JP2004040047A - Treatment apparatus and method for releasing material to be released from electrostatic chuck - Google Patents

Treatment apparatus and method for releasing material to be released from electrostatic chuck Download PDF

Info

Publication number
JP2004040047A
JP2004040047A JP2002198722A JP2002198722A JP2004040047A JP 2004040047 A JP2004040047 A JP 2004040047A JP 2002198722 A JP2002198722 A JP 2002198722A JP 2002198722 A JP2002198722 A JP 2002198722A JP 2004040047 A JP2004040047 A JP 2004040047A
Authority
JP
Japan
Prior art keywords
substrate
electrostatic chuck
wafer
chuck
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002198722A
Other languages
Japanese (ja)
Inventor
Shinya Nishimoto
西本 伸也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002198722A priority Critical patent/JP2004040047A/en
Publication of JP2004040047A publication Critical patent/JP2004040047A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of an abnormal release when a substrate is released from an electrostatic chuck provided in a treatment apparatus and to shorten a time required for the release. <P>SOLUTION: The wafer placing surface of the electrostatic chuck 4 is formed in a recess curved surface state, and a wafer W is attracted and held along the placing surface. The curved surface is formed in such a manner that, when a voltage to a chuck electrode 41 is stopped, a residual attracting force generated between the wafer W and the chuck 4 becomes larger than a restoring force tending to restore the wafer W. After the attraction of the wafer W is released, when the wafer W is pressed by a support pin 63 and reset to an original state, a gap is formed between the wafer W and the pin 63, and thereby an electrostatic capacity between the wafer W and the chuck 4 is reduced. Thus, residual charge existing between the wafer W and the chuck 4 is moved toward the peripheral edge region of the wafer F, is released to a ground through a ring member 5 and accordingly can be rapidly destaticized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、静電チャックに基板を載置して例えば真空処理を行う処理装置及び静電チャックからの基板の脱離方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造工程の中には、例えばエッチングやCVD(chemical vapor deposition)による成膜処理等のように基板の処理を真空雰囲気にて行うものが多数あり、このような処理を行う真空処理装置に用いられる基板の載置台には一般に静電チャックが用いられている。
【0003】
この静電チェックの一例について図7を参照しながら説明する。図中1は半導体ウエハ(以下ウエハという)Wの載置台であり、載置台支持部11の上面に静電チャック12と、この静電チャック12の側方を囲むように設けられる導電性のリング体13とを設けた構成とされている。この静電チャック12は導電性のシート状のチャック電極14の表裏を誘電体例えばポリイミド等からなる絶縁層15にて挟んだ構成とされており、直流電源16からチャック電極14に直流電圧(チャック電圧)を印加し、これにより生じるクーロン力によってウエハWを吸着保持できるようになっている。
【0004】
また載置台1の内部には、静電チャック12からウエハWを脱離させるための例えば導電性の支持ピン17(周方向に沿って3本存在する)が突没自在に設けられている。例えばウエハWに対する処理が終了し、静電チャック12からウエハWを脱離させようとするときには、スイッチ部SWAの接続をアース側に切り替え、これによりチャック電極14へのチャック電圧例えば正電圧の印加を停止すると共に、静電チャック12の表面部に存在する電荷の除去を行ない、こうして当該表面部におけるウエハWへの吸着力を弱める。次いで支持ピン17を上昇させて、ウエハWを静電チャック12の表面部から脱離させる。このときスイッチSWBを閉じ、支持ピン17をウエハWに接触させると、ウエハW側の残留電荷の一部は支持ピン17を介してアースに逃がされる。
【0005】
【発明が解決しようとする課題】
上記のようにウエハWを静電チャック12から脱離させるときには当該静電チャック12及びウエハWの除電が行われているが、ウエハWの反り、絶縁層15のうねり等の要因により、電荷が強く引き合う部位がウエハWと静電チャック12(絶縁層15)の表面部に局在し、除電が十分行われないことがあった。係る状態でウエハWの脱離を行うと、支持ピン17がウエハWを静電チャック12から強制的に剥がすこととなり、その結果例えばウエハWの片側が跳ね上がってしまったり、支持ピン17から落下してしまうといった脱離異常の問題が生じていた。
【0006】
本発明はこのような事情に基づいてなされたものであり、その目的は、静電チャックから基板を脱離させるにあたり、脱離異常の発生を防ぐことができる技術を提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る処理装置は、基板に対して所定の処理を行うための処理容器と、この処理容器内に設けられ、基板の載置面が凹状に形成され、チャック電極に電圧を印加することにより、前記基板を前記載置面の形状に沿って、凹状に湾曲させた状態で静電吸着力により保持するための静電チャックと、
前記チャック電極への電圧の印加を停止したときに、前記基板を裏面側から突き上げて、前記基板が元の状態に復元するように静電チャックから脱離させる昇降部材と、を備え、
前記静電チャックの凹部の形状は、凹部の外縁により形成される円の略中心部の深さが最も大きく、前記チャック電極への電圧の印加を停止したときに基板と静電チャックとの間に発生する残留吸着力が、湾曲に撓んだ状態で保持されていた基板が復元しようとする復元力よりも大きくなるように形成されていることを特徴とする。ここで前記基板としては、半導体基板例えばシリコン基板が用いられる。
【0008】
このような構成によれば、チャック電極への電圧印加を停止した後、基板の復元力と昇降部材の突き上げとにより、静電チャックによる吸着時に所定の凹状に湾曲した基板を元の状態に復元する。このとき基板の弾性変形により基板と静電チャックとの間の隙間が徐々に大きくなるように変化し、この隙間の形成により基板と静電チャックとの間の隙間の静電容量が小さくなる。このためここに残留する電荷が拡散(基板の径方向に電荷が変位)され、除電が促進される。これにより静電チャックにおける基板の脱離異常を防ぎつつ、脱離時間についても大幅に短縮することができる。
【0009】
また前記基板が元の状態に復元し始めてから復元し終わるまでの間に、前記基板の少なくとも一部と接触するように設けられ、基板と接触するときには所定の電位またはアースに接続された導電部材を備えるようにしてもよい。さらに前記昇降部材は、基板と接触するときには所定の電位またはアースに接続されることが好ましい。
【0010】
また前記静電チャックの凹部の形状は、凹部の外縁により形成される円の略中心部の深さが最も大きく、前記チャック電極への電圧の印加を停止したときに基板と静電チャックとの間に発生する残留吸着力が、湾曲に撓んだ状態で保持されていた基板が復元しようとする復元力よりも小さくなるように形成してもよく、この場合には前記基板が元の状態に復元し始めてから復元し終わるまでの間に、この基板の少なくとも一部と接触するように設けられ、基板と接触するときには所定の電位またはアースに接続された導電部材を備えることが好ましい。
【0011】
また本発明の静電チャックから脱離させる方法は、基板の載置面が凹状に形成された静電チャックに静電吸着された基板を、昇降部材により当該基板の裏面側から突き上げて、静電チャックから脱離させる方法において、
静電チャックのチャック電極に対するチャック用の電圧印加を停止する工程と、
その後、昇降部材を上昇させ、基板を元の状態に復元するまで突き上げて、基板裏面と静電チャック表面との間に隙間を形成し、これにより基板及び静電チャックの除電を行う工程と、
次いで昇降部材を上昇させ、基板を静電チャックから浮上させて脱離させる工程と、を含むことを特徴とする。
【0012】
また他の方法は、静電チャックのチャック電極に対するチャック用の電圧印加を停止する工程と、
その後、基板が元の状態に復元し始めてから復元し終わるまでの間に、この基板の少なくとも一部を所定電位又はアースに接続された導電部材に接触させ、これにより基板及び静電チャックの除電を行う工程と、
次いで基板を裏面側から昇降部材により突き上げて、これにより基板を静電チャックから浮上させて脱離させる工程と、を含むことを特徴とする。
【0013】
【発明の実施の形態】
本発明に係る処理装置の実施の形態について、図1及び図2を参照しながら説明する。図1は本実施の形態に係る処理装置の全体構造を示す縦断面図である。図中2は処理容器をなす真空チャンバであり、例えばアルミニウムにより気密構造をなすように形成されており、接地されている。この真空チャンバ2内にはガスシャワーヘッドを兼ねる上部電極21と、下部電極を兼ねる載置台3とが対向して設けられており、底面には図示しない真空ポンプと連通する排気口20が形成されている。また真空チャンバ2の側壁部には基板である半導体基板、例えばシリコン基板であるウエハWを搬入出するための開口部22、23が形成されており、夫々ゲートバルブGにより開閉自在とされている。この側壁部の外方には開口部22、23を上下に挟む位置に、例えば夫々リング状をなす永久磁石24、25が設けられている。
【0014】
上部電極21は、底面に多数の孔部26が形成されると共に上面には図示しないガス供給源から延びるガス供給管27が接続されており、このガス供給管27から供給される処理ガスは、上部電極21内に形成される処理ガス流路28にて拡散し、孔部26を介して載置台3表面部に載置されたウエハWの表面へと向かうように構成されている。また上部電極21は接地されている。
【0015】
次いで本実施の形態の要部をなす載置台3について詳細に説明する。載置台3は例えば円柱状に形成され、載置台支持部31の上面に静電チャック4と、この静電チャック4の周囲を囲む導電部材をなすリング部材5とを設けた構成とされている。前記リング部材5は、真空チャンバ2内に発生するプラズマを、載置台3に載置されたウエハWよりも広げて、ウエハ面内のエッチングレートの均一性を向上させるという役割を果たすものであり、導電体例えばシリコン(Si)により構成されている。
【0016】
また載置台3の側壁部には、排気時においてウエハWの周方向に均一な排気流を形成するためのバッフル板32が設けられている。このバッフル板32は載置台3から真空チャンバ2の内壁面近傍へと延びるリング状の板状部材である。
【0017】
静電チャック4は例えばタングステンよりなるシート状のチャック電極41と、このチャック電極41の表裏面を挟むように設けられる誘電体例えばポリイミドよりなる絶縁層42とで構成されている。このように載置部3は静電チャック4が組み合わせて設けられた構成となっており、この絶縁層42の表面部(上面)43によりウエハWが吸着保持される。
【0018】
チャック電極41は、抵抗R1,スイッチ部SW1を介して直流電源44とアースとの間で切り換え接続できるように構成されており、スイッチ部SW1にて接続を切り替えることで、ウエハWの吸着を行うときには直流電源44からチャック電極41へ直流電界の印加を行い、ウエハWの吸着を解除するときには静電チャック4近傍の電荷をアースに逃がすようになっている。また、チャック電極41と直流電源44とを結ぶ配線の途中には残留電荷監視手段である残留電荷モニタ45が設けられており、後述する静電チャック4の除電を行う際にその進行具合を制御部7にて把握できる構成とされている。この残留電荷モニタ45は、例えばスイッチ部SW1を直列に接続したときに流れる電荷量を記憶しておき、スイッチ部SW1をアース側に切り替えたときに流れる電荷量を差し引くことにより、静電チャック4に残留している電荷を求めるものである。
【0019】
続いて静電チャック4の表面部43(ウエハを吸着する面)の形状について説明する。前記絶縁層42の表面部43は、凹部例えば緩やかな凹曲面をなすように形成され、吸着時においてウエハWは弾性変形により絶縁層42に沿って凹曲面状に湾曲して保持されるように構成されている。
【0020】
この実施の形態では、前記凹曲面の形状は、次の条件を満たすように決定されている。
▲1▼ 静電容量を十分小さくできる隙間が、静電チャック4表面と、吸着を解除されてウエハWが元の状態に復元したとき(ウエハ表面が略水平となった状態)のウエハW裏面と、の間で形成されること。
▲2▼ チャック電極41への直流電界の印加を停止して、ウエハの吸着を解除したときに、ウエハが元の状態に復元しないこと。
▲3▼ ウエハWが静電チャック4に吸着保持されたときの、ウエハの最大変位がウエハの弾性変形範囲内であること。
▲4▼ ウエハWが静電チャック4に吸着保持されたときの、ウエハの最小変位が静電チャック4表面の粗さやうねり、ウエハW裏面の粗さやうねり対して、十分に大きいこと。
【0021】
図1の説明に戻ると、前記リング部材5は、静電チャック4における吸着を解除されてウエハWが元の状態に復元し始めてから復元し終わるまでの間、このウエハWの少なくとも一部と接触するように設けられ、ウエハと接触するときには所定の電位またはアースに接続されている。この実施の形態では、リング部材5は、静電チャック4の外側に、静電チャック4の凹曲面に沿って保持されている状態のウエハWの周縁領域と接触しないが(図2(a)参照)、元の状態に復元する直前に、即ちウエハ表面が略水平面になる直前に、ウエハの周縁領域と接触するように、環状に設けられている(図2(b)参照)。
【0022】
前記載置台3の内部には、外部の図示しない搬送アームとの間でウエハWの受け渡しを行うための昇降部材6が設けられており、処理の終了後においてウエハWを静電チャック4の表面部43から引き離すための脱離手段を構成している。この昇降部材6は、例えば軸部61の上部に設けられた連結部材62の上に、鉛直方向に延びる複数例えば4本の支持ピン63を設けた構成とされており、例えばエアシリンダーやボールネジ機構などからなる駆動機構64が軸部61を昇降させることで、支持ピン63の先端が例えば表面部43に形成される孔部65を介して突没するようになっている。
【0023】
前記支持ピン63は、例えばウエハWを当該ウエハWと静電チャック4との夫々の中心が重なるように載置した場合において、この中心から等間隔且つ周方向に沿うような中心近傍位置に設けられている。また各支持ピン63は先端の高さが等しくなるように揃えられており、上昇時には表面部43に載置されたウエハWの中心近傍領域を持ち上げるようになっている。この昇降部材6は、静電チャック4による吸着解除後における除電手段を兼ねるものであり、例えばステンレスなどの導電体により構成されている。
【0024】
前記載置台支持部31及び支持ピン63は夫々共通の抵抗R2及びスイッチ部SW2を介して接地されている。またなおスイッチ部SW1、SW2の切り替えは制御部7によりコントロールされるようになっている。前記載置台3の例えば載置台支持部31には、コンデンサC1及びコイルL1を介してプラズマ発生用高周波を印加するための高周波電源33が接続されている。また前記リング部材5は載置台支持部31と抵抗R3を介して接続されており、リング部材5は少なくともウエハWと接触するときには、ウエハの残留電荷よりも低電位である所定の電位に接続されるようになっている。
【0025】
次いで本実施の形態の作用について説明する。先ず昇降部材6を下降させた状態でゲートバルブGを開くと、開口部22(または23)を介して図示しない搬送アームが真空チャンバ2内に進入し、支持ピン63(昇降部材6)との協働作業によりウエハWが静電チャック4の表面部43に載置される。そして搬送アームが退出してゲートバルブGを閉じた後、排気口20を介して真空チャンバ2内の真空引きを行って、例えば内部圧力が10−2〜10−3Paに維持されるように調節を行う。このとき制御部7ではチャック電極41に直流電界が印加されるようにスイッチ部SW1の切り替えを行い、ウエハWはクーロン力により表面部43に保持される。このときウエハWは、静電チャック4表面の凹曲面形状に沿って、凹曲面に湾曲した形状で保持される。
【0026】
そしてウエハWに向けて処理ガス例えばC4F8ガスの供給を行うと共に、下部電極をなす載置台3に高周波電源33から高周波電圧を印加して、プラズマを高密度化し、ウエハW表面の例えばシリコン酸化膜をエッチングする。エッチングが終了した後、静電チャック4からウエハWを脱離させる工程へと移行する。以下、この工程について図3の工程図と図4の作用説明図(縦断面図)とを併せ見ながら説明していく。
【0027】
先ずスイッチ部SW1をアース側に切り換えて静電チャック4の除電を開始する。一方ウエハWの除電は、スイッチ部SW2を閉じ、支持ピン63によりウエハが元の状態に復元するように、ウエハ表面が略水平になるまで押し上げることにより行われる(ステップS1)。ここで支持ピン63によりウエハを押し上げると、ウエハは弾性変形による復元力と支持ピン63の押圧力にて元の状態に復元しようとするが、例えばこの元の状態に復元する直前にウエハの周縁領域がリング部材5と接触する。
【0028】
この際駆動機構64により昇降部材6を上昇させると、制御部7では支持ピン63がウエハWが元の状態に復元するまで(ウエハ表面が略水平になるまで)押し上げたか否かの判断が行われ(ステップS2)、復元したと判断されるまで例えば支持ピン63を予め設定した上昇量となるまで、昇降部材6を継続して上昇させる(ステップS3)。そして支持ピン63が予め設定した上昇量になると(このときウエハWが元の状態に復元する)、制御部7ではステップS5に示すように昇降部材6の上昇を停止する(図4(a),(b)参照)。これにより後に詳述するメカニズムにより表面部43近傍の残留電荷が徐々に放電されていく。なお前記支持ピン63の上昇量は、予め最小押し上げ力になるように最適化されている。
【0029】
ところで制御部7では例えばウエハWと支持ピン63とが接触する前から残留電荷モニタ45により除電の進行状況を監視し、所定の除電レベルに達したか否かの判断を行っており(ステップS5)、当該レベルに達するまでは支持ピン63をこの位置にして放電を行い(ステップS6)、当該レベルに達したならば一時停止していた駆動機構64を再び作動させ、昇降部材6を更に上昇させる(ステップS7)。このステップS7の判断基準は、除電が完全に行われたか、或いは昇降部材6を上昇させても「発明が解決しようとする課題」にて述べたようなウエハWの脱離異常が生じない程度の吸着力しか有さないレベルまで、当該領域の除電がなされたかである。こうして昇降部材6が所定の高さまで上昇すると駆動機構64は停止し(図4(c))。しかる後搬入時と逆の順序でウエハWが真空チャンバ2から搬出される。
【0030】
ここで除電のメカニズムについて図4を参照して述べておくと、ウエハWの処理が終了して、静電チャック4への直流電圧の供給を停止した状態では、静電チャック4の表面側には正電荷が存在し、一方ウエハWの裏面側には負電荷が存在している。この状態で静電チャック4のスイッチSW1をアースに接続すると静電チャック4の正電荷がアースに向かい、静電チャック4の除電がある程度行われる(図4(a)参照)。一方ウエハW側では、ウエハWに支持ピン63を接触させることにより、支持ピン63は導電体でありアースに接続されているので、ウエハWの支持ピン63との接触部位近傍の負電荷が支持ピン63を介してアース側に移動していき、これによりウエハWの除電もある程度行われると考えられる。
【0031】
ここで静電チャック4の表面部43及びウエハWの裏面側は、微視的に捉えれば図5に示すように、両者共に凹凸を有しており、この両者の凹凸が接近する接近部位100の近傍では電荷(例えばウエハ側の負電荷と静電チャック側の正電荷と)の結合力が強く、ここに多くの電荷が集まって強い吸着力を生じていると考えられる。この部分の電荷は静電吸着力が大きいので、上述の静電チャック4やウエハWの除電を行っても逃げて行かず、残留電荷として存在し、これによりウエハWの脱離異常が発生するものと推察される。
【0032】
ところでこの実施の形態では、静電チャック4への電力供給を停止したときに、ウエハWの残留吸着力がウエハWの復元力よりも大きくなるように静電チャック4表面の凹曲面を形成している。このため既述のように静電チャック4によるウエハWの吸着を解除した後、ウエハWの弾性変形による復元を助けるためにウエハWを支持ピン63により下方側から押圧すると、支持ピン63はウエハWの中心近傍位置に設けられていることから、ウエハWと静電チャック4との間の隙間がウエハの弾性変形に従い、ウエハWの中心側から周縁領域に向けて徐々に大きくなり、支持ピン63が所定位置まで上昇したときにはウエハWが元の状態に復元し、ウエハWと静電チャック4との間には全面に亘って所定の大きさの隙間が形成される。
【0033】
このようにウエハWと静電チャック4との間に隙間が形成されると、既述の接近部位100の間の隙間も大きくなるので、これにより接近部位100の静電容量が小さくなる。この際シリコンウエハは半導体であることから、クーロン力の束縛から解放された負電荷はウエハW内を自由に動き回れるようになり、その結果ウエハWに残留していた負電荷は抵抗の低い方向に向かう。従って既述のようにウエハWの中心から周縁領域に向けて徐々に隙間を大きくしていくと、残留する負電荷の大部分がウエハの中心から同心円状に周縁領域に向かっていく。そしてこの負電荷はウエハWの周縁領域から真空チャンバ2に放電されると共に、リング部材5に向かい、このリング部材5は載置台支持部31を介して負電荷よりも低い電位になっているので、ここから抵抗が低い方向に向かって行くと推察される。さらに負電荷の一部は支持ピン63を介しても移動して行くと考えられる(図4(b)参照)。こうしてウエハ側に残留する負電荷が除電されるので、静電チャック側に残留する正電荷もその場に留まれずに除電されると推察される。
【0034】
以上のように本実施の形態によれば、ウエハWを静電チャック4の凹曲面に沿って湾曲させた状態で吸着保持させることにより、吸着を解除してウエハWが弾性変形により湾曲した状態から元の状態に戻る際、ウエハWと静電チャック4との間に形成される隙間が徐々に大きくなるように変化させている。この隙間の形成によりウエハWと静電チャック4との間の静電容量が小さくなるので、ウエハWと静電チャック4の界面に局在する残留電荷が分散され、速やかに除電を行うことができる。このため、ウエハWの脱離異常を防ぎつつ、短時間で脱離することができ、脱離時間が短縮されることからスループットの向上を図ることができる。
【0035】
また上述の実施の形態では、吸着を解除されたウエハWの復元力よりも残留吸着力が大きくなるように静電チャック4の凹曲面の形状が決定されているので、前記凹曲面の曲率が小さくなる。このためウエハの弾性変形の程度が小さいので、ウエハを変形させることにより、ほとんどダメージが生じる恐れがない。
【0036】
さらに上述の実施の形態では、吸着を解除されたウエハWが元の状態に復元し始めてから復元し終わるまでの間に、導電性のリング部材5に接触するように構成されており、リング部材5はウエハWの残留電荷よりも低電位に維持されているので、ウエハWの残留電荷がリング部材5を介して除電され、真空チャンバ2や支持ピン63を介しての除電の組み合わせにより、より残留電荷の除電を促進することができる。ここでリング部材5はアースに接続される以外に、残留電荷よりも低電位であれば静電チャック4と同電位であってもよく、適宜所定の電位に接続される。
【0037】
さらにこの実施の形態では、必ずしもリング部材5は設ける必要はなく、この場合には、ウエハWと静電チャック4との間に、ウエハWの略中心部から周縁領域に向かって隙間が形成される際、ウエハWの周縁領域に移動した残留電荷の大部分は、ウエハの周縁領域から真空チャンバ2に向かって放電していき、一部は支持ピン63や載置台支持部31を介して放電されると考えられる。
【0038】
さらにまた上述の実施の形態では、支持ピン63を導電体により構成し、アースに接続しているため、支持ピン63をウエハWに接触させたときにウエハWの電荷が速やかに支持ピン63を介してグランドに向かって移動していく。また支持ピン63によりウエハWを元の状態に復元させるときにもウエハWの残留電荷の一部が支持ピン63を介して放電していくので、除電が速やかに行われ、除電に要する時間の短縮に寄与することができる。なお上述の実施の形態では、支持ピン63を絶縁体例えば樹脂などにより構成してもよく、この場合ウエハWの電荷は、リング部材5から真空チャンバ2に向かって放電するか、リング部材5との接触によりグランドに向かって移動するか、一部は載置台支持部31に向かって移動すると推察される。
【0039】
また、本実施の形態では除電を行うにあたって、残留電荷モニタ45により除電の進行状況を確認するようにしているため、適切なタイミングで脱離作業に移行することができる。
【0040】
続いて他の実施の形態について説明する。この実施の形態は、静電チャック4の凹曲面の形状を、ウエハWの吸着を解除したときに、ウエハWの復元力が、ウエハWと静電チャック4との間の残留吸着力よりも大きくなるように形成した点において、上述の実施の形態と異なっている。その他の凹曲面形状の要件や、その他の構造は上述の実施の形態と同様である。
【0041】
この実施の形態では、残留吸着力よりもウエハWの復元力の方が大きくなるように静電チャック4の形状が決定されているので、ウエハWはウエハW自身の復元力により静電チャック4に吸着され湾曲している状態から元の状態に復元する。そして元の状態に復元し始めてから復元し終わるまでの間、例えばウエハが復元する(ウエハ表面が略水平になる)直前にウエハWの周縁領域がリング部材5に接触する。
【0042】
こうしてウエハWが復元することにより、ウエハWと静電チャック4との間に所定の大きさの隙間が形成され、この際上述の実施の形態と同様にウエハWの残留電荷がウエハの中心領域から周縁領域に向かって移動する。そして残留電荷の大部分は周縁領域から真空チャンバ2またはリング部材5を介して放電していき、残留電荷の一部は載置台支持部31を介して移動していく。こうしてウエハWと静電チャック4の除電を行った後、昇降部材6を上昇させてウエハWを静電チャック4よりも浮上させて、図示しない搬送アームに受け渡す。
【0043】
この実施の形態では、除電の際、ウエハWの復元力を利用してウエハWと静電チャック4との間に隙間を形成しているので、除電のときに昇降部材6を昇降させずに済み、除電工程がより簡易になる。なおこの実施の形態では、支持ピン63を介して除電が行われないため、ウエハWの残留電荷を速やかに除電するためにはリング部材5を設けることが望ましい。
【0044】
なお以上において、除電から、ウエハWを静電チャック4表面から浮上させる脱離作業へ移行するタイミングは、残留電荷モニタ45によるものに限定されず、例えば予め測定しておいた時間になると脱離作業が開始されるようにタイマーを設けた構成としてもよい。また、上述実施の形態に示したルートとは別個に、除電専用の低抵抗のアース線を設け、これにより除電を促進する構成としてもよい。さらに脱離作業を行うにあたっては、真空チャンバ2内の雰囲気が除電の促進に有利な雰囲気となるように調節してもよく、この場合には例えば真空チャンバ2内に供給するパージガスの種類、圧力または流量、或いは当該雰囲気の温度などを調節することが可能である。
【0045】
リング部材5は、完全な環状体のみならず、ウエハが復元し始めてから復元し終わるまでにウエハの少なくとも一部と接触する構造であればよく、例えば複数の導電性の部材を並べたものでもよい。さらに本発明の静電チャックは、基板の載置面が凹状に形成されていればよく、例えば図6に示すように、静電チャック8の載置面を、階段状に段階的に変化して凹部を形成するように構成してもよい。さらに本発明では、エッチング処理のみならず、成膜処理やイオン注入処理の他、アッシング等の処理にも適用可能である。
【0046】
【発明の効果】
以上のように本発明によれば、静電チャックから基板を脱離させるにあたり、脱離異常の発生を防ぐとともに、当該脱離に要する時間の短縮化を図ることができる。
【図面の簡単な説明】
【図1】本実施の形態に係る処理装置の実施の形態における全体構成を示す縦断面図である。
【図2】上記静電チャックに設けられたリング部材を示す概略断面図である。
【図3】本実施の形態の作用を説明するための工程図である。
【図4】本実施の形態の作用を説明するため、前記工程図と対応させて載置台(下部電極)近傍の様子を表した作用説明図である。
【図5】本実施の形態における効果を説明するための説明図である。
【図6】本発明の他の実施の形態に係る静電チャックの一例を示す縦断面図である。
【図7】従来の技術に係る処理装置の載置台を示す縦断面図である。
【符号の説明】
W   ウエハ
SW1,SW2 スイッチ部
2   真空チャンバ
21  上部電極
3   載置台
33  高周波電源
4   静電チャック
41  チャック電極
43  表面部
5   リング部材
6   昇降部材
63  支持ピン
64  駆動機構
7   制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a processing apparatus that places a substrate on an electrostatic chuck and performs, for example, a vacuum process, and a method of detaching the substrate from the electrostatic chuck.
[0002]
[Prior art]
2. Description of the Related Art There are many semiconductor device manufacturing processes in which a substrate is processed in a vacuum atmosphere, such as a film formation process by etching or CVD (chemical vapor deposition), and a vacuum processing apparatus for performing such a process. In general, an electrostatic chuck is used as a mounting table for a substrate used in the method.
[0003]
An example of this electrostatic check will be described with reference to FIG. In the drawing, reference numeral 1 denotes a mounting table for a semiconductor wafer (hereinafter, referred to as a wafer) W. An electrostatic chuck 12 is provided on an upper surface of a mounting table support portion 11, and a conductive ring provided so as to surround a side of the electrostatic chuck 12. The body 13 is provided. The electrostatic chuck 12 has a configuration in which the front and back surfaces of a conductive sheet-shaped chuck electrode 14 are sandwiched between insulating layers 15 made of a dielectric material such as polyimide, and a DC voltage is applied from the DC power supply 16 to the chuck electrode 14. Voltage) is applied, and the wafer W can be attracted and held by the Coulomb force generated by the applied voltage.
[0004]
Further, inside the mounting table 1, for example, conductive support pins 17 (three exist in the circumferential direction) for detaching the wafer W from the electrostatic chuck 12 are provided so as to be freely protruded and retracted. For example, when the processing on the wafer W is completed and the wafer W is to be detached from the electrostatic chuck 12, the connection of the switch unit SWA is switched to the ground side, thereby applying a chuck voltage, for example, a positive voltage to the chuck electrode 14. Is stopped, and the electric charge existing on the surface of the electrostatic chuck 12 is removed, thereby weakening the attraction force of the surface to the wafer W. Next, the support pins 17 are raised, and the wafer W is detached from the surface of the electrostatic chuck 12. At this time, when the switch SWB is closed and the support pins 17 are brought into contact with the wafer W, a part of the residual charge on the wafer W side is released to the ground via the support pins 17.
[0005]
[Problems to be solved by the invention]
When the wafer W is detached from the electrostatic chuck 12 as described above, static elimination is performed on the electrostatic chuck 12 and the wafer W. However, due to factors such as warpage of the wafer W and undulation of the insulating layer 15, electric charges are generated. In some cases, the strongly attracted portion is localized on the surface of the wafer W and the surface of the electrostatic chuck 12 (insulating layer 15), and the static elimination may not be performed sufficiently. When the wafer W is detached in such a state, the support pins 17 forcibly peel the wafer W from the electrostatic chuck 12, and as a result, for example, one side of the wafer W jumps up or drops from the support pins 17. The problem of anomalous detachment has occurred.
[0006]
The present invention has been made based on such circumstances, and an object of the present invention is to provide a technique capable of preventing occurrence of a detachment abnormality when detaching a substrate from an electrostatic chuck.
[0007]
[Means for Solving the Problems]
A processing apparatus according to the present invention includes a processing container for performing a predetermined processing on a substrate, a processing container provided in the processing container, a mounting surface of the substrate formed in a concave shape, and applying a voltage to a chuck electrode. Thereby, the electrostatic chuck for holding the substrate by electrostatic attraction in a state of being concavely curved along the shape of the mounting surface,
When the application of the voltage to the chuck electrode is stopped, an elevating member that pushes up the substrate from the back side and detaches the substrate from the electrostatic chuck so as to restore the substrate to its original state,
The shape of the concave portion of the electrostatic chuck is such that the depth of the substantially central portion of the circle formed by the outer edge of the concave portion is the largest, and the gap between the substrate and the electrostatic chuck when the application of the voltage to the chuck electrode is stopped. The substrate is characterized in that the residual suction force generated in the substrate is formed so as to be larger than the restoring force of the substrate that has been held in a bent state. Here, a semiconductor substrate such as a silicon substrate is used as the substrate.
[0008]
According to such a configuration, after the application of voltage to the chuck electrode is stopped, the substrate, which has been curved in a predetermined concave shape at the time of being attracted by the electrostatic chuck, is restored to the original state by the restoring force of the substrate and the lifting of the elevating member. I do. At this time, the gap between the substrate and the electrostatic chuck changes so as to gradually increase due to the elastic deformation of the substrate, and the formation of this gap reduces the capacitance of the gap between the substrate and the electrostatic chuck. For this reason, the electric charge remaining here is diffused (electric charge is displaced in the radial direction of the substrate), and the charge elimination is promoted. As a result, the detachment time can be significantly shortened while preventing the detachment abnormality of the substrate in the electrostatic chuck.
[0009]
Also, a conductive member provided so as to be in contact with at least a part of the substrate during a period from the start of the restoration of the substrate to the original state until the restoration is completed, and a conductive member connected to a predetermined potential or ground when contacting the substrate. May be provided. Further, it is preferable that the elevating member is connected to a predetermined potential or ground when coming into contact with the substrate.
[0010]
Further, the shape of the concave portion of the electrostatic chuck is such that the depth of the substantially central portion of the circle formed by the outer edge of the concave portion is the largest, and when the application of the voltage to the chuck electrode is stopped, the substrate and the electrostatic chuck can be separated. The substrate may be formed so that the residual suction force generated therebetween becomes smaller than the restoring force of the substrate held in a bent state in which the substrate is to be restored. In this case, the substrate remains in the original state. It is preferable that a conductive member is provided so as to be in contact with at least a part of the substrate from the start of restoration to the end of restoration, and is provided with a conductive member connected to a predetermined potential or ground when contacting the substrate.
[0011]
Further, in the method of detaching the substrate from the electrostatic chuck according to the present invention, the substrate that is electrostatically attracted to the electrostatic chuck in which the mounting surface of the substrate is formed in a concave shape is pushed up from the back surface side of the substrate by a lifting member, In the method of detaching from the electric chuck,
Stopping the application of the voltage for the chuck to the chuck electrode of the electrostatic chuck,
Then, raising the elevating member, pushing up until the substrate is restored to its original state, forming a gap between the back surface of the substrate and the front surface of the electrostatic chuck, thereby performing a process of removing electricity from the substrate and the electrostatic chuck,
Then, the lifting member is lifted, and the substrate is lifted off the electrostatic chuck to be detached.
[0012]
Still another method includes a step of stopping application of a voltage for chucking to a chuck electrode of the electrostatic chuck,
Thereafter, during the period from when the substrate starts to be restored to the original state to when the substrate is restored, at least a part of the substrate is brought into contact with a predetermined potential or a conductive member connected to the ground, thereby removing electricity from the substrate and the electrostatic chuck. Performing the step of
Then, the substrate is pushed up from the back side by a lifting member, whereby the substrate is lifted off the electrostatic chuck to be detached.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a processing apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing the entire structure of the processing apparatus according to the present embodiment. In the figure, reference numeral 2 denotes a vacuum chamber forming a processing container, which is formed of, for example, aluminum so as to form an airtight structure and is grounded. In the vacuum chamber 2, an upper electrode 21 also serving as a gas shower head and a mounting table 3 also serving as a lower electrode are provided to face each other, and an exhaust port 20 communicating with a vacuum pump (not shown) is formed on the bottom surface. ing. Openings 22 and 23 for carrying in and out a semiconductor substrate as a substrate, for example, a wafer W as a silicon substrate, are formed in a side wall of the vacuum chamber 2, and can be opened and closed by a gate valve G, respectively. . Outside the side walls, for example, ring-shaped permanent magnets 24 and 25 are provided at positions vertically sandwiching the openings 22 and 23, respectively.
[0014]
The upper electrode 21 has a large number of holes 26 formed on the bottom surface and a gas supply tube 27 extending from a gas supply source (not shown) connected to the upper surface. The processing gas supplied from the gas supply tube 27 is It is configured to diffuse in the processing gas flow path 28 formed in the upper electrode 21 and to go to the surface of the wafer W mounted on the surface of the mounting table 3 through the hole 26. The upper electrode 21 is grounded.
[0015]
Next, the mounting table 3 which is a main part of the present embodiment will be described in detail. The mounting table 3 is formed, for example, in a columnar shape, and has a configuration in which an electrostatic chuck 4 and a ring member 5 serving as a conductive member surrounding the periphery of the electrostatic chuck 4 are provided on the upper surface of the mounting table support portion 31. . The ring member 5 serves to spread the plasma generated in the vacuum chamber 2 more than the wafer W mounted on the mounting table 3 to improve the uniformity of the etching rate in the wafer surface. And a conductor, for example, silicon (Si).
[0016]
A baffle plate 32 for forming a uniform exhaust flow in the circumferential direction of the wafer W at the time of exhaustion is provided on the side wall of the mounting table 3. The baffle plate 32 is a ring-shaped plate-like member extending from the mounting table 3 to the vicinity of the inner wall surface of the vacuum chamber 2.
[0017]
The electrostatic chuck 4 includes a sheet-like chuck electrode 41 made of, for example, tungsten, and an insulating layer 42 made of a dielectric material, for example, polyimide, provided so as to sandwich the front and back surfaces of the chuck electrode 41. As described above, the mounting portion 3 has a configuration in which the electrostatic chuck 4 is provided in combination, and the surface portion (upper surface) 43 of the insulating layer 42 holds the wafer W by suction.
[0018]
The chuck electrode 41 is configured such that it can be switched and connected between the DC power supply 44 and the ground via the resistor R1 and the switch unit SW1, and the wafer W is sucked by switching the connection with the switch unit SW1. In some cases, a DC electric field is applied from the DC power supply 44 to the chuck electrode 41, and when the chucking of the wafer W is released, the electric charges near the electrostatic chuck 4 are released to the ground. Further, a residual charge monitor 45, which is a residual charge monitoring means, is provided in the middle of the wiring connecting the chuck electrode 41 and the DC power supply 44, and controls the progress of the charge removal of the electrostatic chuck 4 described later. The configuration can be grasped by the unit 7. The residual charge monitor 45 stores, for example, the amount of charge that flows when the switch unit SW1 is connected in series, and subtracts the amount of charge that flows when the switch unit SW1 is switched to the ground side, thereby obtaining the electrostatic chuck 4. The remaining charge is determined.
[0019]
Next, the shape of the surface portion 43 (the surface on which the wafer is sucked) of the electrostatic chuck 4 will be described. The surface portion 43 of the insulating layer 42 is formed to have a concave portion, for example, a gentle concave surface, and the wafer W is elastically deformed and held in a concave curved shape along the insulating layer 42 by suction. It is configured.
[0020]
In this embodiment, the shape of the concave curved surface is determined so as to satisfy the following condition.
{Circle around (1)} A gap that can sufficiently reduce the capacitance is formed between the surface of the electrostatic chuck 4 and the back surface of the wafer W when the wafer W is restored to the original state after the suction is released (the state where the wafer surface is substantially horizontal). And being formed between.
{Circle around (2)} When the application of the DC electric field to the chuck electrode 41 is stopped and the suction of the wafer is released, the wafer is not restored to the original state.
(3) The maximum displacement of the wafer W when the wafer W is held by suction on the electrostatic chuck 4 is within the elastic deformation range of the wafer.
{Circle around (4)} The minimum displacement of the wafer W when the wafer W is attracted and held by the electrostatic chuck 4 is sufficiently large with respect to the roughness and undulation of the surface of the electrostatic chuck 4 and the roughness and undulation of the back surface of the wafer W.
[0021]
Returning to the description of FIG. 1, the ring member 5 has at least a part of the wafer W during a period from when the suction in the electrostatic chuck 4 is released and the wafer W starts to be restored to the original state until the restoration is completed. They are provided so as to be in contact with each other and are connected to a predetermined potential or ground when they come into contact with the wafer. In this embodiment, the ring member 5 does not contact the peripheral region of the wafer W held outside the electrostatic chuck 4 along the concave curved surface of the electrostatic chuck 4 (FIG. 2A). 2), the ring is provided in an annular shape so as to be in contact with the peripheral region of the wafer immediately before restoration to the original state, that is, immediately before the wafer surface becomes substantially horizontal.
[0022]
An elevating member 6 for transferring the wafer W to and from an external transfer arm (not shown) is provided inside the mounting table 3, and the wafer W is placed on the surface of the electrostatic chuck 4 after the processing is completed. It constitutes a detaching means for detaching from the part 43. The elevating member 6 has a configuration in which, for example, a plurality of, for example, four support pins 63 extending in the vertical direction are provided on a connecting member 62 provided on an upper portion of a shaft portion 61, for example, an air cylinder or a ball screw mechanism. By driving the shaft portion 61 up and down by the drive mechanism 64 made of, for example, the tip of the support pin 63 is protruded and retracted through a hole 65 formed in the surface portion 43, for example.
[0023]
For example, when the wafer W is placed so that the respective centers of the wafer W and the electrostatic chuck 4 are overlapped with each other, the support pins 63 are provided near the center at equal intervals from the center and along the circumferential direction. Has been. Further, the support pins 63 are aligned so that the heights of the tips are equal, and when raised, lift the region near the center of the wafer W placed on the surface portion 43. The elevating member 6 also serves as a charge removing unit after the electrostatic chuck 4 releases the suction, and is made of, for example, a conductor such as stainless steel.
[0024]
The table support portion 31 and the support pin 63 are grounded via a common resistor R2 and a switch portion SW2, respectively. The switching of the switch units SW1 and SW2 is controlled by the control unit 7. A high frequency power supply 33 for applying a high frequency for plasma generation via a capacitor C1 and a coil L1 is connected to, for example, the mounting table support 31 of the mounting table 3. The ring member 5 is connected to the mounting table support portion 31 via a resistor R3. When the ring member 5 contacts at least the wafer W, the ring member 5 is connected to a predetermined potential lower than the residual charge of the wafer. It has become so.
[0025]
Next, the operation of the present embodiment will be described. First, when the gate valve G is opened with the elevating member 6 lowered, the transfer arm (not shown) enters the vacuum chamber 2 through the opening 22 (or 23), and is brought into contact with the support pin 63 (the elevating member 6). The wafer W is placed on the surface portion 43 of the electrostatic chuck 4 by the cooperative operation. Then, after the transfer arm retreats and closes the gate valve G, the inside of the vacuum chamber 2 is evacuated through the exhaust port 20 so that, for example, the internal pressure becomes 10 -2 -10 -3 Adjust so that it is maintained at Pa. At this time, the control section 7 switches the switch section SW1 so that a DC electric field is applied to the chuck electrode 41, and the wafer W is held on the surface section 43 by Coulomb force. At this time, the wafer W is held in a concave curved shape along the concave curved shape of the surface of the electrostatic chuck 4.
[0026]
A processing gas, for example, a C4F8 gas is supplied toward the wafer W, and a high-frequency voltage is applied from the high-frequency power supply 33 to the mounting table 3 serving as a lower electrode, thereby increasing the density of the plasma and, for example, a silicon oxide film on the surface of the wafer W. Is etched. After the etching is completed, the process proceeds to a step of detaching the wafer W from the electrostatic chuck 4. Hereinafter, this step will be described with reference to the step diagram of FIG. 3 and the operation explanatory view (longitudinal sectional view) of FIG.
[0027]
First, the switch SW1 is switched to the ground side to start the charge removal of the electrostatic chuck 4. On the other hand, the charge elimination of the wafer W is performed by closing the switch unit SW2 and pushing up the wafer surface with the support pins 63 until the wafer surface is substantially horizontal so that the wafer is restored to the original state (step S1). Here, when the wafer is pushed up by the support pins 63, the wafer tries to restore to the original state by the restoring force due to the elastic deformation and the pressing force of the support pins 63. The area contacts the ring member 5.
[0028]
At this time, when the lifting member 6 is raised by the drive mechanism 64, the control unit 7 determines whether or not the support pins 63 have been pushed up until the wafer W is restored to the original state (until the wafer surface becomes substantially horizontal). Then, the lifting member 6 is continuously raised until it is determined that it has been restored (step S2), for example, until the support pin 63 reaches a predetermined lifting amount (step S3). Then, when the support pin 63 reaches the preset rising amount (the wafer W is restored to the original state at this time), the control unit 7 stops the lifting of the lifting member 6 as shown in step S5 (FIG. 4A). , (B)). Thus, the residual charges in the vicinity of the surface portion 43 are gradually discharged by a mechanism described later in detail. It should be noted that the lifting amount of the support pin 63 is optimized in advance so as to have the minimum pushing force.
[0029]
The control unit 7 monitors the progress of static elimination by the residual charge monitor 45 before the wafer W and the support pins 63 come into contact with each other, for example, and determines whether or not the static elimination has reached a predetermined static elimination level (step S5). The discharge is performed with the support pin 63 at this position until the level is reached (step S6). When the level is reached, the temporarily stopped drive mechanism 64 is operated again to further raise the elevating member 6. (Step S7). The determination criterion in step S7 is such that the static elimination is completely performed, or even if the elevating member 6 is raised, the detachment abnormality of the wafer W as described in “Problems to be Solved by the Invention” does not occur. This indicates whether the static elimination of the area has been performed up to a level having only the adsorption force. When the elevating member 6 rises to a predetermined height in this way, the drive mechanism 64 stops (FIG. 4C). Thereafter, the wafer W is unloaded from the vacuum chamber 2 in the reverse order of loading.
[0030]
Here, the mechanism of the charge elimination will be described with reference to FIG. 4. When the processing of the wafer W is completed and the supply of the DC voltage to the electrostatic chuck 4 is stopped, the static electricity is removed from the surface of the electrostatic chuck 4. Has a positive charge, while a negative charge exists on the back side of the wafer W. When the switch SW1 of the electrostatic chuck 4 is connected to the ground in this state, the positive charge of the electrostatic chuck 4 goes to the ground, and the charge of the electrostatic chuck 4 is removed to some extent (see FIG. 4A). On the other hand, on the wafer W side, by bringing the support pins 63 into contact with the wafer W, the support pins 63 are conductive and connected to the ground, so that the negative charges near the contact portions of the wafer W with the support pins 63 are supported. It is considered that the wafer W is moved to the ground side via the pin 63, whereby the charge on the wafer W is also removed to some extent.
[0031]
Here, when viewed microscopically, the front surface portion 43 of the electrostatic chuck 4 and the back surface side of the wafer W both have irregularities, as shown in FIG. It is considered that the binding force of the electric charges (for example, the negative electric charge on the wafer side and the positive electric charge on the electrostatic chuck side) is strong in the vicinity of, and a large amount of electric charge is collected here to generate a strong attraction force. Since the charge in this portion has a large electrostatic attraction force, it does not escape even if the above-described electrostatic chuck 4 or the wafer W is removed, and remains as a residual charge, thereby causing an abnormal detachment of the wafer W. It is assumed that
[0032]
By the way, in this embodiment, when the power supply to the electrostatic chuck 4 is stopped, the concave curved surface of the surface of the electrostatic chuck 4 is formed so that the residual suction force of the wafer W becomes larger than the restoring force of the wafer W. ing. For this reason, as described above, after the wafer W is released from the suction by the electrostatic chuck 4 and the wafer W is pressed from below by the support pins 63 in order to help the wafer W to be restored by elastic deformation, the support pins 63 Since the gap between the wafer W and the electrostatic chuck 4 is provided near the center of the wafer W, the gap between the wafer W and the electrostatic chuck 4 gradually increases from the center side of the wafer W toward the peripheral area according to the elastic deformation of the wafer. When 63 rises to a predetermined position, wafer W is restored to its original state, and a gap of a predetermined size is formed between wafer W and electrostatic chuck 4 over the entire surface.
[0033]
When a gap is formed between the wafer W and the electrostatic chuck 4 as described above, the gap between the above-described approaching parts 100 also increases, so that the capacitance of the approaching part 100 decreases. At this time, since the silicon wafer is a semiconductor, the negative charges released from the constraint of the Coulomb force can freely move around in the wafer W, and as a result, the negative charges remaining on the wafer W move in the direction of lower resistance. Head for. Therefore, as described above, when the gap is gradually increased from the center of the wafer W toward the peripheral region, most of the remaining negative charges concentrically move from the center of the wafer to the peripheral region. This negative charge is discharged from the peripheral region of the wafer W to the vacuum chamber 2 and goes to the ring member 5, which has a lower potential than the negative charge via the mounting table support 31. It is inferred that the resistance will go in the direction of lower resistance. Further, it is considered that a part of the negative charge moves even through the support pin 63 (see FIG. 4B). Since the negative charges remaining on the wafer side are eliminated in this way, it is presumed that the positive charges remaining on the electrostatic chuck side are also eliminated without staying there.
[0034]
As described above, according to the present embodiment, the suction is released by holding the wafer W in a state of being curved along the concave curved surface of the electrostatic chuck 4 so that the wafer W is bent by elastic deformation. When returning to the original state from, the gap formed between the wafer W and the electrostatic chuck 4 is changed so as to gradually increase. The formation of the gap reduces the capacitance between the wafer W and the electrostatic chuck 4, so that the residual charge localized at the interface between the wafer W and the electrostatic chuck 4 is dispersed, and the charge can be quickly removed. it can. Therefore, the wafer W can be desorbed in a short time while preventing the desorption of the wafer W, and the desorption time is shortened, so that the throughput can be improved.
[0035]
Further, in the above-described embodiment, since the shape of the concave curved surface of the electrostatic chuck 4 is determined so that the residual suction force is larger than the restoring force of the wafer W released from the suction, the curvature of the concave curved surface is reduced. Become smaller. For this reason, since the degree of elastic deformation of the wafer is small, there is almost no possibility that damage is caused by deforming the wafer.
[0036]
Furthermore, in the above-described embodiment, the wafer W released from suction is brought into contact with the conductive ring member 5 from the time when the wafer W is restored to the original state to the time when the restoration is completed. 5 is maintained at a lower potential than the residual charge of the wafer W, the residual charge of the wafer W is discharged through the ring member 5, and the combination of the discharge through the vacuum chamber 2 and the support pins 63 reduces the residual charge. It is possible to promote the elimination of residual charges. Here, besides being connected to the ground, the ring member 5 may have the same potential as the electrostatic chuck 4 as long as the potential is lower than the residual charge, and is connected to a predetermined potential as appropriate.
[0037]
Further, in this embodiment, the ring member 5 does not necessarily need to be provided, and in this case, a gap is formed between the wafer W and the electrostatic chuck 4 from a substantially central portion of the wafer W toward the peripheral region. Most of the residual charges that have moved to the peripheral area of the wafer W discharge from the peripheral area of the wafer toward the vacuum chamber 2, and a part of the residual charges are discharged through the support pins 63 and the mounting table support 31. It is thought to be done.
[0038]
Furthermore, in the above-described embodiment, since the support pins 63 are formed of a conductor and are connected to the ground, when the support pins 63 are brought into contact with the wafer W, the charges of the wafer W are quickly applied to the support pins 63. And move towards the ground. Also, when restoring the wafer W to the original state by the support pins 63, a part of the residual charge of the wafer W is discharged through the support pins 63, so that static elimination is quickly performed, and the time required for static elimination is reduced. It can contribute to shortening. In the above-described embodiment, the support pins 63 may be made of an insulator, for example, a resin. In this case, the electric charge of the wafer W is discharged from the ring member 5 toward the vacuum chamber 2 or It is presumed that it moves toward the ground due to the contact with, or moves partly toward the mounting table support 31.
[0039]
Further, in the present embodiment, when performing the charge removal, the progress of the charge removal is confirmed by the residual charge monitor 45, so that the operation can be shifted to the desorption operation at an appropriate timing.
[0040]
Subsequently, another embodiment will be described. In this embodiment, when the shape of the concave curved surface of the electrostatic chuck 4 is released and the suction of the wafer W is released, the restoring force of the wafer W is smaller than the residual suction force between the wafer W and the electrostatic chuck 4. It differs from the above-described embodiment in that it is formed to be large. Other requirements for the concave curved surface shape and other structures are the same as those in the above-described embodiment.
[0041]
In this embodiment, since the shape of the electrostatic chuck 4 is determined so that the restoring force of the wafer W is larger than the residual suction force, the wafer W is moved by the restoring force of the wafer W itself. The original state is restored from the state of being sucked and curved. Then, from the start of restoration to the original state to the end of restoration, for example, immediately before the restoration of the wafer (the wafer surface becomes substantially horizontal), the peripheral region of the wafer W contacts the ring member 5.
[0042]
When the wafer W is restored in this manner, a gap of a predetermined size is formed between the wafer W and the electrostatic chuck 4, and at this time, the residual charge of the wafer W is reduced to the central region of the wafer similarly to the above-described embodiment. To the peripheral area. Most of the residual charges are discharged from the peripheral region through the vacuum chamber 2 or the ring member 5, and part of the residual charges move through the mounting table support 31. After the electrostatic elimination of the wafer W and the electrostatic chuck 4 is performed in this way, the elevating member 6 is lifted so that the wafer W floats above the electrostatic chuck 4 and is transferred to a transfer arm (not shown).
[0043]
In this embodiment, since a gap is formed between the wafer W and the electrostatic chuck 4 by using the restoring force of the wafer W during static elimination, the lifting member 6 is not moved up and down during static elimination. And the charge elimination process becomes simpler. In this embodiment, since the charge is not removed via the support pins 63, it is desirable to provide the ring member 5 in order to quickly remove the charge remaining on the wafer W.
[0044]
In the above description, the timing of shifting from the charge elimination to the detachment operation for floating the wafer W from the surface of the electrostatic chuck 4 is not limited to the operation performed by the residual charge monitor 45. A configuration may be adopted in which a timer is provided so that the work is started. In addition, separately from the route described in the above-described embodiment, a low-resistance ground wire dedicated to static elimination may be provided to promote static elimination. Further, when performing the desorption operation, the atmosphere in the vacuum chamber 2 may be adjusted so as to be an atmosphere that is advantageous for accelerating the charge removal. In this case, for example, the type and pressure of the purge gas supplied into the vacuum chamber 2 Alternatively, the flow rate or the temperature of the atmosphere can be adjusted.
[0045]
The ring member 5 is not limited to a complete annular body, and may have a structure in which at least a portion of the wafer is in contact with the wafer from the start of restoration until the restoration is completed. For example, a ring in which a plurality of conductive members are arranged may be used. Good. Further, in the electrostatic chuck of the present invention, the mounting surface of the substrate only needs to be formed in a concave shape. For example, as shown in FIG. 6, the mounting surface of the electrostatic chuck 8 changes stepwise in a stepwise manner. The concave portion may be formed by pressing. Further, the present invention can be applied to not only the etching process but also a process such as an ashing process in addition to a film forming process and an ion implantation process.
[0046]
【The invention's effect】
As described above, according to the present invention, when detaching a substrate from an electrostatic chuck, occurrence of detachment abnormality can be prevented, and the time required for detachment can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an overall configuration of a processing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic sectional view showing a ring member provided on the electrostatic chuck.
FIG. 3 is a process chart for explaining the operation of the present embodiment.
FIG. 4 is an operation explanatory view showing a state in the vicinity of a mounting table (lower electrode) in correspondence with the process chart, for explaining the operation of the present embodiment.
FIG. 5 is an explanatory diagram for describing an effect in the present embodiment.
FIG. 6 is a longitudinal sectional view showing an example of an electrostatic chuck according to another embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing a mounting table of a processing apparatus according to a conventional technique.
[Explanation of symbols]
W wafer
SW1, SW2 switch section
2 Vacuum chamber
21 Upper electrode
3 Mounting table
33 High frequency power supply
4 Electrostatic chuck
41 chuck electrode
43 Surface
5 Ring members
6 lifting members
63 Support pin
64 drive mechanism
7 control unit

Claims (6)

基板に対して所定の処理を行うための処理容器と、
この処理容器内に設けられ、基板の載置面が凹状に形成され、チャック電極に電圧を印加することにより、前記基板を前記載置面の形状に沿って、凹状に湾曲させた状態で静電吸着力により保持するための静電チャックと、
前記チャック電極への電圧の印加を停止したときに、前記基板を裏面側から突き上げて、前記基板が元の状態に復元するように静電チャックから脱離させる昇降部材と、を備え、
前記静電チャックの凹部の形状は、凹部の外縁により形成される円の略中心部の深さが最も大きく、前記チャック電極への電圧の印加を停止したときに基板と静電チャックとの間に発生する残留吸着力が、湾曲に撓んだ状態で保持されていた基板が復元しようとする復元力よりも大きくなるように形成されていることを特徴とする処理装置。
A processing container for performing predetermined processing on the substrate,
The substrate mounting surface is provided in the processing container, and the substrate mounting surface is formed in a concave shape. By applying a voltage to the chuck electrode, the substrate is statically curved in a concave shape along the shape of the mounting surface described above. An electrostatic chuck for holding by electro-adsorption force,
When the application of the voltage to the chuck electrode is stopped, an elevating member that pushes up the substrate from the back side and detaches the substrate from the electrostatic chuck so as to restore the substrate to its original state,
The shape of the concave portion of the electrostatic chuck is such that the depth of the substantially central portion of the circle formed by the outer edge of the concave portion is the largest, and the gap between the substrate and the electrostatic chuck when the application of the voltage to the chuck electrode is stopped. The processing apparatus is characterized in that a residual suction force generated in the substrate is formed so as to be larger than a restoring force of the substrate held in a state of being bent in a curved state.
前記基板が元の状態に復元し始めてから復元し終わるまでの間に、この基板の少なくとも一部と接触するように設けられ、基板と接触するときには所定の電位またはアースに接続された導電部材を備えることを特徴とする請求項1記載の処理装置。Between the start of the restoration of the substrate to its original state and the end of the restoration, the substrate is provided so as to be in contact with at least a part of the substrate, and when it comes into contact with the substrate, a conductive member connected to a predetermined potential or ground is used. The processing apparatus according to claim 1, further comprising: 前記昇降部材は、基板と接触するときには所定の電位またはアースに接続されていることを特徴とする請求項1又は2のいずれかに記載の処理装置。The processing apparatus according to claim 1, wherein the lifting member is connected to a predetermined potential or a ground when the lifting member contacts the substrate. 基板に対して所定の処理を行うための処理容器と、
この処理容器内に設けられ、基板の載置面が凹状に形成され、チャック電極に電圧を印加することにより、前記基板を前記載置面の形状に沿って、凹部に湾曲させた状態で静電吸着力により保持するための静電チャックと、
前記基板が元の状態に復元し始めてから復元し終わるまでの間に、この基板の少なくとも一部と接触するように設けられ、基板と接触するときには所定の電位またはアースに接続された導電部材と、
前記静電チャックの凹部の形状は、凹部の外縁により形成される円の略中心部の深さが最も大きく、前記チャック電極への電圧の印加を停止したときに基板と静電チャックとの間に発生する残留吸着力が、湾曲に撓んだ状態で保持されていた基板が復元しようとする復元力よりも小さくなるように形成されていることを特徴とする処理装置。
A processing container for performing predetermined processing on the substrate,
The substrate mounting surface is provided in the processing container, and the substrate mounting surface is formed in a concave shape. By applying a voltage to the chuck electrode, the substrate is statically curved in a concave shape along the shape of the mounting surface described above. An electrostatic chuck for holding by electro-adsorption force,
A conductive member that is provided so as to be in contact with at least a part of the substrate during a period from when the substrate starts restoring to an original state to when the substrate is restored, and when it comes into contact with the substrate, a conductive member connected to a predetermined potential or ground. ,
The shape of the concave portion of the electrostatic chuck is such that the depth of the substantially central portion of the circle formed by the outer edge of the concave portion is the largest, and the gap between the substrate and the electrostatic chuck when the application of the voltage to the chuck electrode is stopped. The processing apparatus is characterized in that the residual suction force generated in the substrate is formed so as to be smaller than the restoring force of the substrate held in a bent state.
基板の載置面が凹状に形成された静電チャックに静電吸着された基板を、昇降部材により当該基板の裏面側から突き上げて、静電チャックから脱離させる方法において、
静電チャックのチャック電極に対するチャック用の電圧印加を停止する工程と、
その後、昇降部材を上昇させ、基板を元の状態に復元するまで突き上げて、基板裏面と静電チャック表面との間に隙間を形成し、これにより基板及び静電チャックの除電を行う工程と、
次いで昇降部材を上昇させ、基板を静電チャックから浮上させて脱離させる工程と、を含むことを特徴とする静電チャックからの基板の脱離方法。
In a method in which the mounting surface of the substrate is electrostatically attracted to the electrostatic chuck formed in a concave shape, the lifting member lifts the substrate from the back side of the substrate, and detaches the substrate from the electrostatic chuck.
Stopping the application of the voltage for the chuck to the chuck electrode of the electrostatic chuck,
Then, raising the elevating member, pushing up until the substrate is restored to its original state, forming a gap between the back surface of the substrate and the front surface of the electrostatic chuck, thereby performing a process of removing electricity from the substrate and the electrostatic chuck,
And elevating the elevating member to lift the substrate from the electrostatic chuck and detach the substrate from the electrostatic chuck.
基板の載置面が凹状に形成された静電チャックに静電吸着された基板を前記静電チャックから脱離させる方法において、
静電チャックのチャック電極に対するチャック用の電圧印加を停止する工程と、
その後、基板が元の状態に復元し始めてから復元し終わるまでの間に、この基板の少なくとも一部を所定電位又はアースに接続された導電部材に接触させ、これにより基板及び静電チャックの除電を行う工程と、
次いで基板を裏面側から昇降部材により突き上げて、これにより基板を静電チャックから浮上させて脱離させる工程と、を含むことを特徴とする静電チャックからの基板の脱離方法。
In a method of detaching the substrate electrostatically attracted to the electrostatic chuck formed with a concave mounting surface of the substrate from the electrostatic chuck,
Stopping the application of the voltage for the chuck to the chuck electrode of the electrostatic chuck,
Thereafter, during the period from when the substrate starts to be restored to the original state to when the substrate is restored, at least a part of the substrate is brought into contact with a predetermined potential or a conductive member connected to the ground, thereby removing electricity from the substrate and the electrostatic chuck. Performing the step of
And a step of lifting the substrate from the back surface by an elevating member, thereby causing the substrate to float from the electrostatic chuck and to separate the substrate from the electrostatic chuck.
JP2002198722A 2002-07-08 2002-07-08 Treatment apparatus and method for releasing material to be released from electrostatic chuck Pending JP2004040047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198722A JP2004040047A (en) 2002-07-08 2002-07-08 Treatment apparatus and method for releasing material to be released from electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198722A JP2004040047A (en) 2002-07-08 2002-07-08 Treatment apparatus and method for releasing material to be released from electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2004040047A true JP2004040047A (en) 2004-02-05

Family

ID=31706097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198722A Pending JP2004040047A (en) 2002-07-08 2002-07-08 Treatment apparatus and method for releasing material to be released from electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2004040047A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108366A1 (en) * 2006-03-22 2007-09-27 Tokyo Electron Limited Plasma processing apparatus
WO2010068268A1 (en) * 2008-12-10 2010-06-17 Axcelis Technologies, Inc De-clamping wafers from an electrostatic chuck
JP2011525304A (en) * 2008-06-20 2011-09-15 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Platen and method for reducing particle contamination on a substrate
JP2012514872A (en) * 2009-01-11 2012-06-28 アプライド マテリアルズ インコーポレイテッド Electrostatic end effector apparatus, system, and method for transporting a substrate
TWI425221B (en) * 2010-11-26 2014-02-01 Nihon Micronics Kk Probe cards and semiconductor inspection devices and semiconductor inspection methods
JP2015039009A (en) * 2014-10-02 2015-02-26 東京エレクトロン株式会社 Sample table, and microwave plasma processing apparatus
KR101777139B1 (en) * 2015-12-30 2017-09-11 엘지디스플레이 주식회사 Apparatus for processing flexible substrate
KR101794654B1 (en) * 2015-12-30 2017-11-07 엘지디스플레이 주식회사 Apparatus for processing flexible substrate
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
CN112514047A (en) * 2018-07-30 2021-03-16 日本爱发科泰克能株式会社 Substrate lifting device and substrate transportation method
JP2022032033A (en) * 2020-08-10 2022-02-24 セメス株式会社 Board support member and board processing device and method including the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394230B2 (en) 2006-03-22 2013-03-12 Tokyo Electron Limited Plasma processing apparatus
WO2007108366A1 (en) * 2006-03-22 2007-09-27 Tokyo Electron Limited Plasma processing apparatus
JP2011525304A (en) * 2008-06-20 2011-09-15 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Platen and method for reducing particle contamination on a substrate
WO2010068268A1 (en) * 2008-12-10 2010-06-17 Axcelis Technologies, Inc De-clamping wafers from an electrostatic chuck
JP2012511831A (en) * 2008-12-10 2012-05-24 アクセリス テクノロジーズ, インコーポレイテッド Release of wafer from electrostatic chuck
JP2012514872A (en) * 2009-01-11 2012-06-28 アプライド マテリアルズ インコーポレイテッド Electrostatic end effector apparatus, system, and method for transporting a substrate
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
TWI425221B (en) * 2010-11-26 2014-02-01 Nihon Micronics Kk Probe cards and semiconductor inspection devices and semiconductor inspection methods
JP2015039009A (en) * 2014-10-02 2015-02-26 東京エレクトロン株式会社 Sample table, and microwave plasma processing apparatus
KR101777139B1 (en) * 2015-12-30 2017-09-11 엘지디스플레이 주식회사 Apparatus for processing flexible substrate
KR101794654B1 (en) * 2015-12-30 2017-11-07 엘지디스플레이 주식회사 Apparatus for processing flexible substrate
CN112514047A (en) * 2018-07-30 2021-03-16 日本爱发科泰克能株式会社 Substrate lifting device and substrate transportation method
CN112514047B (en) * 2018-07-30 2024-05-03 日本爱发科泰克能株式会社 Substrate lifting device and substrate transportation method
JP2022032033A (en) * 2020-08-10 2022-02-24 セメス株式会社 Board support member and board processing device and method including the same
JP7203159B2 (en) 2020-08-10 2023-01-12 セメス株式会社 SUBSTRATE SUPPORT MEMBER AND SUBSTRATE PROCESSING APPARATUS AND METHOD INCLUDING THE SAME

Similar Documents

Publication Publication Date Title
TW550637B (en) Semiconductor wafer lifting device and methods for implementing the same
JP3005461B2 (en) Electrostatic chuck
KR100378187B1 (en) A wafer stage including electro-static chuck and method for dechucking wafer using the same
JP3911787B2 (en) Sample processing apparatus and sample processing method
JPH08236604A (en) Electrostatic chuck and using method thereof
JP2004014868A (en) Electrostatic chuck and processing apparatus
TWI576889B (en) Plasma processing apparatus
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
JP2004040047A (en) Treatment apparatus and method for releasing material to be released from electrostatic chuck
JP2879887B2 (en) Plasma processing method
WO2007108366A1 (en) Plasma processing apparatus
JP2009054746A (en) Electrostatic chuck, and electrostatic chucking method
JPH06326180A (en) Releasing device for electrostatically attracted material
JP3671379B2 (en) Plasma processing apparatus having mechanism for removing electrostatically attracted substrate and method for removing electrostatically attracted substrate
JP4060941B2 (en) Plasma processing method
JPH11233605A (en) Electrostatic chuck stage
JP4647122B2 (en) Vacuum processing method
JP4245868B2 (en) Method for reusing substrate mounting member, substrate mounting member and substrate processing apparatus
JP2004040046A (en) Treatment apparatus and method for releasing electrostatic chuck
JP2002313902A (en) Electrostatic chuck and method of dismounting substrate therefrom
JP2003347395A (en) Method of releasing electrostatic chuck and processing apparatus
JP2007258636A (en) Dry-etching method and its device
JP3315197B2 (en) Plasma processing method
CN112514047B (en) Substrate lifting device and substrate transportation method
JPH11243137A (en) Electrostatic chuck