JP2004041975A - Chemical reactor for removing nitrogen oxide - Google Patents

Chemical reactor for removing nitrogen oxide Download PDF

Info

Publication number
JP2004041975A
JP2004041975A JP2002204893A JP2002204893A JP2004041975A JP 2004041975 A JP2004041975 A JP 2004041975A JP 2002204893 A JP2002204893 A JP 2002204893A JP 2002204893 A JP2002204893 A JP 2002204893A JP 2004041975 A JP2004041975 A JP 2004041975A
Authority
JP
Japan
Prior art keywords
chemical
chemical reaction
substance
treated
chemical reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002204893A
Other languages
Japanese (ja)
Other versions
JP4317683B2 (en
Inventor
Masanobu Tanno
淡野 正信
Yoshinobu Fujishiro
藤代 芳伸
Bredikhin Serugei
セルゲイ ブレディヒン
Shingo Katayama
片山 真吾
Takuya Hiramatsu
平松 拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Ceramics Research Association, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fine Ceramics Research Association
Priority to JP2002204893A priority Critical patent/JP4317683B2/en
Priority to PCT/JP2003/003178 priority patent/WO2003078031A1/en
Priority to US10/506,620 priority patent/US20050167286A1/en
Priority to AU2003227181A priority patent/AU2003227181A1/en
Publication of JP2004041975A publication Critical patent/JP2004041975A/en
Application granted granted Critical
Publication of JP4317683B2 publication Critical patent/JP4317683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical reactor with which a substance to be treated such as nitrogen oxide can be removed in high efficiency by a small power consumption when exess oxygen exists in combustion exhaust gas. <P>SOLUTION: This chemical reactor contains an ion-conductive phase consisting of a solid electrolyte for treating the substance to be treated by chemical reaction. An ionization reaction suppressing layer or a surface-coated layer is formed in the upstream part of a chemical reaction section of the chemical reactor in which the substance to be treated flows at first so that the ionization reaction of the surplus oxygen adsorbed on the surface of the chemical reaction section is suppressed. As a result, the power consumption of this chemical reactor can be reduced and the substance to be treated can be treated in high efficiency. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する専門分野】
本発明は、化学反応器に関するものであり、更に詳しくは、被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、例えば、酸素を含む燃焼排ガスから窒素酸化物を効率的に浄化することが可能な化学反応器に関するものである。本発明は、酸素が吸着する化学反応部表面への導電経路を遮断することにより、化学反応部表面における吸着酸素のイオン化反応を抑止して、少ない消費電力で高効率に被処理物質を処理することを可能とする新しい構造の化学反応器を提供するものとして有用である。
【0002】
【従来の技術】
一般に、ガソリンエンジンから発生する窒素酸化物を浄化する方法は、現在、三元系触媒による方法が主流となっている。しかし、燃費向上を可能とするリーンバーンエンジンやディーゼルエンジンにおいては、燃焼排ガス中に酸素が過剰に存在するため、三元系触媒表面への酸素の吸着による触媒活性の激減が問題となり、窒素酸化物を高効率で浄化することができない。
【0003】
一方、酸素イオン伝導性を有する固体電解質膜を用いて、そこへ電流を流すことにより、排ガス中の酸素を触媒表面に吸着させることなく除去することも行われている。この種の触媒反応器として提案されているものとして、例えば、電極に両面を挟まれた固体電解質に電圧を印加することにより、触媒表面の酸素を除去すると同時に窒素酸化物を酸素と窒素に分解するシステムが知られている。
【0004】
しかしながら、上記方法及びシステムでは、燃焼排ガス中に過剰の酸素が存在する場合、共存している酸素がイオン化し、固体電解質中を流れるため、窒素酸化物を分解するには、多量の電流を流す必要があり、それにより、消費電力が著しく増大するという問題があり、当技術分野においてはそのような問題を解決することができる新しい方法を開発することが強く要請されていた。
【0005】
このような状況の中で、本発明者らは、既に、被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、被処理ガスの流れに対し、化学反応部の上流部に触媒反応部を配置し、被処理物質の化学反応を行う際に妨害ガスとなる過剰な酸素を触媒反応を利用して低減させることにより、少ない消費電力で高効率に被処理物質を処理できることを見出している(特願2001−223687)。しかし、その際に、この方法では、過剰な酸素の低減に炭化水素などの還元剤が必要とされる点が、省エネルギー化を進める上で問題であった。
【0006】
【発明が解決しようとする課題】
そこで、本発明者らは、上記従来技術に鑑みて、これらの諸問題を抜本的に解決することを目標として鋭意研究を重ねた結果、化学反応部において、最上層表面が酸素吸着の相当部分を占め、この吸着酸素のイオン化と除去に多量の電流が消費されること、この表面酸素の除去に電流が消費されないようにするには、電子伝導性の電極下部から、酸素が吸着した化学反応部表面への導電経路を遮断することが有効であること、を見出し、更に研究を重ねて、本発明を完成するに至った。
【0007】
即ち、本発明の課題は、上記問題点を解決することにあり、本発明は、被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、燃焼排ガス中に過剰の酸素が存在する場合に、イオン化して固体電解質中を流れる酸素量を減少させることにより、窒素酸化物の分解に必要な電流量を減らし、少ない消費電力で高効率に窒素酸化物を浄化することができる新しい構造の化学反応器を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、前記化学反応を進行させる化学反応部の上流層に、化学反応部表面における吸着酸素のイオン化反応を抑止するイオン化反応抑止層を形成したことを特徴とする化学反応器。
(2)前記被処理物質の化学反応を行うための化学反応器において、前記被処理物質の前記化学反応を進行させる化学反応部の表面に、化学反応部表面における吸着酸素のイオン化反応を抑止する表面被覆層を形成したことを特徴とする前記(1)に記載の化学反応器。
(3)表面被覆層が、イオン伝導性物質、混合導電性物質又は絶縁性物質よりなることを特徴とする前記(2)に記載の化学反応器。
(4)化学反応部が、前記被処理物質中に含まれる元素へ電子を供給してイオンを生成させる還元相と、前記還元相からの前記イオンを伝導するイオン伝導相と、このイオン伝導相を伝導した前記イオンから電子を放出させる酸化相とからなることを特徴とする前記(1)又は(2)に記載の化学反応器。
(5)前記被処理物質が、窒素酸化物であり、前記還元相において、窒素酸化物を還元して酸素イオンを生成させ、前記イオン伝導相において前記酸素イオンを伝導するようにしたことを特徴とする前記(1)から(4)のいずれかに記載の化学反応器。
(6)前記イオン化反応抑止層又は表面被覆層が、化学反応部に外部から供給される電流が、酸素分子の吸着点に到達する導電経路を遮断するための材料及び構造を有することを特徴とする前記(1)から(3)のいずれかに記載の化学反応器。
【0009】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明は、被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、前記化学反応を進行させる化学反応部の上流層に、化学反応部表面における吸着酸素のイオン化反応を抑止するイオン化反応抑止層を形成したことを特徴とする化学反応器に係るものである。本発明において、被処理物質の化学反応を行うための化学反応器は、好適には、前記被処理物質の前記化学反応を進行させる化学反応部と、吸着酸素のイオン化反応を抑止する表面被覆層とからなる。
【0010】
被処理物質の化学反応を行う化学反応部は、好適には、例えば、被処理物質中に含まれる元素へ電子を供給してイオンを生成させる還元相と、還元相からのイオンを伝導するイオン伝導相と、このイオン伝導相を伝導したイオンから電子を放出させる酸化相とを備えている。
【0011】
本発明において、被処理物質は、好適には、例えば、燃焼排ガス中の窒素酸化物であり、上記化学反応部の還元相において、窒素酸化物を還元して酸素イオンを生成させ、イオン伝導相において酸素イオンを伝導させ、酸化相において前記イオンから電子を放出させる。しかし、本発明における被処理物質は、窒素酸化物に制限されるものではなく、本発明は、適宜の被処理物に適用することが可能である。本発明の化学反応器によって実施できる反応方法としては、上記窒素酸化物を処理する方法の他に、例えば、二酸化炭素を還元して一酸化炭素を生成する方法、メタンから水素と一酸化炭素との混合ガスを生成する方法、あるいは水から水素を生成する方法等が例示されるが、これらに制限されるものではない。
【0012】
本発明の化学反応器の形態としては、例えば、管状、平板状、ハニカム状等が例示されるが、特に、管状、ハニカム状のように、一対の開口を有する貫通孔を一つ又は複数有しており、各貫通孔中に化学反応部が位置している構造を有するものが好ましい。しかし、本発明の化学反応器の形態は、これらに限らず、その使用目的に応じて適宜の形態に設計することができる。
【0013】
上記化学反応部の還元相は、好適には、例えば、多孔質であり、反応の対象とする被処理物質を選択的に吸着するものが好ましい。この還元相では、被処理物質中に含まれる元素へ電子を供給し、イオンを生成させ、生成したイオンをイオン伝導相へ伝達するために、当該還元相は、導電性物質からなることが好ましく、また、電子及びイオンの伝達を促進するために、電子伝導性とイオン伝導性の両特性を有する混合伝導性物質からなること、又は、電子伝導性物質とイオン伝導性物質の混合物からなることがより好ましい。この還元相は、これらの物質を少なくとも二相以上積層した構造であることが好ましい。
【0014】
上記還元相として用いられる導電性物質及びイオン伝導性物質は、特に制限されるものではないが、導電性物質としては、例えば、白金、パラジウム等の貴金属や、酸化ニッケル、酸化コバルト、酸化銅、ランタンマンガナイト、ランタンコバルタイト、ランタンクロマイト等の金属酸化物などが用いられる。被処理物質を選択的に吸着するバリウム含有酸化物やセオライト等も還元相として用いられる。前記物質の少なくとも1種類以上を、少なくとも1種類以上のイオン伝導性物質との混合質として用いることも好ましい。また、イオン伝導性物質としては、例えば、イットリア又は酸化スカンジウムで安定化したジルコニアや酸化ガドリニウム又は酸化サマリウムで安定化したセリア、ランタンガレイト等が用いられる。還元相は、前記物質を少なくとも二相以上積層した構造からなることが好ましく、好適には、例えば、白金等の貴金属からなる導電性物質相と酸化ニッケルとイットリア又は酸化スカンジウムで安定化したジルコニアの混合物相の二相を積層した構造からなる。
【0015】
上記化学反応部のイオン伝導相は、イオン伝導性を有する固体電解質からなり、好ましくは、酸素イオン導電性を有する固体電解質からなる。酸素イオン伝導性を有する固体電解質としては、イットリア又は酸化スカンジウムで安定化したジルコニアや酸化ガドリニウム又は酸化サマリウムで安定化したセリア、ランタンガレイトが挙げられるが、特に制限されるものではない。このイオン伝導相としては、好ましくは、高い導電性と強度を有し、長期安定性に優れたイットリア又は酸化スカンジウムで安定化したジルコニアが用いられる。
【0016】
上記化学反応部の酸化相は、イオン伝導相からのイオンから電子を放出させるために、導電性物質を含有するが、電子及びイオンの伝達を促進するために、電子伝導性とイオン伝導性の両特性を有する混合伝導性物質からなること、又は、電子伝導性物質とイオン伝導性物質の混合物からなることが好ましい。酸化相として用いられる導電性物質及びイオン伝導性物質は、特に制限されるものではないが、導電性物質としては、例えば、白金、パラジウム等の貴金属や、酸化ニッケル、酸化コバルト、酸化銅、ランタンマンガナイト、ランタンコバルタイト、ランタンクロマイト等の金属酸化物などが用いられる。また、イオン伝導性物質としては、好適には、イットリア又は酸化スカンジウムで安定化したジルコニアや酸化ガドリニウム又は酸化サマリウムで安定化したセリア、ランタンガレイトが用いられる。
【0017】
次に、上記化学反応器におけるイオン化反応抑止層又は表面被覆層は、酸素分子を表面吸着した際に、酸素イオンを生成するために必要な電子の供給を防ぐために、化学反応部、特に、その還元相による供給電子が表面に到達することを抑止する材料及び構造を有する。このイオン化反応抑止層又は表面被覆層は、イオン伝導体、混合導電体又は絶縁体であることが望ましく、混合導電体の場合は、電子伝導性が大きいと電子伝導の抑止効果が低下するため、電子伝導性の割合が極力小さいものであることが望ましい。また、このイオン化反応抑止層又は表面被覆層は、高温での酸化還元雰囲気に対する安定性と、被処理物質を化学反応部に適度に供給することが可能な密度(連続開気孔が生成可能である、理論密度比で約95%以下であり、かつ開気孔孔壁において、酸素が吸着イオン化することによる消費電流の増大が、セルの作動効率に問題とならないレベルの上限である、理論密度比約80%以上であることが望ましい。)の両方が求められるため、その材料として、好適には、例えば、イットリア安定化ジルコニアが用いられる。
【0018】
上記イオン化反応抑止層又は表面被覆層の材料としては、その他、スカンジウム安定化ジルコニアやランタンガレイトも好ましく用いられ、また、雰囲気安定性は劣るものの、セリア系イオン伝導体も同様に用いることが可能である。しかし、これらに制限されるものではない。また、絶縁体として、アルミナ等を用いることも可能であるが、隣接層との間で熱膨張特性に大きな差があると層間剥離などの構造欠陥を生じる。上記のイオン化反応抑止層又は表面被覆層としての条件を満たすものであれば、イオン伝導体、混合導電体、絶縁体の各々の化合物及びこれらの相互のコンポジットを用いることも有効である。これらの層は、スクリーン印刷及び熱処理などの適宜の手段で形成することが可能であり、その手段は、特に制限されない。
【0019】
また、イオン化反応抑止層又は表面被覆層は、必ずしも最上層表面に位置させることに限定されるものではなく、イオン化電流の導電経路の抑止、遮断が可能であれば、例えば、中間層として、又は混合層等として適宜の位置に配置することができる。しかし、このような配置の場合、これらの層より上部において、又は上部から連続する領域においては、酸素分子が吸着した際の酸素イオンの生成による電流消費が生じてしまうことが避けられないことがあり得るので、より効率的には表面被覆層とすることが望ましい。そして、この場合、表面被覆層の上部に、更に、酸素等のガス分子の吸着層、炭化水素による酸素分圧低減層、電気化学セルの保護層等を加えることは、本発明により期待される性能を何ら妨げるものではない限り、適宜、採用し得るものである。
【0020】
【作用】
本発明は、被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、前記化学反応を進行させる化学反応部の上流層に、化学反応部表面における吸着酸素のイオン化反応を抑止するイオン化反応抑止層を形成したことを特徴とする化学反応器、に係るものである。本発明では、被処理物質中に含まれる酸素ガス分子が化学反応部表面に吸着した際に、化学反応部に外部から供給される電流が、酸素分子の吸着点に到達する導電経路を遮断するための材料及び構造を有するイオン化反応抑止層を化学反応部の上流層に形成したので、これらの構成により、吸着酸素のイオン化反応を抑止することが可能となり、それにより、吸着酸素のイオン化に要する電流を低減させ、少ない消費電力で高効率に窒素酸化物等の被処理物質を処理することが可能となる。
【0021】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
(1)化学反応器の構成
図1は、本発明の一実施態様に係る化学反応器1の構成図である。表面被覆層2は、ガスの流れに対し、化学反応部3より上流部に位置する。すなわち、被処理ガスは、表面被覆層2を通過した後に化学反応部3を通過する。
【0022】
(2)化学反応器の作製
以下、被処理物質として、窒素酸化物を対象とした場合の実施例を示す。
イオン伝導性を有する固体電解質として、イットリアで安定化したジルコニアを用い、その形状は、直径20mm、厚さ0.3mmの円板状とした。化学反応部を構成する還元相は、酸化ニッケルとイットリア安定化ジルコニアの混合物からなる膜と、白金及びイットリア安定化ジルコニアからなる膜の二層構造とした。白金及びイットリア安定化ジルコニアからなる膜は、固体電解質の片面に面積約1.1cm となるようにスクリーン印刷した後、1200℃で熱処理することにより形成した。
【0023】
酸化ニッケルとイットリア安定化ジルコニアの混合膜は、白金膜上に白金膜と同一面積となるようにスクリーン印刷した後、1450℃で熱処理することにより形成した。酸化ニッケルとイットリア安定化ジルコニアの混合比は、モル比で3:7とした。還元相を形成した固体電解質の他方の面に面積約1.1cm となるように白金膜をスクリーン印刷した後、1200℃で熱処理することにより形成し、酸化相とした。表面被覆層は、イットリア安定化ジルコニアを用いて、スクリーン印刷及び1400℃の焼成により、上記還元相の表面に形成した。
【0024】
(3)窒素酸化物の処理方法
このようにして作製した本発明の化学反応器による窒素酸化物の処理方法を、次に示す。被処理ガス中に化学反応器を配置し、還元相と酸化相に白金線をリード線として固定し、直流電源に接続、直流電圧を印加して電流を流した。評価は、反応温度500℃から600℃の範囲で行った。被処理ガスとして、一酸化窒素1000ppm、酸素3%、ヘリウムバランスのモデル燃焼排ガスを流量50ml/minで流した。化学反応器に流入前後における被処理ガス中の窒素酸化物濃度を化学発光式NOx計で測定し、窒素及び酸素濃度をガスクロマトグラフィーで測定した。窒素酸化物の減少量から、窒素酸化物の浄化率を求め、浄化率が50%となるときの電流密度及び消費電力を測定した。
【0025】
(4)結果
化学反応器を反応温度600℃に加熱し、化学反応部に通電を行った。この時、電流量の増加と共に窒素酸化物の浄化率は向上し、電流密度55mA/cm、消費電力80mWの時に窒素酸化物は約50%に減少した。
【0026】
実施例2
表面被覆層を構成するイオン伝導体として、ガドリニウム10%ドープセリアを用いた以外は、実施例1と同様にして化学反応器を作製した。この化学反応器を反応温度500℃に加熱し、化学反応部に通電を行った。この時、電流量の増加と共に窒素酸化物の浄化率は向上し、電流密度52mA/cm 、消費電力67mWの時に窒素酸化物は約50%に減少した。
【0027】
【発明の効果】
以上詳述したように、本発明は、窒素酸化物浄化用化学反応器に係るものであり、本発明によれば、1)被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、酸素が吸着する化学反応部表面への導電経路を遮断することができる、2)化学反応部に外部から供給される電流が、酸素分子の吸着点に到達する導電経路を遮断し、化学反応部表面における吸着酸素イオン化反応を抑止することができる、3)それにより、吸着酸素イオン化に要する電流を低減させ、少ない消費電力で、高効率に窒素酸化物等の被処理物質を処理することができる、4)化学反応器における消費電力を顕著に低減することができる、5)被処理物質の化学反応を妨害する酸素が過剰に存在する場合においても、省エネルギーで、高効率に被処理物質を処理できる化学反応器を提供することができる、という格別の効果が奏される。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る化学反応器の構成を示す断面図である。
【符号の説明】
1 化学反応器
2 表面被覆層
3 化学反応部
[0001]
[Field of the Invention]
The present invention relates to a chemical reactor, and more particularly, to a chemical reactor including an ion conductive phase composed of a solid electrolyte for performing a chemical reaction of a substance to be treated, for example, nitrogen oxides from combustion exhaust gas containing oxygen. The present invention relates to a chemical reactor capable of efficiently purifying substances. The present invention suppresses the ionization reaction of adsorbed oxygen on the surface of the chemical reaction section by blocking the conductive path to the surface of the chemical reaction section where oxygen is adsorbed, and processes the substance to be treated with low power consumption and high efficiency. It is useful as providing a chemical reactor having a new structure that allows the chemical reactor to be manufactured.
[0002]
[Prior art]
In general, the method of purifying nitrogen oxides generated from a gasoline engine is mainly a method using a three-way catalyst. However, in lean-burn engines and diesel engines that can improve fuel efficiency, the excess amount of oxygen in the combustion exhaust gas causes a problem of a sharp decrease in catalytic activity due to adsorption of oxygen to the surface of the three-way catalyst. Things cannot be purified with high efficiency.
[0003]
On the other hand, using a solid electrolyte membrane having oxygen ion conductivity and passing a current therethrough, oxygen in exhaust gas is removed without being adsorbed on the catalyst surface. As a proposed type of catalytic reactor, for example, by applying a voltage to a solid electrolyte sandwiched between electrodes on both sides, oxygen on the catalyst surface is removed and at the same time nitrogen oxides are decomposed into oxygen and nitrogen. There are known systems.
[0004]
However, in the above method and system, when excess oxygen is present in the flue gas, coexisting oxygen is ionized and flows through the solid electrolyte, so that a large amount of current flows to decompose nitrogen oxides. There is a need to do so, which results in a significant increase in power consumption, and there is a strong need in the art to develop new methods that can solve such problems.
[0005]
In such a situation, the present inventors have already conducted a chemical reaction on a flow of a gas to be treated in a chemical reactor including an ion conductive phase composed of a solid electrolyte for performing a chemical reaction of the substance to be treated. A catalytic reaction section is located upstream of the section to reduce excess oxygen, which is an interfering gas when performing a chemical reaction of the substance to be treated, by using a catalytic reaction to efficiently treat the substance with low power consumption. It has been found that the substance can be processed (Japanese Patent Application No. 2001-223687). However, at this time, in this method, a point that a reducing agent such as a hydrocarbon is required to reduce excessive oxygen is a problem in promoting energy saving.
[0006]
[Problems to be solved by the invention]
In view of the above prior art, the present inventors have conducted intensive studies with the aim of drastically solving these problems, and as a result, in the chemical reaction part, the uppermost layer surface has a considerable portion of oxygen adsorption. In order to prevent a large amount of current from being consumed for the ionization and removal of the adsorbed oxygen and to prevent the current from being consumed for removing the surface oxygen, a chemical reaction in which oxygen is adsorbed from the lower part of the electron conductive electrode is performed. It has been found that it is effective to block the conductive path to the surface of the part, and further studies have been made to complete the present invention.
[0007]
That is, an object of the present invention is to solve the above-mentioned problems, and the present invention provides a chemical reactor containing an ion conductive phase composed of a solid electrolyte for performing a chemical reaction of a substance to be treated, in a combustion exhaust gas. When excess oxygen is present, the amount of oxygen flowing through the solid electrolyte by ionization is reduced, reducing the amount of current required for the decomposition of nitrogen oxides and purifying nitrogen oxides with low power consumption and high efficiency It is an object of the present invention to provide a chemical reactor having a new structure that can be used.
[0008]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems includes the following technical means.
(1) In a chemical reactor including an ion conducting phase composed of a solid electrolyte for performing a chemical reaction of a substance to be treated, an ionization of oxygen adsorbed on the surface of the chemical reaction section is formed in an upstream layer of the chemical reaction section which advances the chemical reaction. A chemical reactor having an ionization reaction inhibiting layer for inhibiting a reaction.
(2) In the chemical reactor for performing the chemical reaction of the substance to be treated, the surface of the chemical reaction part that promotes the chemical reaction of the substance to be treated is inhibited from ionizing the adsorbed oxygen on the surface of the chemical reaction part. The chemical reactor according to the above (1), wherein a surface coating layer is formed.
(3) The chemical reactor according to (2), wherein the surface coating layer is made of an ion conductive material, a mixed conductive material or an insulating material.
(4) a chemical reaction unit that supplies electrons to the elements contained in the substance to be processed to generate ions, an ion conductive phase that conducts the ions from the reduced phase, and an ion conductive phase that conducts the ions from the reduced phase. The chemical reactor according to the above (1) or (2), comprising: an oxidized phase that releases electrons from the ions that have conducted.
(5) The substance to be treated is a nitrogen oxide, and in the reduction phase, the nitrogen oxide is reduced to generate oxygen ions, and the oxygen ions are conducted in the ion conduction phase. The chemical reactor according to any one of the above (1) to (4).
(6) The ionization reaction suppressing layer or the surface coating layer has a material and a structure for blocking a conductive path through which a current supplied from the outside to the chemical reaction section reaches an adsorption point of oxygen molecules. The chemical reactor according to any one of the above (1) to (3).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
The present invention provides a chemical reactor including an ion conductive phase composed of a solid electrolyte for performing a chemical reaction of a substance to be treated, in an upstream layer of a chemical reaction part for allowing the chemical reaction to proceed, of adsorbed oxygen on the surface of the chemical reaction part. The present invention relates to a chemical reactor in which an ionization reaction suppressing layer for suppressing an ionization reaction is formed. In the present invention, the chemical reactor for performing the chemical reaction of the substance to be treated is preferably a chemical reaction part that advances the chemical reaction of the substance to be treated, and a surface coating layer that suppresses an ionization reaction of adsorbed oxygen. Consists of
[0010]
The chemical reaction section for performing a chemical reaction of the substance to be treated is preferably, for example, a reducing phase that supplies electrons to elements contained in the substance to be treated to generate ions, and an ion that conducts ions from the reducing phase. It has a conductive phase and an oxidized phase for releasing electrons from the ions conducted through the ionic conductive phase.
[0011]
In the present invention, the substance to be treated is preferably, for example, nitrogen oxides in the combustion exhaust gas. In the reduction phase of the chemical reaction section, the nitrogen oxides are reduced to generate oxygen ions, and the ion conduction phase is reduced. Conducts oxygen ions and emits electrons from the ions in the oxidation phase. However, the substance to be treated in the present invention is not limited to nitrogen oxides, and the present invention can be applied to an appropriate substance to be treated. As a reaction method that can be carried out by the chemical reactor of the present invention, in addition to the method of treating the nitrogen oxides, for example, a method of producing carbon monoxide by reducing carbon dioxide, a method of producing hydrogen and carbon monoxide from methane Examples of the method include a method of generating a mixed gas of the above, a method of generating hydrogen from water, and the like, but are not limited thereto.
[0012]
Examples of the form of the chemical reactor of the present invention include, for example, a tubular shape, a flat shape, and a honeycomb shape. In particular, one or more through holes having a pair of openings such as a tubular shape and a honeycomb shape are provided. It is preferable to have a structure in which a chemical reaction portion is located in each through hole. However, the form of the chemical reactor of the present invention is not limited to these, and it can be designed in an appropriate form according to the purpose of use.
[0013]
The reduction phase of the chemical reaction section is preferably, for example, preferably a porous one, which selectively adsorbs the target substance to be reacted. In the reduced phase, it is preferable that the reduced phase be made of a conductive material in order to supply electrons to the elements contained in the substance to be processed, generate ions, and transmit the generated ions to the ion conductive phase. In addition, in order to promote the transfer of electrons and ions, it must be made of a mixed conductive material having both electron conductivity and ion conductivity, or made of a mixture of an electron conductive material and an ion conductive material. Is more preferred. The reduced phase preferably has a structure in which at least two or more of these substances are stacked.
[0014]
The conductive substance and the ion conductive substance used as the reducing phase are not particularly limited, but examples of the conductive substance include noble metals such as platinum and palladium, nickel oxide, cobalt oxide, and copper oxide. Metal oxides such as lanthanum manganite, lanthanum cobaltite, and lanthanum chromite are used. Barium-containing oxides and zeolites that selectively adsorb the substance to be treated are also used as the reduced phase. It is also preferable to use at least one kind of the above substances as a mixture with at least one kind of ion conductive substance. Further, as the ion conductive substance, for example, zirconia stabilized with yttria or scandium oxide, ceria stabilized with gadolinium oxide or samarium oxide, lanthanum gallate, or the like is used. The reduced phase preferably has a structure in which at least two layers of the substance are stacked, and preferably, for example, a conductive substance phase made of a noble metal such as platinum and zirconia stabilized with nickel oxide and yttria or scandium oxide. It has a structure in which two phases of a mixture phase are laminated.
[0015]
The ion conductive phase of the chemical reaction section is made of a solid electrolyte having ion conductivity, and is preferably made of a solid electrolyte having oxygen ion conductivity. Examples of the solid electrolyte having oxygen ion conductivity include zirconia stabilized with yttria or scandium oxide, ceria stabilized with gadolinium oxide or samarium oxide, and lanthanum gallate, but are not particularly limited. As this ion conductive phase, zirconia stabilized with yttria or scandium oxide having high conductivity and strength and having excellent long-term stability is preferably used.
[0016]
The oxidized phase of the chemical reaction section contains a conductive substance in order to release electrons from ions from the ion conductive phase, but in order to promote the transfer of electrons and ions, the electron conductive and ionic conductive It is preferable to be made of a mixed conductive material having both properties, or to be made of a mixture of an electron conductive material and an ion conductive material. The conductive material and the ion conductive material used as the oxidized phase are not particularly limited. Examples of the conductive material include noble metals such as platinum and palladium, nickel oxide, cobalt oxide, copper oxide, and lanthanum. Metal oxides such as manganite, lanthanum cobaltite, and lanthanum chromite are used. Further, as the ion conductive material, zirconia stabilized with yttria or scandium oxide, ceria or lanthanum gallate stabilized with gadolinium oxide or samarium oxide is preferably used.
[0017]
Next, the ionization reaction suppression layer or the surface coating layer in the chemical reactor, when surface adsorption of oxygen molecules, in order to prevent the supply of electrons required to generate oxygen ions, the chemical reaction unit, particularly, It has a material and a structure to prevent electrons supplied by the reducing phase from reaching the surface. This ionization reaction suppression layer or surface coating layer is preferably an ion conductor, a mixed conductor or an insulator, and in the case of a mixed conductor, the effect of suppressing electron conduction is reduced when the electron conductivity is large, It is desirable that the ratio of electron conductivity is as small as possible. In addition, the ionization reaction suppressing layer or the surface coating layer has a stability to a redox atmosphere at a high temperature and a density capable of appropriately supplying a substance to be treated to a chemical reaction part (continuous open pores can be generated). The theoretical density ratio is about 95% or less, and the increase in current consumption due to the adsorption and ionization of oxygen on the open pore walls is the upper limit of the level at which the operating efficiency of the cell does not matter. It is desirable that the ratio is 80% or more.) Therefore, for example, yttria-stabilized zirconia is preferably used as the material.
[0018]
As the material of the ionization reaction suppressing layer or the surface coating layer, scandium-stabilized zirconia and lanthanum gallate are also preferably used.Although the atmosphere stability is inferior, a ceria-based ion conductor can also be used. It is. However, it is not limited to these. Alumina or the like can be used as the insulator, but if there is a large difference in thermal expansion characteristics between adjacent layers, structural defects such as delamination will occur. As long as the conditions as the ionization reaction suppressing layer or the surface coating layer are satisfied, it is also effective to use the respective compounds of the ionic conductor, the mixed conductor, and the insulator, and their mutual composite. These layers can be formed by appropriate means such as screen printing and heat treatment, and the means is not particularly limited.
[0019]
In addition, the ionization reaction suppression layer or the surface coating layer is not necessarily limited to being located on the uppermost layer surface, and if it is possible to suppress or block the conduction path of the ionization current, for example, as an intermediate layer, or It can be arranged at an appropriate position as a mixed layer or the like. However, in the case of such an arrangement, it is unavoidable that current consumption due to generation of oxygen ions when oxygen molecules are adsorbed in an area above these layers or in a region continuous from above is inevitable. Since it is possible, it is desirable to use the surface coating layer more efficiently. In this case, it is expected from the present invention that a layer for absorbing gas molecules such as oxygen, a layer for reducing the partial pressure of oxygen by hydrocarbons, a protective layer for an electrochemical cell, and the like are further provided on the surface coating layer. As long as it does not hinder the performance, it can be appropriately adopted.
[0020]
[Action]
The present invention provides a chemical reactor including an ion conductive phase composed of a solid electrolyte for performing a chemical reaction of a substance to be treated, in an upstream layer of a chemical reaction part for allowing the chemical reaction to proceed, of adsorbed oxygen on the surface of the chemical reaction part. The present invention relates to a chemical reactor, wherein an ionization reaction suppressing layer for suppressing an ionization reaction is formed. In the present invention, when the oxygen gas molecules contained in the substance to be treated are adsorbed on the surface of the chemical reaction section, the current supplied from the outside to the chemical reaction section cuts off the conductive path reaching the adsorption point of the oxygen molecules. A reaction suppression layer having a material and a structure for forming an ionization reaction in the upstream layer of the chemical reaction section makes it possible to suppress the ionization reaction of adsorbed oxygen, which is required for ionization of adsorbed oxygen. It is possible to reduce the current, and to efficiently process a substance to be processed such as nitrogen oxide with low power consumption.
[0021]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
Example 1
(1) Configuration of Chemical Reactor FIG. 1 is a configuration diagram of a chemical reactor 1 according to one embodiment of the present invention. The surface coating layer 2 is located upstream of the chemical reaction section 3 with respect to the gas flow. That is, the gas to be processed passes through the chemical reaction section 3 after passing through the surface coating layer 2.
[0022]
(2) Production of Chemical Reactor Hereinafter, an example in which nitrogen oxide is used as a substance to be treated will be described.
As the solid electrolyte having ion conductivity, zirconia stabilized with yttria was used, and its shape was a disk having a diameter of 20 mm and a thickness of 0.3 mm. The reduction phase constituting the chemical reaction section had a two-layer structure of a film made of a mixture of nickel oxide and yttria-stabilized zirconia, and a film made of platinum and yttria-stabilized zirconia. The film made of platinum and yttria-stabilized zirconia was formed by screen-printing one surface of the solid electrolyte so as to have an area of about 1.1 cm 2, and then performing a heat treatment at 1200 ° C.
[0023]
The mixed film of nickel oxide and yttria-stabilized zirconia was formed by screen printing on a platinum film so as to have the same area as the platinum film, followed by heat treatment at 1450 ° C. The mixing ratio of nickel oxide and yttria-stabilized zirconia was 3: 7 in molar ratio. A platinum film was screen-printed on the other surface of the solid electrolyte on which the reduced phase was formed so as to have an area of about 1.1 cm 2, and then heat-treated at 1200 ° C. to form an oxide phase. The surface coating layer was formed on the surface of the reduced phase by screen printing and baking at 1400 ° C. using yttria-stabilized zirconia.
[0024]
(3) Method of Treating Nitrogen Oxide The method of treating nitrogen oxide by the chemical reactor of the present invention thus produced is described below. A chemical reactor was placed in the gas to be treated, a platinum wire was fixed as a lead wire to the reducing phase and the oxidizing phase, connected to a DC power supply, and a DC voltage was applied to flow a current. The evaluation was performed at a reaction temperature of 500 ° C to 600 ° C. As a gas to be treated, a model combustion exhaust gas of 1000 ppm of nitrogen monoxide, 3% of oxygen and helium balance was flowed at a flow rate of 50 ml / min. The nitrogen oxide concentration in the gas to be treated before and after flowing into the chemical reactor was measured by a chemiluminescence NOx meter, and the nitrogen and oxygen concentrations were measured by gas chromatography. The nitrogen oxide purification rate was determined from the nitrogen oxide reduction amount, and the current density and the power consumption when the purification rate became 50% were measured.
[0025]
(4) Result The chemical reactor was heated to a reaction temperature of 600 ° C, and electricity was supplied to the chemical reaction section. At this time, the purification rate of nitrogen oxides increased as the amount of current increased, and the nitrogen oxides decreased to about 50% when the current density was 55 mA / cm 2 and the power consumption was 80 mW.
[0026]
Example 2
A chemical reactor was produced in the same manner as in Example 1, except that 10% gadolinium-doped ceria was used as the ion conductor constituting the surface coating layer. This chemical reactor was heated to a reaction temperature of 500 ° C., and electricity was supplied to the chemical reaction section. At this time, the purification rate of nitrogen oxides increased with an increase in the amount of current, and the nitrogen oxides decreased to about 50% when the current density was 52 mA / cm 2 and the power consumption was 67 mW.
[0027]
【The invention's effect】
As described in detail above, the present invention relates to a chemical reactor for purifying nitrogen oxides, and according to the present invention, 1) an ion conductive phase comprising a solid electrolyte for performing a chemical reaction of a substance to be treated. In a chemical reactor containing oxygen, the conductive path to the surface of the chemical reaction section where oxygen is adsorbed can be cut off. 2) The electric current supplied from outside to the chemical reaction section reaches the adsorption point of oxygen molecules. 3) It can suppress the ionization reaction of adsorbed oxygen on the surface of the chemical reaction part. 3) The current required for ionizing adsorbed oxygen can be reduced, and the treatment of nitrogen oxides and the like can be performed efficiently with low power consumption. 4) The power consumption in the chemical reactor can be remarkably reduced. 5) Even if oxygen that interferes with the chemical reaction of the substance to be treated is excessively present, energy saving is achieved. In chromatography, it is possible to provide a chemical reactor that can process the substance to be treated with high efficiency, special effect can be attained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a chemical reactor according to one embodiment of the present invention.
[Explanation of symbols]
1 chemical reactor 2 surface coating layer 3 chemical reaction section

Claims (6)

被処理物質の化学反応を行うための固体電解質からなるイオン伝導相を含む化学反応器において、前記化学反応を進行させる化学反応部の上流層に、化学反応部表面における吸着酸素のイオン化反応を抑止するイオン化反応抑止層を形成したことを特徴とする化学反応器。In a chemical reactor including an ion conductive phase composed of a solid electrolyte for performing a chemical reaction of a substance to be treated, an ionization reaction of adsorbed oxygen on the surface of the chemical reaction portion is suppressed in an upstream layer of the chemical reaction portion that promotes the chemical reaction. A chemical reactor characterized by forming an ionization reaction-suppressing layer. 前記被処理物質の化学反応を行うための化学反応器において、前記被処理物質の前記化学反応を進行させる化学反応部の表面に、化学反応部表面における吸着酸素のイオン化反応を抑止する表面被覆層を形成したことを特徴とする請求項1に記載の化学反応器。In a chemical reactor for performing the chemical reaction of the substance to be treated, a surface coating layer for suppressing an ionization reaction of adsorbed oxygen on the surface of the chemical reaction part on a surface of a chemical reaction part that promotes the chemical reaction of the substance to be treated. The chemical reactor according to claim 1, wherein 表面被覆層が、イオン伝導性物質、混合導電性物質又は絶縁性物質よりなることを特徴とする請求項2に記載の化学反応器。The chemical reactor according to claim 2, wherein the surface coating layer is made of an ion conductive material, a mixed conductive material, or an insulating material. 化学反応部が、前記被処理物質中に含まれる元素へ電子を供給してイオンを生成させる還元相と、前記還元相からの前記イオンを伝導するイオン伝導相と、このイオン伝導相を伝導した前記イオンから電子を放出させる酸化相とからなることを特徴とする請求項1又は2に記載の化学反応器。A chemical reaction section supplies electrons to the elements contained in the substance to be treated, generates a reduced ion, generates an ion, conducts the ion from the reduced phase, conducts the ion, and conducts the ion conducting phase. The chemical reactor according to claim 1, comprising an oxidized phase for releasing electrons from the ions. 前記被処理物質が、窒素酸化物であり、前記還元相において、窒素酸化物を還元して酸素イオンを生成させ、前記イオン伝導相において前記酸素イオンを伝導するようにしたことを特徴とする請求項1から4のいずれかに記載の化学反応器。The substance to be treated is a nitrogen oxide, and in the reduction phase, the nitrogen oxide is reduced to generate oxygen ions, and the oxygen ions are conducted in the ion conduction phase. Item 6. The chemical reactor according to any one of Items 1 to 4. 前記イオン化反応抑止層又は表面被覆層が、化学反応部に外部から供給される電流が、酸素分子の吸着点に到達する導電経路を遮断するための材料及び構造を有することを特徴とする請求項1から3のいずれかに記載の化学反応器。The said ionization reaction suppression layer or surface coating layer has the material and structure for interrupting | blocking the conduction path | route which the electric current supplied from the outside to a chemical reaction part reaches the adsorption point of an oxygen molecule, The Claims characterized by the above-mentioned. The chemical reactor according to any one of claims 1 to 3.
JP2002204893A 2002-03-15 2002-07-12 Nitrogen oxide purification chemical reactor Expired - Lifetime JP4317683B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002204893A JP4317683B2 (en) 2002-07-12 2002-07-12 Nitrogen oxide purification chemical reactor
PCT/JP2003/003178 WO2003078031A1 (en) 2002-03-15 2003-03-17 Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
US10/506,620 US20050167286A1 (en) 2002-03-15 2003-03-17 Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
AU2003227181A AU2003227181A1 (en) 2002-03-15 2003-03-17 Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204893A JP4317683B2 (en) 2002-07-12 2002-07-12 Nitrogen oxide purification chemical reactor

Publications (2)

Publication Number Publication Date
JP2004041975A true JP2004041975A (en) 2004-02-12
JP4317683B2 JP4317683B2 (en) 2009-08-19

Family

ID=31710336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204893A Expired - Lifetime JP4317683B2 (en) 2002-03-15 2002-07-12 Nitrogen oxide purification chemical reactor

Country Status (1)

Country Link
JP (1) JP4317683B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001806A1 (en) 2006-06-30 2008-01-03 National Institute Of Advanced Industrial Science And Technology Electrochemical cell system gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001806A1 (en) 2006-06-30 2008-01-03 National Institute Of Advanced Industrial Science And Technology Electrochemical cell system gas sensor

Also Published As

Publication number Publication date
JP4317683B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
GB2437459A (en) Ceramic chemical reaction device capable of decomposing solid carbon
JP3657542B2 (en) Chemical reactor
JP3626971B2 (en) Chemical reactor
JP4057823B2 (en) Nitrogen oxide purification chemical reactor and nitrogen oxide purification method
JP5252362B2 (en) Ceramic electrode
JP4201319B2 (en) Electrochemical cell type chemical reaction system
US20050167286A1 (en) Chemical reactor for nitrogen oxide removal and method of removing nitrogen oxide
JP4193929B2 (en) Energy saving electrochemical reaction system and activation method thereof
JP2008307493A (en) Self-organizing porous thin film type electrochemical reactor
JP4317683B2 (en) Nitrogen oxide purification chemical reactor
US20060118409A1 (en) Chemical reaction system of electrochemical cell type, method for activation thereof and method for reaction
JP2000516678A (en) Apparatus and method for reduction of nitrogen oxides
JP6575924B2 (en) NOx purification device and NOx purification method using the same
JP4132893B2 (en) Electrode material for chemical reactor
Kobayashi et al. Performance of electrolysis cells with proton and oxide-ion conducting electrolyte for reducing nitrogen oxide
JP4521515B2 (en) Catalytic electrochemical reactor
JP4822494B2 (en) Electrochemical cell type chemical reactor
JP4318281B2 (en) Nitrogen oxide removal system
JP2009233618A (en) Oxidation apparatus
JP2000210554A (en) Chemical reactor
JP2008014634A (en) Electrochemical cell gas sensor
JP2008307492A (en) Electrochemical reactor having electrode for stable and high efficient operation
JP2008110277A (en) Low-temperature operation type electrochemical reactor
Wang et al. Theoretical modeling of NO electrochemical reduction on multifunctional layer electrode by alternating/direct current electrolysis
JP2004223401A (en) Element for purification of exhaust gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4317683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term