JP2004042108A - Method and device for controlling shape in cold- rolling mill - Google Patents

Method and device for controlling shape in cold- rolling mill Download PDF

Info

Publication number
JP2004042108A
JP2004042108A JP2002204105A JP2002204105A JP2004042108A JP 2004042108 A JP2004042108 A JP 2004042108A JP 2002204105 A JP2002204105 A JP 2002204105A JP 2002204105 A JP2002204105 A JP 2002204105A JP 2004042108 A JP2004042108 A JP 2004042108A
Authority
JP
Japan
Prior art keywords
shape
air
rolling mill
rolled
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002204105A
Other languages
Japanese (ja)
Other versions
JP4128816B2 (en
Inventor
Yutaka Fukuchi
福地 裕
Toshihide Shinoda
篠田 敏秀
Naganori Hatanaka
畑中 長則
Satoru Hattori
服部 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002204105A priority Critical patent/JP4128816B2/en
Priority to TW092115534A priority patent/TWI279263B/en
Priority to KR1020030047039A priority patent/KR101016461B1/en
Priority to CNB031472850A priority patent/CN1228152C/en
Publication of JP2004042108A publication Critical patent/JP2004042108A/en
Application granted granted Critical
Publication of JP4128816B2 publication Critical patent/JP4128816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/32Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by cooling, heating or lubricating the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device of shape control in a cold-rolling mill by which defects in shape of local elongation and compound shape are suppressed and shape control is carried out with high accuracy. <P>SOLUTION: A plurality of air nozzles 95 are disposed along the width direction of a material 2 to be rolled on the outlet side of the cold-rolling mill 15 and air is jetted from the air nozzles 95 onto the material 2 to be rolled. The manipulated variable of the air jetted from a plurality of the air nozzles 95 is determined by using shape absolute value deviation and shape space deviation which are determined from the target shape and a detected shape with a shape controlling device 5. The air quantity jetted from a plurality of the air nozzles 95 is adjusted on the basis of the manipulated variable of the air with an air adjusting device 84. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷間圧延機で圧延される被圧延材の形状を制御する形状制御方法および装置に関する。
【0002】
【従来の技術】
被圧延材を圧延する圧延機においては製品の高品質化と生産性向上の観点から形状制御の高精度化が要求されている。圧延機の形状制御は圧延機出側における被圧延材の平坦度(板形状)を良くすることで、圧延機出側の検出形状と目標形状との形状偏差に応じてアクチュエータの操作量を演算により求めアクチュエータを調整する。
【0003】
6段式の冷間圧延機においては、アクチュエータとしてワークロールベンダ(WRベンダ)、中間ロールベンダ(IMRベンダ)、圧下レベリング、スポットクーリングがある。WRベンダ,IMRベンダは、夫々のロールを撓ませる機能であり、ロールの撓みを利用して被圧延材の幅方向での板をつぶす力の分布を変えて板幅全体の形状を制御する。
【0004】
また、圧下レベリングは、圧延機の作業側,駆動側に夫々設置される圧下装置による圧下位置(ロールギャップ)の差であり、これを操作し被圧延材の幅方向での板をつぶす力の分布を変えることにより板幅全体の形状を制御する。スポットクーリングは、圧延機のワークロール(作業ロール)に対して局所的に真水または潤滑油などの冷却媒体を噴射して作業ロールのサーマルクラウンを変えて板幅方向のつぶす力の分布を変えることにより、局部伸びや複合形状を制御する。
【0005】
熱間圧延機においては、例えば、特開2001−129608号公報に記載されているように、板幅方向での局部的な過冷却発生位置を測定し、局部冷却発生位置に対応する部分のロール表面粗さを小さく研削により調整した作業ロールを用いて熱間圧延した板を冷却して板幅方向の温度分布を制御することが知られている。
【0006】
また、特開2001−73041号公報に記載されているように、板幅方向の温度偏差に伴う歪みの発生を防止するために、歪みの発生しないセンタ部冷却温度と冷却幅を求めてセンタ部領域に冷却水を注入すると共にエッジ側領域に空気を吹付け、板幅方向の温度分布がエッジ側においてセンタ部付近よりも低温で且つエッジ部とセンタ部の間に最高温部が位置するように温度制御を行うことが知られている。
【0007】
このように、熱間圧延においては高温であるため被圧延材の温度分布が材料の硬度分布および板形状に大きな影響を及ぼすため、積極的に被圧延材の温度分布を制御するようにしている。
【0008】
【発明が解決しようとする課題】
従来技術は、冷間圧延は熱間圧延に比較して低温であることから被圧延材の温度が形状への影響は少ないと考えられており、形状制御をワークロールベンダ、中間ロールベンダ、圧下レベリングで行っている。しかしながら、板幅全体の形状を制御することしかできず、局部伸びや複合形状を制御することが行えず高精度の形状制御ができないという問題点を有する。
本発明の目的は、局部伸びや複合形状の形状不良を抑制し高精度の形状制御を行える冷間圧延機の形状制御方法及び装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の特徴とするところは、冷間圧延機出側に被圧延材の板幅方向に沿って複数のエアーノズルを配設してエアーノズルから被圧延材に空気を噴射するようにし、目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いて複数のエアーノズルから噴射する空気操作量を求め、この空気操作量に基づいて複数のエアーノズルから噴射する空気量を調節するようにしたことにある。
【0010】
ここで、本明細書においては、被圧延材の板幅方向の形状を多数のゾーンに区分して検出した同一区分の形状目標値と形状検出値の偏差を形状絶対値偏差と称し、また、ある区分の形状絶対値偏差と他の区分の形状絶対値偏差の偏差を形状空間偏差(または形状位置偏差)と称する。他の区分は、ある区分の両隣りの区分とするのが望ましい。
【0011】
本発明は目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いて複数のエアーノズルから被圧延材に噴射する空気操作量を求め、この空気操作量に基づいて複数のエアーノズルから噴射する空気量を調節しているので局部伸びや複合形状の形状不良を抑制し被圧延材の形状制御を高精度で行うことができる。
【0012】
【発明の実施の形態】
図1に本発明の一実施例を示し、図2は本発明の要部の構成を示す。図1は5台の冷間圧延機を連続に配置した5スタンドタンデム圧延機の例を示している。
【0013】
図1、図2において、第1〜第5スタンドの5台の冷間圧延機11〜15が連続して配置され、被圧延材2は矢印で示す圧延方向に移送され第1〜第5スタンド11〜15で順次圧延される。圧延機11〜15は6段式で、対向する1対のワークロール17と、ワークロール17を挟む1対の中間ロール(インターミヂィエートロール)18および中間ロール18を挟む1対のバックアップロール19から構成される。
【0014】
第5スタンド(最終スタンド)15の出側に被圧延材2の形状を検出する形状検出ロール3が設置されている。形状検出ロール3は図2に示すように、被圧延材2の板幅方向を多数のゾーン1〜nに区分して各ゾーン1〜n毎の形状を検出する。また、圧延機15の出側で形状検出ロール3の設置位置より圧延機15側に被圧延材2の板幅方向(ロール軸心方向)に沿って複数個(n個)のエアーノズル95が配設されている。エアーノズル95は形状検出ロール3の形状検出ゾーン1〜n毎に配設され、対応するゾーンの被圧延材2に空気を噴射する。
【0015】
形状検出器4は形状検出ロール3の出力信号を入力して形状検出信号に変換し形状制御装置5と形状表示装置10に加える。形状制御装置5は形状設定装置6の形状目標値と形状検出器4の形状検出値(形状実績値)を入力して板幅方向の形状制御操作量を演算し、ベンダ制御装置81、圧下位置制御装置82、スポットクーリング制御装置83および空気調整装置84に与える。
【0016】
ベンダ制御装置81はワークロール17のワークロールベンダと中間ロール18の中間ロールベンダを制御し、圧下位置制御装置82はバックアップロール19の圧下位置を操作する。また、スポットクーリング制御装置83はノズル94からワークロール17に対して局所的に水または潤滑油などの冷却媒体を噴射してワークロール17のサーマルクラウンを変えて板幅方向の潰す力の分布を変える。
【0017】
空気調整装置84は図2に示すように全体の流量を調整する空気バルブ85とn個のエアーノズル95毎に流量を調節するn個の空気バルブ86を具備し、最終スタンド15出側に設けられたn個のエアーノズル95から空気噴射量を調節し板幅方向の流量分布を調整する。空気調整装置84は空気操作装置7によって手動でも操作できる。操作員は形状表示装置10に表示されている形状実績(形状検出値)を見ながら空気操作装置7によって空気調整装置84を操作する。
【0018】
次に形状制御の動作を説明する。
ベンダ制御装置81はワークロール17のワークロールベンダ(WRベンダ)と中間ロール18の中間ロールベンダ(IMRベンダ)を制御し、圧下位置制御装置82はバックアップロール19の圧下位置を操作する。また、スポットクーリング制御装置83はノズル94からワークロール17に対して局所的に水または潤滑油などの冷却媒体を噴射してワークロール17のサーマルクラウンを変えて板幅方向の潰す力の分布を変える。このようなWRベンダ,IMRベンダ,レベリング,スポットクーラントは従来技術による制御であって良く知られているので詳細説明を省略する。
【0019】
さて、本発明は最終スタンド15出側のエアーノズル95による空気吹付けをを行い形状制御している。複数のエアーノズル95からの空気噴射は次のようにして制御される。
【0020】
(1)空気吹付け全体の流量を変更する。
空気を強く噴射した被圧延材2の部分(ゾーン)では、板が伸びる傾向があるため空気を強力に噴射すると板幅方向の空気流量分布が不均一となり、これにより板形状が局所的に伸びる場合がある。
形状検出器4からの形状検出値を表示する形状実績表示装置10により形状実績をモニターしながら板幅方向の空気流量分布が均一となるように空気バルブ85で空気全体の流量を調節することにより板形状を制御する。
【0021】
(2)空気吹付けの板幅方向の流量分布を変更する。
空気を強く噴射した部分は板形状が伸びる傾向があり,また、空気を弱く噴射した部分は伸びない傾向があることが実験的に分かっている。この性質を利用して形状を制御する。
【0022】
形状検出器4からの形状実績値においては、局所的な伸びが発生した場合、形状制御装置5はこの局所的な伸びを認識し、板幅方向に対する局部伸び発生個所を検出する。形状制御装置5は、空気噴射制御装置84を操作して局所的な伸びが発生している部分の空気流量を減少させる。これにより局所的な伸びが減少し、安定した板形状を得ることができる。
【0023】
スポットクーリングは伸びを示している部分のワークロール17を冷却することにより形状制御を行っているが、本発明は伸びていない(張っている)部分の被圧延材2を冷却することにより板形状を制御することになる。
【0024】
形状制御装置5は次のようにして空気操作量を演算により求める。
形状検出器4からの形状検出値から形状設定装置6により与えられる形状目標値を減算し形状偏差Δεiを求める。ここで、iは形状検出器4におけるゾーン(チャンネル)を表している。形状偏差Δεiを形状パターン認識し、WRベンダ,IMRベンダ,圧下レベリングにおいて制御する成分を演算する。
【0025】
形状偏差Δεiからベンダとレベリングの演算結果を減算し、ベンダおよび圧下レベリングで除去できない局所的な形状偏差を抽出する。局所的な形状偏差をファジィ推論演算して空気操作量を演算する。
【0026】
図3に形状制御装置5の一例の詳細構成を示す。
形状検出器4からの形状実績を、前処理機構53により隣り合ったセクション(ゾーン)との差(X要素)と、該当セクションの目標形状からの偏差(P要素)に分解してそれぞれ演算を行う。
【0027】
i−1,i,i+1番の形状偏差Δεi−1、Δεi、Δεi+1は形状空間偏差演算部51の前処理機構53に入力される。前処理機構53は形状偏差Δεi−1とΔεiの偏差と、形状偏差ΔεiとΔεi+1の偏差を求めてクラス分け機構54A、54Bに加える。クラス分け機構54A、54Bに加えられる偏差が形状空間偏差となる。
【0028】
クラス分け機構54A、54Bは確信度を出力する。両クラス分け機構54A、54Bで求めた確信度はそれぞれ推論機構55A、55Bに入力される。推論機構55Aは推論ルールベース56を参照して形状偏差Δεi−1とΔεiの偏差から制御信号を決定し評価部57に加える。また、推論機構55Bは推論ルールベース56を参照して形状偏差ΔεiとΔεi+1の偏差から制御信号を決定し評価部57に加える。
【0029】
一方、P要素の形状絶対値偏差演算部52のクラス分け機構54Cには形状絶対値偏差である形状偏差Δεiが入力され確信度が求められる。推論機構55Cは推論ルールベース56を参照して形状絶対値偏差Δεiから制御信号を決定し評価部57に加える。評価部57でファジィ推論演算の重心を求めるなどの評価をされた制御信号は空気量演算部58に入力され空気操作量が求められる。
【0030】
図4にクラス分け機構54の一例詳細図を示す。
クラス分け機構54は入力信号I(形状偏差信号)を複数のクラスに分けるための分類要素61、62、63を有する。分類要素61は横軸に入力信号Iの大きさ、縦軸に出力である確信度Sの大きさを示す分類関数を持っている。分類要素61の分類関数は実践で示し、他の分類要素の分類関数を破線で示している。
【0031】
分類要素61は入力信号Iの値がaならば出力である確信度Sの値はbであることを示す。同様に、分類要素62は入力信号Iの値がaならば出力である確信度Mの値はcであり、また、分類要素63は入力信号Iの値がaならば出力値は零であることを示す。
【0032】
このように目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いて複数のエアーノズルから被圧延材に噴射する空気操作量を求め、この空気操作量に基づいて複数のエアーノズルから噴射する空気量を調節しているので局部伸びや複合形状の形状不良を抑制し被圧延材の形状制御を高精度で行うことができる。
【0033】
このような効果を奏し得る理由は明確に解析されていないが、概略次のようなことであると推認できる。
【0034】
圧延温度は一般に室温よりは高温で行われること、また圧延機出側にはある程度の張力がかかっていることから次のような現象が起きていると推測できる。圧延機スタンド15出側にて、被圧延材2を局所的に急冷却すると、冷却された部分が収縮してその部分の張力分布が増加する。
【0035】
冷却された部分の張力が周囲より高いため、その部分が特に圧延され、伸びの形状となる。または、冷却された部分の張力分布が高いため、張力により伸ばされ、その後板がコイルとして巻き取られるまでに、板全体の温度が下がり、結果として伸び形状となる。
【0036】
局部伸びが発生している部分の冷却を弱めることは、その部分の張力分布を減少させ、これに伴い圧延機直下での圧下量が局所的に減少し、形状が張る方向に寄与することになる。
【0037】
図5は空気噴射と形状実績の関係を示している。図5は、形状検出器4による形状実績であり、空気流量調整前(流量最大)および調整後(流量1/2)における形状実績をプロットしたものである。空気流量を増加させることにより、空気噴射ノズル位置における圧延材の板形状が伸ばされることが分かる。
【0038】
上述の被圧延材の性質を利用すれば、板形状が伸びている部分の空気流量を減少させ、張っている部分の空気流量を増加させることにより、板形状を改善させることが可能である。
【0039】
以上のように、本発明は目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いて複数のエアーノズルから被圧延材に噴射する空気操作量を求め、この空気操作量に基づいて複数のエアーノズルから噴射する空気量を調節しているので局部伸びや複合形状の形状不良を抑制し被圧延材の形状制御を高精度で行うことができる。
【0040】
また、本発明によればスポットクーリングを不要にすることができるので、圧延後の材料の錆の問題やクーラント濃度低下の問題を解消することができる。
【0041】
なお、上述の実施例は空気操作量をファジィ推論演算によって求めるようにしているが、他の演算によって求めても同様に行えることは明らかなことである。
【0042】
【発明の効果】
本発明によれば、板幅方向の局所的な板形状を容易に制御することができるので、板幅方向で安定した形状の製品を圧延でき、製品形状精度の向上が可能となる。
【図面の簡単な説明】
【図1】本発明一実施例を示す構成図である。
【図2】本発明一実施例の要部構成図である。
【図3】本発明の形状制御部の一例構成図である。
【図4】本発明のクラス分け機構の一例を示す構成図である。
【図5】本発明の効果を説明するための特性図である。
【符号の説明】
2…圧延材、3…形状検出ロール、4…形状検出器、5…形状制御装置、6…形状設定装置、11〜15…圧延スタンド、81…ベンダ制御装置、82…圧下位置制御装置、84…空気調整装置、95…エアーノズル。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shape control method and apparatus for controlling a shape of a material to be rolled by a cold rolling mill.
[0002]
[Prior art]
2. Description of the Related Art In a rolling mill for rolling a material to be rolled, high precision shape control is required from the viewpoint of improving product quality and improving productivity. The rolling mill shape control improves the flatness (plate shape) of the material to be rolled on the exit side of the rolling mill, and calculates the operation amount of the actuator according to the shape deviation between the detected shape on the exit side of the rolling mill and the target shape. And adjust the actuator.
[0003]
In a six-stage cold rolling mill, there are work roll benders (WR benders), intermediate roll benders (IMR benders), draft leveling, and spot cooling as actuators. The WR bender and the IMR bender have a function of bending each roll, and control the shape of the entire width of the rolled material by changing the distribution of a force for crushing the plate in the width direction of the material to be rolled by using the bending of the roll.
[0004]
The rolling leveling is the difference between the rolling position (roll gap) by the rolling devices installed on the working side and the driving side of the rolling mill, and the difference between the rolling position and the force for crushing the plate in the width direction of the material to be rolled. By changing the distribution, the shape of the entire sheet width is controlled. In spot cooling, a cooling medium such as fresh water or lubricating oil is locally sprayed onto the work roll (work roll) of a rolling mill to change the thermal crown of the work roll and change the distribution of the crushing force in the sheet width direction. Controls the local elongation and the composite shape.
[0005]
In a hot rolling mill, for example, as described in JP-A-2001-129608, a local supercooling occurrence position in the sheet width direction is measured, and a roll corresponding to the local cooling occurrence position is rolled. It is known to control a temperature distribution in a width direction of a sheet by cooling a hot-rolled sheet using a work roll having a small surface roughness and adjusted by grinding.
[0006]
Further, as described in Japanese Patent Application Laid-Open No. 2001-73041, in order to prevent the occurrence of distortion due to the temperature deviation in the plate width direction, the center part cooling temperature and the cooling width where distortion does not occur are determined. Cooling water is injected into the area and air is blown onto the edge side area so that the temperature distribution in the plate width direction is lower on the edge side than near the center and the hottest part is located between the edge and the center. It is known to perform temperature control.
[0007]
As described above, in hot rolling, since the temperature is high, the temperature distribution of the material to be rolled has a large effect on the hardness distribution and the plate shape of the material, and thus the temperature distribution of the material to be rolled is actively controlled. .
[0008]
[Problems to be solved by the invention]
In the prior art, it is considered that the temperature of the material to be rolled has little effect on the shape because the cold rolling is at a lower temperature than the hot rolling, and the shape control is performed by a work roll bender, an intermediate roll bender, and a rolling reduction. Going by leveling. However, there is a problem that only the shape of the entire plate width can be controlled, and it is not possible to control the local elongation and the composite shape, and it is impossible to control the shape with high precision.
An object of the present invention is to provide a method and an apparatus for controlling a shape of a cold rolling mill capable of suppressing local elongation and shape defects of a composite shape and performing high-precision shape control.
[0009]
[Means for Solving the Problems]
The feature of the present invention is that a plurality of air nozzles are arranged along the sheet width direction of the material to be rolled on the cold rolling mill exit side so that air is injected from the air nozzle to the material to be rolled, Using the shape absolute value deviation and the shape space deviation obtained from the shape and the detected shape, the amount of air operation ejected from the plurality of air nozzles is obtained, and the amount of air ejected from the plurality of air nozzles is adjusted based on the amount of air operation. That's what I did.
[0010]
Here, in this specification, the deviation between the shape target value and the shape detection value of the same section detected by dividing the shape of the material to be rolled in the sheet width direction into a number of zones is referred to as a shape absolute value deviation, The deviation between the shape absolute value deviation of a certain section and the shape absolute value deviation of another section is called a shape space deviation (or a shape position deviation). It is desirable that the other section is a section on both sides of a certain section.
[0011]
The present invention uses a shape absolute value deviation and a shape space deviation obtained from a target shape and a detected shape to obtain an air operation amount to be injected from a plurality of air nozzles to a material to be rolled, and a plurality of air nozzles based on the air operation amount. Since the amount of air injected from the nozzle is adjusted, it is possible to suppress local elongation and poor shape of the composite shape, and to control the shape of the material to be rolled with high accuracy.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a configuration of a main part of the present invention. FIG. 1 shows an example of a five-stand tandem rolling mill in which five cold rolling mills are continuously arranged.
[0013]
1 and 2, five cold rolling mills 11 to 15 of a first to a fifth stand are continuously arranged, and a material 2 to be rolled is transported in a rolling direction indicated by an arrow to a first to a fifth stand. Rolling is performed sequentially at 11 to 15. The rolling mills 11 to 15 are of a six-stage type, and have a pair of work rolls 17 facing each other, a pair of intermediate rolls (intermediate rolls) 18 sandwiching the work rolls 17 and a pair of backup rolls sandwiching the intermediate rolls 18. 19 is comprised.
[0014]
On the exit side of the fifth stand (final stand) 15, a shape detection roll 3 for detecting the shape of the material 2 to be rolled is installed. As shown in FIG. 2, the shape detecting roll 3 divides the width direction of the material 2 to be rolled into a number of zones 1 to n and detects the shape of each of the zones 1 to n. A plurality (n) of air nozzles 95 are provided along the width direction (roll axis direction) of the material 2 to be rolled toward the rolling mill 15 from the installation position of the shape detecting roll 3 on the exit side of the rolling mill 15. It is arranged. The air nozzle 95 is provided for each of the shape detection zones 1 to n of the shape detection roll 3 and injects air to the material 2 to be rolled in the corresponding zone.
[0015]
The shape detector 4 receives the output signal of the shape detection roll 3, converts the output signal into a shape detection signal, and applies the signal to the shape control device 5 and the shape display device 10. The shape control device 5 inputs the shape target value of the shape setting device 6 and the shape detection value (shape actual value) of the shape detector 4 and calculates the shape control operation amount in the plate width direction. The control device 82, the spot cooling control device 83, and the air adjusting device 84 are provided.
[0016]
The vendor control device 81 controls the work roll bender of the work roll 17 and the intermediate roll bender of the intermediate roll 18, and the rolling position control device 82 operates the rolling position of the backup roll 19. In addition, the spot cooling control device 83 locally sprays a cooling medium such as water or lubricating oil from the nozzle 94 onto the work roll 17 to change the thermal crown of the work roll 17 and to reduce the distribution of the crushing force in the plate width direction. Change.
[0017]
The air adjusting device 84 includes an air valve 85 for adjusting the overall flow rate and n air valves 86 for adjusting the flow rate for each of the n air nozzles 95 as shown in FIG. The amount of air injected from the n air nozzles 95 is adjusted to adjust the flow rate distribution in the plate width direction. The air conditioner 84 can also be operated manually by the air operating device 7. The operator operates the air adjustment device 84 with the air operation device 7 while watching the shape results (shape detection values) displayed on the shape display device 10.
[0018]
Next, the operation of shape control will be described.
The vendor control device 81 controls a work roll bender (WR bender) of the work roll 17 and an intermediate roll bender (IMR bender) of the intermediate roll 18, and the rolling position control device 82 operates the rolling position of the backup roll 19. In addition, the spot cooling control device 83 locally sprays a cooling medium such as water or lubricating oil from the nozzle 94 onto the work roll 17 to change the thermal crown of the work roll 17 and to reduce the distribution of the crushing force in the plate width direction. Change. Such a WR vendor, an IMR vendor, a leveling, and a spot coolant are controls according to the related art and are well known, and thus detailed description thereof will be omitted.
[0019]
In the present invention, the shape is controlled by blowing air with the air nozzle 95 on the exit side of the final stand 15. Air injection from the plurality of air nozzles 95 is controlled as follows.
[0020]
(1) Change the flow rate of the entire air blast.
In the zone (zone) of the material 2 to which the air is strongly jetted, the sheet tends to be stretched. Therefore, if the air is strongly jetted, the air flow distribution in the width direction of the sheet becomes non-uniform, whereby the sheet shape is locally elongated. There are cases.
By monitoring the shape results by the shape results display device 10 which displays the shape detection values from the shape detector 4, the air valve 85 adjusts the flow rate of the entire air so that the air flow distribution in the plate width direction becomes uniform while monitoring the shape results. Control the plate shape.
[0021]
(2) Change the flow distribution of the air blowing in the plate width direction.
It has been experimentally found that the portion where the air is strongly jetted tends to have an elongated plate shape, and the portion where the air is jetted weakly has a tendency not to stretch. The shape is controlled using this property.
[0022]
In the actual shape value from the shape detector 4, when a local elongation occurs, the shape control device 5 recognizes the local elongation and detects a local elongation occurrence position in the plate width direction. The shape control device 5 operates the air injection control device 84 to reduce the air flow rate in the portion where local elongation occurs. Thereby, local elongation is reduced, and a stable plate shape can be obtained.
[0023]
In the spot cooling, the shape control is performed by cooling the work roll 17 in the portion showing the elongation. However, in the present invention, the sheet shape is controlled by cooling the material 2 to be rolled in the non-elongated (stretched) portion. Will be controlled.
[0024]
The shape control device 5 calculates the air operation amount by calculation as follows.
The shape deviation value Δεi is obtained by subtracting the shape target value provided by the shape setting device 6 from the shape detection value from the shape detector 4. Here, i represents a zone (channel) in the shape detector 4. The shape deviation Δεi is recognized as a shape pattern, and the components to be controlled in the WR vendor, the IMR vendor, and the rolling leveling are calculated.
[0025]
The calculation result of the bender and the leveling is subtracted from the shape deviation Δεi, and a local shape deviation that cannot be removed by the bender and the reduction leveling is extracted. A local shape deviation is calculated by fuzzy inference to calculate an air operation amount.
[0026]
FIG. 3 shows a detailed configuration of an example of the shape control device 5.
The shape results from the shape detector 4 are decomposed by the pre-processing mechanism 53 into a difference (X element) between adjacent sections (zones) and a deviation (P element) from the target shape of the section, and each operation is performed. Do.
[0027]
The i−1, i, i + 1-th shape deviations Δεi−1, Δεi, Δεi + 1 are input to the pre-processing mechanism 53 of the shape space deviation calculation unit 51. The pre-processing mechanism 53 obtains the deviation between the shape deviations Δεi−1 and Δεi and the deviation between the shape deviations Δεi and Δεi + 1 and adds the deviation to the classifying mechanisms 54A and 54B. The deviation applied to the classifying mechanisms 54A and 54B is the shape space deviation.
[0028]
The classification mechanisms 54A and 54B output a certainty factor. The certainty factors obtained by the two classification mechanisms 54A and 54B are input to the inference mechanisms 55A and 55B, respectively. The inference mechanism 55A determines a control signal from the deviation between the shape deviations Δεi−1 and Δεi with reference to the inference rule base 56 and adds the control signal to the evaluation unit 57. The inference mechanism 55B determines a control signal from the deviation between the shape deviations Δεi and Δεi + 1 with reference to the inference rule base 56, and adds the control signal to the evaluation unit 57.
[0029]
On the other hand, the shape deviation Δεi, which is the shape absolute value deviation, is input to the classification mechanism 54C of the P element shape absolute value deviation calculation unit 52, and the certainty factor is obtained. The inference mechanism 55C refers to the inference rule base 56, determines a control signal from the shape absolute value deviation Δεi, and adds the control signal to the evaluation unit 57. The control signal evaluated by the evaluator 57, such as finding the center of gravity of the fuzzy inference operation, is input to the air amount calculator 58, and the air operation amount is obtained.
[0030]
FIG. 4 shows a detailed diagram of an example of the classification mechanism 54.
The classification mechanism 54 has classification elements 61, 62, and 63 for classifying the input signal I (shape deviation signal) into a plurality of classes. The classification element 61 has a classification function indicating the magnitude of the input signal I on the horizontal axis and the magnitude of the certainty factor S as the output on the vertical axis. The classification function of the classification element 61 is shown by practice, and the classification functions of other classification elements are shown by broken lines.
[0031]
The classification element 61 indicates that if the value of the input signal I is a, the value of the certainty factor S, which is the output, is b. Similarly, if the value of the input signal I is a, the value of the certainty factor M is c, and if the value of the input signal I is a, the output value of the classification element 63 is zero. It indicates that.
[0032]
In this way, using the shape absolute value deviation and the shape space deviation obtained from the target shape and the detected shape, the air operation amount injected from the plurality of air nozzles to the material to be rolled is obtained. Since the amount of air injected from the nozzle is adjusted, it is possible to suppress local elongation and poor shape of the composite shape, and to control the shape of the material to be rolled with high accuracy.
[0033]
The reason why such an effect can be obtained has not been clearly analyzed, but it can be inferred that the following is roughly as follows.
[0034]
Since the rolling temperature is generally higher than room temperature and a certain amount of tension is applied to the exit side of the rolling mill, the following phenomena can be inferred. When the rolled material 2 is rapidly cooled locally at the exit side of the rolling mill stand 15, the cooled portion contracts and the tension distribution in the portion increases.
[0035]
Since the tension of the cooled part is higher than the surroundings, that part is particularly rolled and takes the form of elongation. Alternatively, since the tension distribution in the cooled portion is high, the temperature of the entire plate is reduced by tension and then before the plate is wound as a coil, resulting in an elongated shape.
[0036]
Decreasing the cooling of the part where local elongation occurs reduces the tension distribution in that part, and accordingly the amount of reduction directly under the rolling mill decreases locally, contributing to the direction in which the shape stretches Become.
[0037]
FIG. 5 shows the relationship between the air injection and the actual shape. FIG. 5 shows the actual shape obtained by the shape detector 4, in which the actual shape before the air flow rate adjustment (maximum flow rate) and after the adjustment (flow rate 1 /) are plotted. It can be seen that the shape of the rolled material at the position of the air injection nozzle is elongated by increasing the air flow rate.
[0038]
If the above-described properties of the material to be rolled are utilized, the plate shape can be improved by reducing the air flow rate at the portion where the plate shape is extended and increasing the air flow rate at the stretched portion.
[0039]
As described above, the present invention obtains the air operation amount to be injected from a plurality of air nozzles to the material to be rolled using the shape absolute value deviation and the shape space deviation obtained from the target shape and the detected shape, and based on this air operation amount. Since the amount of air injected from the plurality of air nozzles is adjusted, local elongation and a defective shape of the composite shape can be suppressed, and the shape of the material to be rolled can be controlled with high accuracy.
[0040]
Further, according to the present invention, since spot cooling can be made unnecessary, the problem of rust of the material after rolling and the problem of a decrease in the coolant concentration can be solved.
[0041]
In the above-described embodiment, the air operation amount is obtained by fuzzy inference calculation. However, it is obvious that the same can be obtained by obtaining other operation amounts.
[0042]
【The invention's effect】
According to the present invention, since a local plate shape in the plate width direction can be easily controlled, a product having a stable shape in the plate width direction can be rolled, and the product shape accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of the present invention.
FIG. 2 is a configuration diagram of a main part of one embodiment of the present invention.
FIG. 3 is a diagram illustrating an example of a configuration of a shape control unit according to the present invention.
FIG. 4 is a configuration diagram showing an example of a classification mechanism of the present invention.
FIG. 5 is a characteristic diagram for explaining the effect of the present invention.
[Explanation of symbols]
2 ... rolled material, 3 ... shape detection roll, 4 ... shape detector, 5 ... shape control device, 6 ... shape setting device, 11 to 15 ... rolling stand, 81 ... bender control device, 82 ... rolling position control device, 84 ... air conditioner, 95 ... air nozzle.

Claims (8)

冷間圧延機出側に配置された形状検出手段により被圧延材の板幅方向の形状を多数のゾーンに区分して検出し前記被圧延材の形状を制御する冷間圧延機において、冷間圧延機出側に前記被圧延材の板幅方向に沿って複数のエアーノズルを配設して前記エアーノズルから前記被圧延材に空気を噴射するようにし、目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いて前記複数のエアーノズルから噴射する空気操作量を求め、この空気操作量に基づいて前記複数のエアーノズルから噴射する空気量を調節するようにしたことを特徴とする冷間圧延機の形状制御方法。In a cold rolling mill which controls the shape of the material to be rolled by controlling the shape of the material to be rolled by dividing the shape in the sheet width direction into a number of zones by shape detecting means arranged on the exit side of the cold rolling mill, A plurality of air nozzles are arranged on the rolling mill exit side along the sheet width direction of the material to be rolled so that air is injected from the air nozzle to the material to be rolled, and the shape obtained from the target shape and the detected shape The amount of air manipulated by the plurality of air nozzles is determined using an absolute value deviation and a shape space deviation, and the amount of air manipulated by the plurality of air nozzles is adjusted based on the amount of air manipulated. The method for controlling the shape of a cold rolling mill. 冷間圧延機出側に配置された形状検出手段により被圧延材の板幅方向の形状を多数のゾーンに区分して検出し前記被圧延材の形状を制御する冷間圧延機において、冷間圧延機出側に前記被圧延材の板幅方向に沿って複数のエアーノズルを配設して前記エアーノズルから前記被圧延材に空気を噴射するようにし、目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いてファジイ推論演算を行い前記複数のエアーノズルから噴射する空気操作量を求め、この空気操作量に基づいて前記複数のエアーノズル毎に噴射する空気量を調節するようにしたことを特徴とする冷間圧延機の形状制御方法。In a cold rolling mill which controls the shape of the material to be rolled by controlling the shape of the material to be rolled by dividing the shape in the sheet width direction into a number of zones by shape detecting means arranged on the exit side of the cold rolling mill, A plurality of air nozzles are arranged on the rolling mill exit side along the sheet width direction of the material to be rolled so that air is injected from the air nozzle to the material to be rolled, and the shape obtained from the target shape and the detected shape A fuzzy inference operation is performed using the absolute value deviation and the shape space deviation to determine the amount of air operation to be injected from the plurality of air nozzles, and the amount of air to be injected for each of the plurality of air nozzles is adjusted based on the amount of air operation. A method for controlling the shape of a cold rolling mill, characterized in that: 冷間圧延機出側に配置された形状検出手段により被圧延材の板幅方向の形状を多数のゾーンに区分して検出し前記被圧延材の形状を制御する冷間圧延機において、冷間圧延機出側に前記被圧延材の板幅方向に沿って複数のエアーノズルを配設して前記エアーノズルから前記被圧延材に空気を噴射するようにし、目標形状と検出形状から求めた形状偏差を用いて前記複数のエアーノズルから噴射する空気操作量を求め、この空気操作量に基づいて前記複数のエアーノズルから噴射する空気量を調節するようにしたことを特徴とする冷間圧延機の形状制御方法。In a cold rolling mill which controls the shape of the material to be rolled by controlling the shape of the material to be rolled by dividing the shape in the sheet width direction into a number of zones by shape detecting means arranged on the exit side of the cold rolling mill, A plurality of air nozzles are arranged on the rolling mill exit side along the sheet width direction of the material to be rolled so that air is injected from the air nozzle to the material to be rolled, and the shape obtained from the target shape and the detected shape A cold rolling mill characterized in that an air operation amount injected from the plurality of air nozzles is obtained using the deviation, and an air amount injected from the plurality of air nozzles is adjusted based on the air operation amount. Shape control method. 請求項1〜3にいずれか1項において、前記冷間圧延機はワークロールと中間ロールを備えた多段圧延機であって、ワークロールベンダと中間ロールベンダのそれぞれを制御されるものであることを特徴とする冷間圧延機の形状制御方法。The cold rolling mill according to any one of claims 1 to 3, wherein the cold rolling mill is a multi-high rolling mill including a work roll and an intermediate roll, wherein each of the work roll bender and the intermediate roll bender is controlled. A method for controlling a shape of a cold rolling mill. 被圧延材を圧延する冷間圧延機と、前記冷間圧延機の出側に配置され、前記被圧延材の板幅方向の形状を多数のゾーンに区分して検出する形状検出手段と、前記冷間圧延機出側に前記被圧延材の板幅方向に沿って配設され、前記被圧延材に空気を噴射する複数のエアーノズルと、目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いて前記複数のエアーノズルから噴射する空気操作量を求める形状制御手段と、前記空気操作量を入力して前記複数のエアーノズルから噴射する空気量を調節する空気調整手段とを具備することを特徴とする冷間圧延機の形状制御装置。A cold rolling mill for rolling the material to be rolled, and a shape detecting means arranged on the exit side of the cold rolling mill, for detecting the shape of the material to be rolled in the width direction of the plate by dividing the shape into a number of zones, A plurality of air nozzles disposed on the cold rolling mill exit side along the sheet width direction of the material to be rolled and injecting air to the material to be rolled, a shape absolute value deviation obtained from a target shape and a detected shape, and Shape control means for calculating the air operation amount to be ejected from the plurality of air nozzles using a shape space deviation, and air adjustment means for inputting the air operation amount and adjusting the amount of air ejected from the plurality of air nozzles A shape control device for a cold rolling mill, comprising: 被圧延材を圧延する冷間圧延機と、前記冷間圧延機の出側に配置され、前記被圧延材の板幅方向の形状を多数のゾーンに区分して検出する形状検出手段と、前記冷間圧延機出側に前記被圧延材の板幅方向に沿って配設され、前記被圧延材に空気を噴射する複数のエアーノズルと、目標形状と検出形状から求めた形状絶対値偏差と形状空間偏差を用いてファジイ推論演算を行い前記複数のエアーノズルから噴射する空気操作量を求める形状制御手段と、前記空気操作量を入力して前記複数のエアーノズル毎に噴射する空気量を調節する空気調整手段とを具備することを特徴とする冷間圧延機の形状制御装置。A cold rolling mill for rolling the material to be rolled, and a shape detecting means arranged on the exit side of the cold rolling mill, for detecting the shape of the material to be rolled in the width direction of the plate by dividing the shape into a number of zones, A plurality of air nozzles disposed on the cold rolling mill exit side along the sheet width direction of the material to be rolled and injecting air to the material to be rolled, a shape absolute value deviation obtained from a target shape and a detected shape, and Shape control means for performing a fuzzy inference operation using a shape space deviation to obtain an air operation amount to be jetted from the plurality of air nozzles, and adjusting the air amount to be jetted for each of the plurality of air nozzles by inputting the air operation amount A shape control device for a cold rolling mill, comprising: 被圧延材を圧延する冷間圧延機と、前記冷間圧延機の出側に配置され、前記被圧延材の板幅方向の形状を多数のゾーンに区分して検出する形状検出手段と、前記冷間圧延機出側に前記被圧延材の板幅方向に沿って配設され、前記被圧延材に空気を噴射する複数のエアーノズルと、目標形状と検出形状から求めた形状偏差を用いて前記複数のエアーノズルから噴射する空気操作量を求める形状制御手段と、前記空気操作量を入力して前記複数のエアーノズルから噴射する空気量を調節する空気調整手段とを具備することを特徴とする冷間圧延機の形状制御装置。A cold rolling mill for rolling the material to be rolled, and a shape detecting means arranged on the exit side of the cold rolling mill, for detecting the shape of the material to be rolled in the width direction of the plate by dividing the shape into a number of zones, A plurality of air nozzles disposed on the cold rolling mill exit side along the sheet width direction of the material to be rolled and injecting air to the material to be rolled, using a shape deviation obtained from a target shape and a detected shape. Shape control means for calculating the amount of air manipulation injected from the plurality of air nozzles, and air adjustment means for inputting the amount of air manipulation and adjusting the amount of air ejected from the plurality of air nozzles, Control device for cold rolling mill. 請求項5〜7のいずれか1項において、前記冷間圧延機はワークロールと中間ロールを備えた多段圧延機であって、ワークロールベンダと中間ロールベンダのそれぞれを制御されるものであることを特徴とする冷間圧延機の形状制御装置。The cold rolling mill according to any one of claims 5 to 7, wherein the cold rolling mill is a multi-high rolling mill including a work roll and an intermediate roll, wherein each of the work roll bender and the intermediate roll bender is controlled. A shape control device for a cold rolling mill.
JP2002204105A 2002-07-12 2002-07-12 Method and apparatus for shape control of cold rolling mill Expired - Fee Related JP4128816B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002204105A JP4128816B2 (en) 2002-07-12 2002-07-12 Method and apparatus for shape control of cold rolling mill
TW092115534A TWI279263B (en) 2002-07-12 2003-06-09 Method and device for controlling forming shape in cold rolling mill
KR1020030047039A KR101016461B1 (en) 2002-07-12 2003-07-11 Configuration Control Method and Apparatus of Cold Rolling Mill
CNB031472850A CN1228152C (en) 2002-07-12 2003-07-11 Cold-mill shape controlling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204105A JP4128816B2 (en) 2002-07-12 2002-07-12 Method and apparatus for shape control of cold rolling mill

Publications (2)

Publication Number Publication Date
JP2004042108A true JP2004042108A (en) 2004-02-12
JP4128816B2 JP4128816B2 (en) 2008-07-30

Family

ID=30437384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204105A Expired - Fee Related JP4128816B2 (en) 2002-07-12 2002-07-12 Method and apparatus for shape control of cold rolling mill

Country Status (4)

Country Link
JP (1) JP4128816B2 (en)
KR (1) KR101016461B1 (en)
CN (1) CN1228152C (en)
TW (1) TWI279263B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124538A (en) * 2003-10-27 2005-05-19 Sorimachi Kk Automated system for recording farm work
JP2007069253A (en) * 2005-09-08 2007-03-22 Hitachi Ltd Apparatus and method for rolling control
JP2007290034A (en) * 2006-03-29 2007-11-08 Furukawa Electric Co Ltd:The Method and device for controlling shape of cold rolled material
CN102371278A (en) * 2010-08-26 2012-03-14 宝山钢铁股份有限公司 Method for automatically controlling plate shape of continuous annealing leveling mill based on stability index

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047984A (en) * 2004-05-19 2006-05-18 신닛뽄세이테쯔 카부시키카이샤 Method for using shape-detecting roll of metal strip
JP2006289420A (en) * 2005-04-11 2006-10-26 Hitachi Ltd Method and apparatus for controlling rolled shape
KR101409697B1 (en) * 2010-03-31 2014-06-19 신닛테츠스미킨 카부시키카이샤 Method for producing and device for producing hot-rolled steel sheet
JP5677997B2 (en) * 2012-03-05 2015-02-25 株式会社日立製作所 Rolling control device, rolling control method, and rolling control program
CN105642679B (en) * 2014-11-14 2019-04-23 宝山钢铁股份有限公司 Steel-plate shape preliminary examination and initial temperature control method and device
TWI740494B (en) * 2020-05-12 2021-09-21 中國鋼鐵股份有限公司 Roll inspection method and roll inspection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195708A (en) * 1984-10-16 1986-05-14 Ishikawajima Harima Heavy Ind Co Ltd Shape control device of rolling sheet
JPH02247004A (en) * 1989-03-20 1990-10-02 Hitachi Ltd Method and apparatus for controlling shape in rolling mill
JPH02255209A (en) * 1989-03-30 1990-10-16 Nippon Steel Corp Shape control method for warm or cold rolling of sheet
JP2548818B2 (en) * 1990-03-20 1996-10-30 株式会社日立製作所 Rolling control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124538A (en) * 2003-10-27 2005-05-19 Sorimachi Kk Automated system for recording farm work
JP2007069253A (en) * 2005-09-08 2007-03-22 Hitachi Ltd Apparatus and method for rolling control
JP4589850B2 (en) * 2005-09-08 2010-12-01 株式会社日立製作所 Rolling control device and rolling control method
JP2007290034A (en) * 2006-03-29 2007-11-08 Furukawa Electric Co Ltd:The Method and device for controlling shape of cold rolled material
CN102371278A (en) * 2010-08-26 2012-03-14 宝山钢铁股份有限公司 Method for automatically controlling plate shape of continuous annealing leveling mill based on stability index
CN102371278B (en) * 2010-08-26 2013-06-19 宝山钢铁股份有限公司 Method for automatically controlling plate shape of continuous annealing leveling mill based on stability index

Also Published As

Publication number Publication date
CN1472018A (en) 2004-02-04
JP4128816B2 (en) 2008-07-30
TWI279263B (en) 2007-04-21
CN1228152C (en) 2005-11-23
KR101016461B1 (en) 2011-02-24
TW200406267A (en) 2004-05-01
KR20040007320A (en) 2004-01-24

Similar Documents

Publication Publication Date Title
EP2465620B1 (en) Method for cooling hot-rolled steel strip
RU2449846C2 (en) Method of rolling metal strip with adjustment of its lateral position and roll mill to this end
CN1927483B (en) Rolling control device and rolling control method
US6314776B1 (en) Sixth order actuator and mill set-up system for rolling mill profile and flatness control
JPH0448521B2 (en)
JP4128816B2 (en) Method and apparatus for shape control of cold rolling mill
JP4847111B2 (en) Multistage rolling mill and control method of multistage rolling mill
JP2009274101A (en) Control method and control device for roll coolant in foil rolling machine
JP5146062B2 (en) Steel plate rolling method and equipment
JP3930847B2 (en) Thick plate rolling method
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP3649208B2 (en) Tandem rolling equipment control method and tandem rolling equipment
KR101054383B1 (en) Hot Rolling Process Equipment and Hot Rolling Method for Shape Correction of Hot Rolled Steel Sheets
JP3946733B2 (en) Shape control method and shape control apparatus in rolling mill
JP2010125453A (en) Method and apparatus for controlling shape in rolling mill
JPH02235509A (en) Method and apparatus for controlling shape of cold rolling mill
JPH0615321A (en) Shape control method in thick plate rolling
JP3244119B2 (en) Strip shape and edge drop control method in strip rolling
US11883868B2 (en) Method for producing a metal article
WO2024018665A1 (en) Method for setting rolling condition for cold rolling mill, cold rolling method, method for manufacturing steel sheet, device for setting rolling condition for cold rolling mill, and cold rolling mill
JP2001259715A (en) Hot finishing mill, mill array and hot finish rolling method
JP2001334304A (en) Device for controlling temperature on outlet side of hot finishing rolling mill
JP2000190012A (en) Plate shape controlling method and equipment in cold rolling
JPH0890033A (en) Method and device for controlling shape in rolling mill
JPH06142731A (en) Method for controlling camber in mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees