 13 is resin foamed from the first gas passage portion 2a by the pump 6a. The machine 3 is supplied. In this case, the coagulation of the carbon dioxide gas 13a is prevented by the pressure maintaining means 11 provided in the first gas flow path portion 2a and the heat retaining means 12 provided in the gas circulation flow path 5 and the like, similarly to the first fixed supply device. Is done. On the other hand, when the nitrogen gas 13b is used as the foaming agent 13, the first gas passage portion 2a is closed by the gas switching valve 14, and the foaming agent 13 is resin foamed from the second gas passage portion 2b by the pump 6a. The machine 3 is supplied. In this case, as in the case of the second constant-volume supply device, the pressure-holding means 11 and the heat-holding means 12 are not required. Is not provided, and the function of heating and keeping the foaming agent 13 by the heater 12a is stopped. Except for this point, since the configuration is the same as that of the first metering device, the same members as those of the first metering device are denoted by the same reference numerals in FIG. 4 and the description thereof will be omitted. It should be noted that, even in the third quantitative supply device, the flow path switching means 9 is configured by first and second on-off valves 9a and 9b, as shown in FIG. 2, similarly to the first quantitative supply device.
[0029]
FIG. 5 shows a fourth embodiment, in which a high-pressure gas quantitative supply device according to the present invention (hereinafter, referred to as a “fourth constant supply device”) according to the present embodiment converts liquefied carbon dioxide 13c. Except that the vaporized carbon dioxide gas 13 a is used as the foaming agent 13, it has the same configuration as the first quantitative supply device. That is, in the fourth quantitative supply device, the gas supply source 1 is constituted by the storage tank 1c of the liquefied carbon dioxide 13c and the vaporizer (evaporator) 1e disposed in the gas flow path 2 connected thereto. Except for this point, the configuration is the same as that of the first fixed-quantity supply device, including the configuration of the flow path switching means 9 shown in FIG. 2 and the configuration in which the pressure maintaining means 11 is disposed downstream of the vaporizer 1 e in the gas flow path 2. Make
[0030]
FIG. 6 shows a fifth embodiment, in which a high-pressure gas quantitative supply device according to the present invention (hereinafter, referred to as a "fifth quantitative supply device") in this embodiment vaporizes liquefied nitrogen 13d. Except that the nitrogen gas 13b thus used is used as the foaming agent 13, it has the same configuration as the second metering device. That is, in the fifth quantitative supply device, the gas supply source 1 is constituted by a storage tank 1d for liquefied nitrogen 13d and a vaporizer (evaporator) 1f disposed in the gas flow path 2 connected thereto. Except for this point, it has the same configuration as the second quantitative supply device, including the configuration of the flow path switching means 9 shown in FIG.
[0031]
FIG. 7 shows a sixth embodiment, in which a high-pressure gas quantitative supply device (hereinafter, referred to as a “sixth quantitative supply device”) according to the present invention in this embodiment includes liquefied carbon dioxide 13c or It has the same configuration as the third fixed supply device except that the gas 13a, 13b obtained by vaporizing liquefied nitrogen 13d is selectively used as the foaming agent 13. That is, in the sixth quantitative supply device, the gas supply source 1 is a vaporizer (evaporator) 1e disposed in the storage tank 1c for the liquefied carbon dioxide 13c and the storage tank 1d for the liquefied nitrogen 13d and the gas flow path portions 2a and 2b. , 1f, and except for this point, the pressure-holding means 11 is disposed downstream of the vaporizer 1e in the configuration of the flow path switching means 9 and the first gas flow path portion 2a shown in FIG. It has the same configuration as the third quantitative supply device including the configuration.
[0032]
According to the first to sixth quantitative supply devices configured as described above, the carbon dioxide gas 13a or the nitrogen gas 13b can be intermittently supplied while being maintained at a preset flow rate and pressure, and high quality is achieved. A resin foam molded article can be obtained.
[0033]
That is, in the gas supply stopped state in which the gas supply channel 4 is closed, the gaseous foaming agent 13 pressurized by the pump 6 a is circulated and flown between the gas channel 2 and the gas circulation channel 5. The gas pressure at the connection between the two flow paths 2 and 5 and the gas supply flow path 4 is maintained at a set pressure by the pressure regulating valve 10. When the gas supply flow path 4 is opened from this state and the gas supply state is entered, the foaming agent 13 is transferred from the connection portion to the resin foam molding machine (high-pressure gas use section) 3 via the gas supply flow path 4. Although the gas is supplied, the gas pressure at the connection portion does not fluctuate from before the transition to the gas supply state. Similarly, when the gas supply state shifts to the gas supply stop state, the gas pressure at the connection portion is maintained at the set pressure and does not fluctuate. Therefore, even when the flow path switching by the flow path switching means 9 (switching between the gas supply state and the gas supply stop state) is repeated in a short cycle, the pressure does not fluctuate at the time of the flow path switching, and the gas supply flow path 4 Supplies the blowing agent 13 at a constant pressure (set pressure). On the other hand, since the pressure difference between the primary side and the secondary side of the flow control valve 7 is maintained at a certain pressure or lower (for example, 30 kg / cm 2 or lower) by the pressure control valves 8a and 8b, the secondary pressure control valve In addition to the fact that the gas pressure at the connection portion on the downstream side of 8b is kept constant as described above, the flow control by the flow control valve 7 is performed accurately, and the supply from the gas supply flow path 4 is performed. The volume is kept constant (set flow rate).
[0034]
Also, when a supercritical fluid such as carbon dioxide gas 13a is used as the foaming agent 13, the pressure holding means (pressure regulating valve) 11 and the heat keeping means as in the first, third, fourth or sixth fixed-quantity supply device. The provision of the heater 12a (such as the heater 12a), together with the function of reducing the differential pressure by the differential pressure adjusting means 8, can reliably prevent the solidification of the foaming agent 13 and provide the above-described set flow rate and setting. Pressure can be secured.
[0035]
Therefore, even when the supply of the foaming agent is performed intermittently in a short cycle (for example, when the gas supply time T is several seconds to several tens of seconds and the gas supply stop time t is one minute to several minutes), The supply flow rate and the supply pressure of the agent 13 to the resin foam molding machine 3 can be kept at predetermined values, so that the quantitative supply of the agent 13 can be performed well and appropriately. As a result, a good molded product can be obtained in the resin foam molding machine 3 regardless of whether the carbon dioxide gas 13a or the nitrogen gas 13b is used as the foaming agent 13.
[0036]
By the way, in the conventional apparatus described at the beginning, since the foaming agent 102 is supplied to the resin foam molding machine 106 in a liquid state, a plurality of types of foaming agents 102 cannot be selectively used as necessary. On the other hand, in the third or sixth metering device, a plurality of types of blowing agents (for example, carbon dioxide gas 13a and nitrogen gas 13b) can be selectively used. The present invention can sufficiently cope with a general-purpose machine capable of molding various kinds of foamed resin products.
[0037]
The apparatus for quantitatively supplying high-pressure gas according to the present invention is not limited to the above-described embodiments, and can be appropriately improved or changed without departing from the basic principle of the present invention. For example, the above-described first to sixth quantitative supply devices can be suitably used even when carbon dioxide gas, nitrogen gas or other gas is quantitatively supplied to the high-pressure gas use unit 3 other than the resin foam molding machine. This is particularly preferable when it is necessary to intermittently supply the high-pressure gas 13 in a short cycle. In addition, the above-described third or sixth quantitative supply device can be suitably used even when it is necessary to selectively use a plurality of types of high-pressure gas in the high-pressure gas use part 3, but the gas type to be selectively used is Is more than three, the number of gas filling tanks 1a, 1b or liquefied gas storage tanks 1c, 1d may be increased.
[0038]
【The invention's effect】
As can be easily understood from the above description, according to the apparatus for quantitatively supplying high-pressure gas of the present invention, carbon dioxide gas, nitrogen gas, and the like can be reduced to a predetermined flow rate and pressure without the problems described at the outset. It is possible to reliably supply a constant amount of gas in a properly held gas state, and it is possible to perform excellent quantitative supply even when it is necessary to start and stop gas supply in a short cycle in resin foam molding or the like.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first fixed supply device.
FIG. 2 is a detailed view specifically showing a main part (flow path switching means) of FIG.
FIG. 3 is a system diagram showing a second fixed supply device.
FIG. 4 is a system diagram showing a third quantitative supply device.
FIG. 5 is a system diagram showing a fourth quantitative supply device.
FIG. 6 is a system diagram showing a fifth quantitative supply device.
FIG. 7 is a system diagram showing a sixth quantitative supply device.
FIG. 8 is a system diagram showing a conventional device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas supply source, 1a, 1b ... Gas filling tank, 1c, 1d ... Liquefied gas storage tank, 1e, 1f ... Vaporizer, 2 ... Gas flow path, 3 ... Gas use part (resin foam molding machine), 4 ... Gas supply flow path, 5: gas circulation flow path, 6: pump means, 6a: pump, 6b: buffer tank, 7: flow rate adjusting means (flow rate adjusting valve), 8: differential pressure adjusting means, 8a: primary side pressure adjustment Valves, 8b: secondary-side pressure regulating valve, 9: flow path switching means, 9a, 9b: open / close valve, 10: pressure regulating means (pressure regulating valve), 11 ... pressure keeping means (pressure regulating valve), 12: heat retention Means, 12a: heater, 13: high pressure gas (foaming agent), 13a: carbon dioxide gas, 13b: nitrogen gas, 13c: liquefied carbon dioxide, 13d: liquefied nitrogen.

Claims (8)

ガス供給源から導かれたガス流路と、
ガス流路の下流端から分岐された2つの流路であって、下流端が高圧ガス使用部に導かれたガス供給流路及び下流端がガス流路の上流側部分に接続されたガス循環流路と、
ガス流路におけるガス循環流路の下流端接続部より下流側に配設されており、ガス流路内のガスを昇圧,圧送するポンプ手段と、
ガス流路におけるポンプ手段の下流側に配設されており、ガス供給流路から高圧ガス使用部へのガス供給量を制御する流量調整手段並びにその一次側と二次側との差圧を一定以下に保持する差圧調整手段と、
ガス供給流路とガス循環流路とを交互に開閉する流路切り替え手段と、
ガス循環流路における流路切り替え手段の下流側に配設されており、差圧調整手段の下流側におけるガス圧を所定圧に保持する圧力調整手段と、
を具備して、ガス供給流路を開放させることにより流量及び圧力を一定に保持されたガスが高圧ガス使用部に供給されるように構成したことを特徴とする高圧ガスの定量供給装置。
A gas flow path derived from a gas supply,
Two gas passages branched from the downstream end of the gas passage, the gas circulation passage having the downstream end connected to the high-pressure gas use part and the downstream end connected to the upstream portion of the gas passage. A flow path;
A pump means disposed downstream of the downstream end connection of the gas circulation flow path in the gas flow path, for increasing and pumping the gas in the gas flow path;
It is disposed downstream of the pump means in the gas flow path and controls the flow rate of the gas supplied from the gas supply flow path to the high-pressure gas use section, and maintains a constant differential pressure between the primary side and the secondary side thereof. A differential pressure adjusting means to be held below,
Flow path switching means for alternately opening and closing the gas supply flow path and the gas circulation flow path,
Pressure adjusting means which is disposed downstream of the flow path switching means in the gas circulation flow path and holds the gas pressure downstream of the differential pressure adjusting means at a predetermined pressure,
A high-pressure gas quantitative supply device, characterized in that a gas having a constant flow rate and pressure is supplied to a high-pressure gas use section by opening a gas supply flow path.
ポンプ手段により昇圧されるガスが超臨界流体である場合において、ガス流路におけるガス循環流路の下流端接続部より上流側に、ガス循環流路内のガス圧を当該超臨界流体が凝固しない範囲の圧力に保持する保圧手段を配設してあることを特徴とする、請求項1に記載する高圧ガスの定量供給装置。When the gas pressurized by the pump means is a supercritical fluid, the supercritical fluid does not solidify the gas pressure in the gas circulation flow path upstream of the downstream end connection of the gas circulation flow path in the gas flow path. 2. The high-pressure gas quantitative supply apparatus according to claim 1, further comprising a pressure-holding means for maintaining the pressure in a range. 少なくともガス循環流路に、当該超臨界流体が凝固しない範囲の温度に保持する保温手段を配設してあることを特徴とする、請求項2に記載する高圧ガスの定量供給装置。3. The high-pressure gas quantitative supply apparatus according to claim 2, wherein a heat retaining means for maintaining a temperature in a range in which the supercritical fluid does not solidify is disposed at least in the gas circulation channel. 当該超臨界流体が炭酸ガスである場合において、差圧調整手段が流量調整手段の一次側と二次側との差圧を30kg/cm以下に保持するものであることを特徴とする、請求項2又は請求項3に記載する高圧ガスの定量供給装置。When the supercritical fluid is carbon dioxide gas, the differential pressure adjusting means is to maintain the differential pressure between the primary side and the secondary side of the flow rate adjusting means at 30 kg / cm 2 or less. The fixed-pressure gas supply device according to claim 2 or 3. 高圧ガス使用部が樹脂発泡成形機であり、ガス供給流路から樹脂発泡成形機に供給されるガスが発泡剤であることを特徴とする、請求項1、請求項2、請求項3又は請求項4に記載する高圧ガスの定量供給装置。The high-pressure gas use part is a resin foam molding machine, and the gas supplied from the gas supply channel to the resin foam molding machine is a foaming agent. Item 4. A quantitative supply device for high-pressure gas according to Item 4. 発泡剤が炭酸ガス又は窒素ガスであることを特徴とする、請求項5に記載する高圧ガスの定量供給装置。The high-pressure gas quantitative supply device according to claim 5, wherein the blowing agent is carbon dioxide gas or nitrogen gas. ガス供給源が、液化ガスの貯留部及び当該液化ガスの気化手段を具備するものであることを特徴とする、請求項1、請求項2、請求項3、請求項4、請求項5又は請求項6に記載する高圧ガス定量供給装置。The gas supply source includes a storage section for liquefied gas and a means for vaporizing the liquefied gas, wherein the gas supply source includes a storage section for the liquefied gas and a vaporizing means for the liquefied gas. Item 7. A high-pressure gas quantitative supply device according to Item 6. ポンプ手段は、ガスを昇圧,圧送させるガスポンプとその二次側に配したバッファタンクとを具備するものであることを特徴とする、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6又は請求項7に記載する高圧ガス定量供給装置。The pump means is provided with a gas pump for pressurizing and pumping gas and a buffer tank disposed on the secondary side of the gas pump. The high-pressure gas quantitative supply device according to claim 5, 6 or 7.
JP2002201110A 2002-07-10 2002-07-10 High-pressure gas metering device Expired - Lifetime JP4163908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201110A JP4163908B2 (en) 2002-07-10 2002-07-10 High-pressure gas metering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201110A JP4163908B2 (en) 2002-07-10 2002-07-10 High-pressure gas metering device

Publications (2)

Publication Number Publication Date
JP2004044650A true JP2004044650A (en) 2004-02-12
JP4163908B2 JP4163908B2 (en) 2008-10-08

Family

ID=31707742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201110A Expired - Lifetime JP4163908B2 (en) 2002-07-10 2002-07-10 High-pressure gas metering device

Country Status (1)

Country Link
JP (1) JP4163908B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773727B1 (en) 2006-12-20 2008-01-02 주식회사 케이씨텍 The apparatus which supplies the liquefied gas at fixed pressure and method thereof
WO2010041427A1 (en) * 2008-10-07 2010-04-15 株式会社プラステコ Carbon dioxide supply system
JP2010266068A (en) * 2004-07-16 2010-11-25 Statoil Asa Ship
JP2012511363A (en) * 2008-12-12 2012-05-24 アムロナ・アーゲー Deactivation method for fire prevention and / or fire extinguishing, and deactivation system for realizing the method
WO2015174255A1 (en) * 2014-05-11 2015-11-19 鈴木康公 Method for manufacturing molded article, and device for manufacturing molded article
CN113227690A (en) * 2019-01-25 2021-08-06 乔治洛德方法研究和开发液化空气有限公司 Method and device for supplying a gas under pressure
WO2022082474A1 (en) * 2020-10-21 2022-04-28 华东理工大学 Method and device for preparing polymer foam material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852985B (en) * 2009-03-30 2013-01-09 鸿富锦精密工业(深圳)有限公司 Manufacturing method of substrate alignment mark

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266068A (en) * 2004-07-16 2010-11-25 Statoil Asa Ship
KR100773727B1 (en) 2006-12-20 2008-01-02 주식회사 케이씨텍 The apparatus which supplies the liquefied gas at fixed pressure and method thereof
WO2010041427A1 (en) * 2008-10-07 2010-04-15 株式会社プラステコ Carbon dioxide supply system
CN102089565A (en) * 2008-10-07 2011-06-08 株式会社普拉斯泰科 Carbon dioxide supply system
US8985139B2 (en) 2008-10-07 2015-03-24 Plasteco Corporation Carbon dioxide supply system
JP5922329B2 (en) * 2008-10-07 2016-05-24 株式会社プラステコ CO2 supply system
JP2012511363A (en) * 2008-12-12 2012-05-24 アムロナ・アーゲー Deactivation method for fire prevention and / or fire extinguishing, and deactivation system for realizing the method
WO2015174255A1 (en) * 2014-05-11 2015-11-19 鈴木康公 Method for manufacturing molded article, and device for manufacturing molded article
US10513052B2 (en) 2014-05-11 2019-12-24 Yasuhiro Suzuki Method for manufacturing molded article and device for manufacturing molded article
CN113227690A (en) * 2019-01-25 2021-08-06 乔治洛德方法研究和开发液化空气有限公司 Method and device for supplying a gas under pressure
WO2022082474A1 (en) * 2020-10-21 2022-04-28 华东理工大学 Method and device for preparing polymer foam material

Also Published As

Publication number Publication date
JP4163908B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4711587B2 (en) Blow molding agent supply system
JP7399656B2 (en) Device and method for filling pressurized gas tanks
US20190086031A1 (en) Gas supply device and method for starting operation of gas supply device
US7294295B2 (en) Method of manufacturing molded product of foamed resin and apparatus for molding foamed resin
JP4163908B2 (en) High-pressure gas metering device
US7191603B2 (en) Gaseous fluid production apparatus and method
US20170130901A1 (en) Fuel refilling systems and methods
US11060665B2 (en) Installation and method for filling tanks with pressurized fluid
JP6586338B2 (en) Precooler and precooling method for hydrogen gas filling equipment
TWI716738B (en) Foam molding system, mold, material supply machine and foam molding method
JP5759741B2 (en) Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel
EP0560522A1 (en) Blow moulding method and apparatus
US20110315243A1 (en) Carbon dioxide supply system
JP5478318B2 (en) High-pressure gas quantitative supply device and quantitative supply method
JP4309502B2 (en) Equipment for supplying foaming agent to resin foam molding machine
US3386261A (en) Method of and apparatus for dispensing reconstituted beer
JP4125704B2 (en) Fluid supply device
US3760599A (en) Method and apparatus for controlling the flowliquid
US6913719B2 (en) Device and process for injection molding of hollow plastic parts
JP6779387B2 (en) Propellant adjustment assembly or related improvements
NO315164B1 (en) Process and apparatus for producing polyurethane foam using carbon dioxide as a foaming agent
JPH11344276A (en) Cold supplying device of liquefied gas and its operation control method
JP5090823B2 (en) Liquid gas delivery method
JP7369218B2 (en) Circulating cooling system for liquid products containing carbon dioxide gas
JP4651843B2 (en) Reaction injection molding equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4163908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term