JP2004043884A - 低温焼付硬化性および耐時効性に優れる加工用薄鋼板 - Google Patents

低温焼付硬化性および耐時効性に優れる加工用薄鋼板 Download PDF

Info

Publication number
JP2004043884A
JP2004043884A JP2002202631A JP2002202631A JP2004043884A JP 2004043884 A JP2004043884 A JP 2004043884A JP 2002202631 A JP2002202631 A JP 2002202631A JP 2002202631 A JP2002202631 A JP 2002202631A JP 2004043884 A JP2004043884 A JP 2004043884A
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
low
aging resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002202631A
Other languages
English (en)
Other versions
JP4176403B2 (ja
Inventor
Takashi Iwama
岩間 隆史
Tetsuo Shimizu
清水 哲雄
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002202631A priority Critical patent/JP4176403B2/ja
Publication of JP2004043884A publication Critical patent/JP2004043884A/ja
Application granted granted Critical
Publication of JP4176403B2 publication Critical patent/JP4176403B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】優れた低温焼付硬化性および耐時効性を有し、かつ良好な加工性をも兼ね備える加工用薄鋼板を提供する。
【解決手段】質量%で、C:0.0020〜0.010 %、Si:1.0 %以下、Mn:0.05〜1.5 %、P:0.05%以下、S:0.02%以下、N:0.005 %以下、Al:15×N(%)〜0.10%およびNb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕を含有し、残部はFeおよび不可避的不純物の組成にすると共に、鋼板の平均結晶粒径dを2〜12μm とし、かつ下記(1) 式で表される低温焼付硬化指数Aを10以下とする。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C (%) −−− (1)
但し、C (%) =C(%) − (12/93)×Nb(%)
【選択図】    図1

Description

【0001】
【産業上の利用分野】
本発明は、主に自動車の車体用として好適な低温焼付硬化性および耐時効性に優れる加工用薄鋼板に関するものである。
すなわち、本発明は、曲げ加工やプレス成形加工、絞り成形加工などにおいて良好な特性を呈するだけでなく、特に低温での塗装焼付処理において高い焼付硬化性を示し、さらには耐時効性にも優れる加工用薄鋼板であり、表面処理鋼板などの用途にも有利に適合するものである。
【0002】
【従来の技術】
自動車用鋼板の中で、ドアやフェンダー等の外板部品には、板厚が比較的薄い鋼板が使用されるため、耐デント性および張り剛性が要求される。そのため、プレス成形−塗装焼付処理後に降伏強度が上昇する焼付硬化型鋼板(BH鋼板)が多用されている。
現在、塗料の焼付処理温度は、通常 170℃であるが、エネルギーコストの削減や環境保護の観点から、焼付温度の低温化が検討され始めており、低温焼付型(160 ℃程度)の塗料も開発されている。また、将来的には、さらに低温化することも予想されるため、それに対応した低温焼付硬化型鋼板の開発が必要となっている。
【0003】
低温焼付硬化性を付与するには、BH量を上昇させる、すなわちC量の増加が有効であることは既に知られているが、単にC量を増加するだけでは、耐常温時効性が劣化するため、プレス成形時にストレッチャーストレインによるシワが発生し易くなり、外観を損ねるため、外板部品としては致命的である。
【0004】
この観点から、従来より、鋼板の焼付硬化性と耐時効性を兼備させるために、各種の方法が提案されている。
例えば、特開平7−75803 号公報、特開2001−140038号公報および特開2001−200337号公報などには、調質圧延における伸び率を高めて常温時効劣化を抑制する方法が、また特開2000−336431号公報には、レーザー照射などにより鋼板表層に歪みを導入することで、常温時効の劣化を抑制する方法が提案されている。
【0005】
一方、低温焼付硬化性を向上させる技術としては、例えば特許第2560168 号公報や特開平6−73498 号公報には、鉄炭化物の析出物分布を制御する方法が、また特開平6−299289号公報には、熱延板のNbC析出を制御する方法が、さらに特許第2876966 号公報には、BとO添加量を適正化する方法がそれぞれ提案されており、いずれも優れた低温焼付硬化性を得られる旨が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した特開平7−75803 号公報、特開2001−140038号公報、特開2001−200337号公報および特開2000−336431号公報に開示された既知技術で製造した冷延鋼板はいずれも、鋼板に歪み(可動転位)を導入することによって耐時効性の向上を図るものであるため、高BH化に従い、必要とされる歪量が大きくなる。
歪量を大きくするためには、調質圧延における伸び率を高める必要があるが、高張力鋼板では付与できる伸び率に限界があり、連続ラインでの製造は事実上困難となる。
それ故、高い焼付硬化性と優れた耐時効性とを同時に満足する鋼板は得られないという問題があった。
【0007】
一方、低温焼付硬化性に関して、特許第2560168 号公報や特開平6−73498 号公報に開示の技術は、低温での析出強化を利用して硬化する技術であり、耐デント性において必要な固溶C,Nと転位の固着により得られる降伏強度向上とは、技術内容が異なる。また、特開平6−299289号公報では、結晶粒内に固溶Cを多量に残存させることになるため、耐室温時効性の低下が懸念される。さらに、特許第2876966 号公報は、B添加により粒界に存在する固溶Cを減少させることで優れた低温焼付硬化性を得ようとするものであるが、これは結局、粒内の固溶Cを増加させることになるため、耐室温時効性を劣化させることになる。
【0008】
本発明は、上記の問題を有利に解決したもので、優れた低温焼付硬化性を有し、かつ良好な耐時効性を備え、しかも優れた加工性をも併せ持つ加工用薄鋼板を提案することを目的とする。
【0009】
【課題を解決するための手段】
さて、発明者らは、上記したような課題認識の下で、その解決に向け鋭意研究を重ねた結果、鋼の成分組成を、各成分間の相互関係も含めて適正範囲に調整すると共に、冷間圧延条件、冷延板の焼鈍条件および焼鈍後の冷却条件等の製造条件を制御することによって、上記の課題が有利に解決できることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.0020〜0.010 %、
Si:1.0 %以下、
Mn:0.05〜1.5 %、
P:0.05%以下、
S:0.02%以下、
N:0.005 %以下、
Al:15×N(%) 〜0.10%および
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C (%) −−− (1)
但し、C (%) =C(%) − (12/93)×Nb(%)
【0011】
2.質量%で、
C:0.0020〜0.010 %、
Si:1.0 %以下、
Mn:0.05〜1.5 %、
P:0.05%以下、
S:0.02%以下、
N:0.005 %以下、
Al:0.01〜0.06%、
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕および
Ti: (48/14)×N(%) 〜 (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕+ (48/14)×N(%) + (48/32)×S(%)
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C (%) −−− (1)
但し、C (%) =C(%) − (12/93)×Nb(%) − (12/48)×〔Ti(%) − (48/14)×N(%) − (48/32)×S(%) 〕
【0012】
3.上記または2において、鋼板がさらに、質量%で
B:0.0030%以下
を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
【0013】
4.上記1〜3のいずれかにおいて、鋼板がさらに、質量%で
Cr:2.0 %以下、
Cu:2.0 %以下、
Ni:2.0 %以下および
Mo:1.0 %以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
【0014】
以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験について説明する。
表1に示す成分組成になる5種の鋼材を、連続焼鈍ヒートパターン(焼鈍後の冷却条件)を種々に変化させて製造した板厚:0.8 mmの冷延鋼板について、低温焼付硬化指数A(後述)と 100℃, 140℃および 170℃での焼付硬化量(BH量)との関係について調査した。なお、上記の冷延鋼板は、表1に示した成分組成のシートバーを、1250℃に加熱・均熱後、Ar変態点以上の仕上温度で熱間圧延を行い、600 ℃にて巻取り、続いて酸洗し、冷延圧下率:75〜80%の冷間圧延を行ったのち、 850℃の温度で連続焼鈍を施し、ついで冷却速度:20〜25℃/sの条件で冷却し、 480〜430 ℃の温度に 200〜250 秒保持後、10〜20℃/sの速度で冷却した後、 0.8±0.1 %の調質圧延を施して得たものである。
【0015】
上記の特性値のうち、焼付硬化量(BH量)は、JIS 5 号引張試験片を使用し、引張試験機にて 2.0%予ひずみ付加後、 100℃、 140℃、 170℃の温度でそれぞれ20分の熱処理を施した時の変形応力の上昇量を示したものである。本来は、170 ℃で20分の熱処理による応力上昇量をBH量と呼ぶが、この実験では便宜上、 100℃−BH、 140℃−BH、 170℃−BHと呼ぶことにする。より低温でのBH量が大きいほど低温焼付硬化性に優れていることを表す。また、BH量が30MPa 以上であれば良好な焼付硬化性を有しているといえる。
また、これらの特性値を求めるに際して用いた引張試験片の引張方向は、圧延方向に垂直な方向(C方向)とした。
さらに、圧延方向断面の結晶粒組織を光学顕微鏡により 400倍にて撮影し、その写真から、切断法により平均結晶粒径d(μm )を算出した。
そして、これらの値より、低温焼付硬化指数Aを次式(1) により算出した。
A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C (%) −−− (1)
但し、C (%) =C(%) − (12/93)×Nb(%)
【0016】
図1に、得られた結果を示す。
同図から明らかなように、低温焼付硬化指数Aが低下すると共に、いずれの焼付け温度においても、BH量が増加する傾向にあることが分かる。
【0017】
さらに、同様の実験を重ねることにより、 100℃−BHで30 MPa以上を満足させるためには、低温焼付硬化指数Aを10以下とする必要があること、また鋼成分中とくにNbの含有量を 0.5× (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕の範囲に調整する必要があることが判明した。
なお、焼鈍時における最高加熱温度は 820〜Ar変態点の温度範囲とすることが望ましいことも判明した。
【0018】
また、上記した成分の他、Tiを適正量添加した鋼板は、加工性がさらに向上すること、またBを適正量添加した鋼板は耐二次加工脆性がさらに向上すること、さらにCr, Ni, MoおよびCuのうちから選んだ1種または2種以上を適正量添加した鋼板は、加工性の劣化を抑制しつつ強度を向上させ得ることが、それぞれ見出された。
【0019】
上述したように、成分組成および再結晶焼鈍条件などを制御することにより、低温焼付硬化性が改善される理由については、次のように考えられる。
すなわち、NbをCに対して化学量論的当量程度添加した冷延鋼板を適正条件下で焼鈍することにより、熱延時にNb炭化物として析出固定されたCが、Nb炭化物の分解により固溶Cとして生成する。NbCの析出および固溶Cの存在などにより結晶粒を微細化させることで、粒界からのC拡散距離が比較的短い場合(低焼付温度)でも、粒内の転位と相互作用(硬化)が得られる、すなわち、低温焼付けにおいても所望の焼付硬化性が得られると考えられる。
なお、結晶粒の微細化手法については、上記したNbC析出物の分散以外に、変態点制御による方法なども使用可能で、特に限定されるものではない。
【0020】
また、製造過程において、高温域(約 600℃以上)ではPが結晶粒界に存在するため、通常固溶Cは結晶粒内へ存在し易くなるが、比較的少ないP添加量では結晶粒界へのP偏析が減少し、代わりにCが粒界に偏析し易い状況になると考えられる。すなわち粒界においてCとPのサイトコンペティションが起こり、粒界への分布割合が増加するのである。
それにより、良好な耐常温時効性も兼ね備えるものと推定される。
【0021】
つぎに、本発明において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.0020〜0.010 %
Cは、含有量が多くなると、加工性とくにr値および伸びの劣化を招き、その影響は 0.010%を超えると顕著になるのでCの上限は 0.010%とした。しかしながら、0.0020%未満では十分な低温焼付硬化量が得られないので、C量の下限は0.0020%とした。
【0022】
Si:1.0 %以下
Siは、鋼を強化する作用があり、所望の強度に応じて必要量添加されるが、含有量が 1.0%を超えると深絞り性および耐食性を劣化させるので、1.0 %以下で含有させるものとした。なお、好ましい添加範囲はめっき性や化成処理性を考慮すると0.50%以下である。
【0023】
Mn:0.05〜1.5 %
Mnは、Sに起因する熱間脆性の防止および鋼の強化に有効に寄与する。この熱間脆性の防止効果は0.05%以上で発現するが、1.5 %を超えて含有させると深絞り性が劣化するので、Mn量は0.05〜1.5 %の範囲に限定した。なお、めっき性の観点からは 1.0%以下とするのが好適である。また、熱間脆性の防止の観点からは Mn(%)/S(%) ≧10とするのが好ましい。
【0024】
P:0.05%以下
Pは、深絞り性をさほど劣化させずに鋼を強化する作用があり、所望の強度に応じて必要量添加される。しかしながら、含有量が0.05%を超えると耐常温時効性が劣化するだけでなく、粒界に多く偏析して脆化を引き起こすおそれがあるので、P量は0.05%以下の範囲に限定した。
【0025】
S:0.02%以下
Sは、熱間脆性の原因となる他、深絞り性にも悪影響を与えるので、少ないほど好ましい。これらの悪影響は含有量が0.02%を超えると顕著になるので、Sは0.02%以下に抑制するものとする。特に、プレス成形性の観点からは 0.005%以下とすることが好ましい。
【0026】
Al:15×N(%) 〜0.10%または0.01〜0.06%
Alは、Ti無添加鋼では脱酸および鋼中Nの析出固定のために添加される。この時、Alの添加量が15×N(%) 未満では十分な加工性が得られず、一方0.10%を超えるとやはり加工性を劣化させるばかりでなく、表面性状の劣化も招く。従って、Al量は15×N(%) 〜0.10%の範囲に限定した。好ましくはNを 0.003%以下としてAl:20×N(%) 〜0.08%の範囲である。
また、Ti添加鋼では、Ti添加により鋼中のNは析出固定されるため、Alは脱酸のためだけに必要となり、この場合にはAl量は0.01〜0.06%の範囲が好適である。
【0027】
N:0.005 %以下
Nは、深絞り性に悪影響を及ぼすだけでなく、多量のNは多量のAlを必要とし表面性状を劣化させるので、その含有量は少ないほどよい。特にN量が 0.005%を超えるとその悪影響が顕著になるので、Nは 0.005%以下、好ましくは 0.003%以下とする必要がある。
【0028】
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕
Nbは、焼鈍前の固溶Cを減少させることによって加工性を向上させるので、少なくとも 0.5× (93/12)×C(%) を添加する必要がある。一方、焼付硬化性を得るためには必要量の固溶Cを鋼板中に存在させなければならない。そのためには、以下の(2) 式を満たす必要があり、この式を変形するとNb量の上限は (93/12)×〔C(%) −0.001 〕となる。
 (%) =C(%) − (12/93)×Nb(%) ≧ 0.001   −−− (2)
【0029】
Ti: (48/14)×N(%) 〜 (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕
+ (48/14)×N(%) + (48/32)×S(%)
Tiは、NさらにはSの析出固定のために添加するが、特にNの析出固定力がAlよりも強いために、加工性をより一層向上させる効果がある。この効果を得るためには、Tiの添加量は少なくともNの化学量論的等量程度とする必要があるので、添加する場合には (48/14)×N(%) 以上とした。一方、過剰に添加すると、Nbと同様に固溶Cの確保ができなくなる。焼付硬化性を得るためには必要量の固溶Cを鋼板中に存在させなければならず、そのためには、以下の(3) 式を満たす必要があり、この式を変形するとTi量の上限は (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕+ (48/14)×N(%) + (48/32)×S(%) となる。
Figure 2004043884
【0030】
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
B:0.0030%以下
Bは、耐二次加工脆性をより一層改善するために添加してもよい。しかしながら、0.0030%を超えて添加すると加工性とくにr値を劣化させるので、B量の上限は0.0030%とする。なお、耐二次加工脆性改善のためには、B量は0.0002%以上とすることが好ましい。より好ましくは0.0003〜0.0020%の範囲である。
【0031】
Cr:2.0 %以下、Cu:2.0 以下%、Ni:2.0 %以下およびMo:1.0 %以下のうちから選んだ1種または2種以上
Cr,Cu,NiおよびMoはいずれも、鋼板の強化に有効であり、強度に応じて必要量を添加するが、過剰に添加すると加工性を低下させるので、それぞれ上記の範囲で含有させてもよい。強度の向上効果を得るためには、好ましくはCr:0.03〜1.0 %、Ni:0.03〜1.0 %、Mo:0.03〜0.50%、Cu:0.03〜1.0 %の範囲である。また、これらの総量は2.0 %以下、より好ましくは 1.5%以下とすることが望ましい。
【0032】
以上、本発明の好適成分組成範囲について説明したが、本発明は、成分組成を上記の範囲に限定するだけでは不十分で、結晶粒径を所定の範囲に制御することも重要である。
平均結晶粒径d:2〜12μm
平均結晶粒径は、本発明において重要な因子である。すなわち、焼付け温度の低温化によりCの拡散距離が短くなること、耐常温時効性の観点から結晶粒界にCを多く存在させること、結晶粒内の転位と固溶Cの相互作用が焼付け硬化に寄与することを考慮すると、結晶粒を微細化させることが重要である。
ここに、鋼板の平均結晶粒径dが12μm を超えると、低温での焼付硬化量が不十分となり、一方2μm 未満では、延性およびr値が低下するため、加工性が低下する。従って、鋼板の平均結晶粒径dは2〜12μm の範囲に限定した。
【0033】
また、本発明では、次式で示す低温焼付硬化指数Aを適正範囲に制御することも重要である。
低温焼付硬化指数A= (12/93)×( Nb(%)/C(%) )×d−10×C (%) ≦10
この低温焼付硬化指数Aは、低温での焼付硬化能の指標として有効で、この指数Aが10超では、前掲図1に示したように十分満足いくほどの焼付硬化量(BH量)が得られない。
そこで、本発明では、上掲式で示される低温焼付硬化指数Aを10以下に制限したのである。
【0034】
次に、本発明の好適製造条件について、その主要要件の限定理由と共に説明する。
まず、熱間圧延については、とくに限定する必要がないが、加工性の向上を目的として以下の製造方法とすることが好ましい。
すなわち、スラブ加熱温度は1150〜1250℃の温度範囲が好ましい。熱延仕上温度は、加工性の観点からはAr変態点直上すなわちAr〜(Ar+20)℃程度とするのが好ましい。また、仕上圧延直後に急冷処理を施しても構わない。さらに、コイル巻取り温度は 600℃以上が好ましい。なお、省エネルギーの観点から、連続鋳造スラブを再加熱または連続鋳造後Ar変態点以下の温度に降温することなく、直ちにもしくは保温処理を施した後、粗圧延を行っても、何ら差し支えない。
【0035】
冷間圧延圧下率:60〜90%
冷間圧延における圧下率が、60%に満たないと十分な加工性が得らず、一方90%を超えても加工性に好ましい集合組織が十分に発達せず、加工性の劣化を招くので、圧下率は60〜90%、好ましくは75〜85%の範囲とすることが望ましい。
【0036】
焼鈍温度:最高加熱温度が 820〜Ac変態点の温度範囲
焼鈍工程は、本発明において重要な工程であり、{111}再結晶集合組織を発達させr値を高めると共に、焼付硬化性の付与に大きな役割を果たす。すなわち、この焼鈍の最高加熱温度が 820℃未満では、熱延時に析出したNb炭化物の分解が不十分となり、十分な焼付硬化性が得られない。一方、最高加熱温度がAc変態点を超えると、加熱時に多量のオーステナイトを形成し、冷却過程においてオーステナイトからフェライトヘの変態が生じ、再結晶集合組織がランダム化するため、低いr値しか得られない。さらに、結晶粒の粗大化により十分な低温焼付硬化性が得られない。
従って、焼鈍温度は、最高加熱温度が 820〜Ac変態点の温度範囲とするのが有利である。
【0037】
焼鈍後の冷却:冷却速度20℃/s
焼鈍後の冷却工程も、本発明において重要な工程であり、上記の焼鈍により分解したNb炭化物を再析出させないためには、少なく焼鈍後の冷却速度を20℃/s以上、好ましくは30℃/s以上とすることが好ましい。なお、上記の焼鈍に用いる設備については特に定める必要がないが、生産性やコストなどの面からは連続焼鈍ラインあるいは溶融亜鉛めっきラインが望ましい。
【0038】
500 〜150 ℃の温度範囲に60〜400 s保持
この工程が、本発明で最も重要な工程である。
すなわち、上記の温度範囲に適正時間保持することによって、粒界への固溶Cの拡散を促進し、粒界Cを増加させることで、耐室温時効性を向上させるという優れた効果を得ることができる。
より好ましくは 500〜400 ℃の温度範囲で 100〜300 秒の処理である。なお、上記の保持処理において FeCの析出温度域である 200〜400 ℃の範囲は極力回避することが有利である。
【0039】
調質圧延圧下率:0.3 〜1.5 %
上述した方法で製造した焼鈍−冷却後の冷延鋼板に調質圧延を行う。ここに、圧下率が 0.3%未満では降伏伸び防止効果が得られず、一方 1.5%を超えると伸びの低下など加工性の劣化を招くので、調質圧延における圧下率は 0.3〜1.5 %とするのが望ましい。好ましくは 0.6〜1.0 %の範囲である。
【0040】
かくして得られた、この冷延鋼板は、電気めっきラインに通板しても、その材料特性は変化しないので、焼鈍後に各種の電気めっさを施してもよい。さらに、化成処理性、溶接性、プレス成形性および耐食性などの改善のために、特殊な処理を施しても構わない。
【0041】
また、本発明の薄鋼板は、溶融亜鉛めっき鋼板の製造に適用しても材料特性は実質的に変化しないので、焼鈍後に溶融めっきおよび合金化溶融亜鉛めっさを施しても良い。この製造には、前述した溶融亜鉛めっきラインを利用するのが最も効率的である。さらに、この表面処理鋼板に、化成処理性、溶接性、プレス成形性および耐食性などの改善のために、特殊な処理を施しても構わない。
【0042】
【実施例】
表2に示す成分組成になる鋼スラブを、1200℃に加熱・均熱後、熱間粗圧延ついで熱間仕上圧延を行ったのち、630 ℃でコイルに巻き取った。ついで、得られた熱延板を、酸洗後、表3に示す冷延圧下率にて冷間圧延し、各板厚としたのち、同じく表3に示す条件で再結晶焼鈍を行った。その後、さらに表3に示す条件で、 400〜500 ℃の温度域での保持処理および調質圧延を施した。
かくして得られた薄鋼板の引張特性、BH量、平均結晶粒径、低温焼付硬化指数Aおよび耐時効性について調べた結果を表4に示す。
【0043】
ここに、引張特性はJIS 5 号引張試験片を使用して測定し、ランクフォード値(r値)は15%の引張予歪を与えたのち、3 点法にて測定した。r値は、L方向(圧延方向)、D方向(圧延方向に対し45°の方向)およびC方向(圧延方向に対し90°の方向)の平均値で表した。
また、 170℃−BHおよび 100℃−BH、平均結晶粒径、低温焼付硬化指数Aについては、前述した実験と同じ方法に従って測定、算出した。
さらに、耐時効性の良否の判断のため、40℃×20日間(常温6ヶ月に相当)の促進時効処理後、上述と同じ引張試験を行い、Y−Elを測定した。
【0044】
【表1】
Figure 2004043884
【0045】
【表2】
Figure 2004043884
【0046】
【表3】
Figure 2004043884
【0047】
【表4】
Figure 2004043884
【0048】
表4から明かなように、本発明に従い得られた発明例はいずれも、平均結晶粒径が5〜12μm 、低温焼付硬化指数Aが10以下で、しかも 100℃−BHで示される低温焼付硬化量が30 MPa以上でかつ常温6ヶ月相当時効後のY−Elが 0.6以下と良好であった。また、r値で代表される加工性にも優れていた。
これに対し、本発明の適正範囲を逸脱する比較例はいずれも、低温焼付硬化性が十分ではないか、耐時効性が十分ではなかった。
【0049】
【発明の効果】
かくして、本発明によれば、 100℃−BHが30 MPa以上、常温6ヶ月時効後のY−ELが 0.6%以下、r値が 1.6以上という、優れた低温焼付硬化性と耐時効性を有し、かつ良好な加工性を兼ね備える加工用薄鋼板を得ることができる。
従って、本発明によれば、自動車鋼板として、その軽量化および安全性の向上に大きく貢献する。
【図面の簡単な説明】
【図1】低温焼付硬化指数Aと焼付硬化量(BH量)との関係を示した図である。

Claims (4)

  1. 質量%で、
    C:0.0020〜0.010 %、
    Si:1.0 %以下、
    Mn:0.05〜1.5 %、
    P:0.05%以下、
    S:0.02%以下、
    N:0.005 %以下、
    Al:15×N(%) 〜0.10%および
    Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕
    を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

    A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C (%) −−− (1)
    但し、C (%) =C(%) − (12/93)×Nb(%)
  2. 質量%で、
    C:0.0020〜0.010 %、
    Si:1.0 %以下、
    Mn:0.05〜1.5 %、
    P:0.05%以下、
    S:0.02%以下、
    N:0.005 %以下、
    Al:0.01〜0.06%、
    Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕および
    Ti: (48/14)×N(%) 〜 (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕+ (48/14)×N(%) + (48/32)×S(%)
    を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

    A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C (%) −−− (1)
    但し、C (%) =C(%) − (12/93)×Nb(%) − (12/48)×〔Ti(%) − (48/14)×N(%) − (48/32)×S(%) 〕
  3. 請求項1または2において、鋼板がさらに、質量%で
    B:0.0030%以下
    を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
  4. 請求項1〜3のいずれかにおいて、鋼板がさらに、質量%で
    Cr:2.0 %以下、
    Cu:2.0 %以下、
    Ni:2.0 %以下および
    Mo:1.0 %以下
    のうちから選んだ1種または2種以上を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
JP2002202631A 2002-07-11 2002-07-11 低温焼付硬化性および耐時効性に優れる加工用薄鋼板 Expired - Fee Related JP4176403B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202631A JP4176403B2 (ja) 2002-07-11 2002-07-11 低温焼付硬化性および耐時効性に優れる加工用薄鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202631A JP4176403B2 (ja) 2002-07-11 2002-07-11 低温焼付硬化性および耐時効性に優れる加工用薄鋼板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006311792A Division JP4434198B2 (ja) 2006-11-17 2006-11-17 低温焼付硬化性および耐時効性に優れる加工用薄鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2004043884A true JP2004043884A (ja) 2004-02-12
JP4176403B2 JP4176403B2 (ja) 2008-11-05

Family

ID=31708765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202631A Expired - Fee Related JP4176403B2 (ja) 2002-07-11 2002-07-11 低温焼付硬化性および耐時効性に優れる加工用薄鋼板

Country Status (1)

Country Link
JP (1) JP4176403B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123366A1 (ja) * 2007-03-27 2008-10-16 Nippon Steel Corporation はがれの発生が無く表面性状及びバーリング性に優れる高強度熱延鋼板及びその製造方法
JP2009509047A (ja) * 2005-09-23 2009-03-05 ポスコ 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法
JP4834733B2 (ja) * 2005-09-23 2011-12-14 ポスコ 耐時効性に優れた高強度焼付硬化型冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法。
WO2013084477A1 (ja) * 2011-12-08 2013-06-13 Jfeスチール株式会社 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
WO2013084478A1 (ja) * 2011-12-08 2013-06-13 Jfeスチール株式会社 耐時効性と焼付き硬化性に優れた高強度冷延鋼板の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509047A (ja) * 2005-09-23 2009-03-05 ポスコ 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法
JP4834733B2 (ja) * 2005-09-23 2011-12-14 ポスコ 耐時効性に優れた高強度焼付硬化型冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法。
WO2008123366A1 (ja) * 2007-03-27 2008-10-16 Nippon Steel Corporation はがれの発生が無く表面性状及びバーリング性に優れる高強度熱延鋼板及びその製造方法
JP4874333B2 (ja) * 2007-03-27 2012-02-15 新日本製鐵株式会社 はがれの発生が無く表面性状及びバーリング性に優れる高強度熱延鋼板及びその製造方法
US8157933B2 (en) 2007-03-27 2012-04-17 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface properties and burring properties, and method for manufacturing the same
WO2013084477A1 (ja) * 2011-12-08 2013-06-13 Jfeスチール株式会社 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
WO2013084478A1 (ja) * 2011-12-08 2013-06-13 Jfeスチール株式会社 耐時効性と焼付き硬化性に優れた高強度冷延鋼板の製造方法
JP2013139625A (ja) * 2011-12-08 2013-07-18 Jfe Steel Corp 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP2013139624A (ja) * 2011-12-08 2013-07-18 Jfe Steel Corp 耐時効性と焼付き硬化性に優れた高強度冷延鋼板の製造方法
CN103975082A (zh) * 2011-12-08 2014-08-06 杰富意钢铁株式会社 耐时效性和烧结硬化性优良的高强度冷轧钢板的制造方法
CN103975082B (zh) * 2011-12-08 2015-12-02 杰富意钢铁株式会社 耐时效性和烧结硬化性优良的高强度冷轧钢板的制造方法

Also Published As

Publication number Publication date
JP4176403B2 (ja) 2008-11-05

Similar Documents

Publication Publication Date Title
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
US9580785B2 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
EP1498507B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excellent strain age hardenability and method of producing the same
JP6179461B2 (ja) 高強度鋼板の製造方法
JP7087078B2 (ja) 衝突特性及び成形性に優れた高強度鋼板及びその製造方法
KR101607041B1 (ko) 내시효성과 베이킹 경화성이 우수한 고강도 냉연 강판의 제조 방법
JP2005528519A5 (ja)
WO2012060294A1 (ja) 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
JP2013237923A (ja) 高強度鋼板およびその製造方法
JP2007197748A (ja) 深絞り用高強度複合組織型冷延鋼板の製造方法
JP6007571B2 (ja) 高強度冷延鋼板及び高強度亜鉛めっき鋼板
JP4434198B2 (ja) 低温焼付硬化性および耐時効性に優れる加工用薄鋼板の製造方法
JPH03277741A (ja) 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法
JP4176403B2 (ja) 低温焼付硬化性および耐時効性に優れる加工用薄鋼板
JP2003268491A (ja) 加工部材用高強度鋼板とその製造方法および耐磨耗性に優れた加工面を有する加工部材の製造方法、
WO2013084477A1 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP2023507801A (ja) 耐熱性と成形性に優れた冷延鋼板およびその製造方法
JP2005290485A (ja) 鋼板の歪時効処理方法および高強度構造部材の製造方法
JP2003064446A (ja) 歪時効硬化特性に優れるとともに室温時効劣化のない冷延鋼板および冷延めっき鋼板ならびにそれらの製造方法
JP2003268490A (ja) 焼付硬化性および耐時効性に優れる加工用薄鋼板とその製造方法
JP6658708B2 (ja) 低降伏比を有する鋼板の製造方法
JP4930393B2 (ja) 冷延鋼板の製造方法
JP2778429B2 (ja) 焼付硬化性を有する高強度鋼板の製造方法
JP2007177264A (ja) 高張力冷延鋼板、高張力電気めっき鋼板および高張力溶融めっき鋼板
JP4218598B2 (ja) めっき特性に優れる高張力合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees