JP2004039549A - Li ION CONDUCTOR - Google Patents

Li ION CONDUCTOR Download PDF

Info

Publication number
JP2004039549A
JP2004039549A JP2002197531A JP2002197531A JP2004039549A JP 2004039549 A JP2004039549 A JP 2004039549A JP 2002197531 A JP2002197531 A JP 2002197531A JP 2002197531 A JP2002197531 A JP 2002197531A JP 2004039549 A JP2004039549 A JP 2004039549A
Authority
JP
Japan
Prior art keywords
ion
ion conductor
mol
room temperature
ion conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002197531A
Other languages
Japanese (ja)
Inventor
Yuichi Ishikawa
石川 雄一
Toshimi Fukui
福井 俊巳
Masanori Hori
堀  正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2002197531A priority Critical patent/JP2004039549A/en
Publication of JP2004039549A publication Critical patent/JP2004039549A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Li ion conductor which is provided with excellent Li ion conductivity in the temperature range in the vicinity of room temperature, of which manufacturing and handling are easy, of which manufacturing means is simple and which is used especially suitably as the Li ion solid electrolyte for electro-chemical elements. <P>SOLUTION: The Li ion conductor is an oxide system Li ion conductor containing Li, S, P and Zr. S/(P+S) mol ratio is 0.1 to 0.9, the contained ratio of Li and Zr is within the range of 20 to 50 mol % in each in terms of Li<SB>2</SB>O and within the range of 10 to 50 mol % in terms of ZrO<SB>2</SB>conversion. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、室温領域でも高いLiイオン導電性を有するLiイオン伝導体に関する。
【0002】
【従来の技術】
Liイオン伝導体は、Liイオン二次電池やエレクトロクロミック素子などの電気化学デバイス用の電解質として幅広く使用されている。現在、Liイオン二次電池には、エチレンカーボネートやプロピレンカーボネートに代表される液体電解質が使用されている。
【0003】
しかし、電子デバイスの液漏れなどに対する信頼性や安定性の向上、オンチップタイプのデバイス作成、高温で使用されるデバイスへの使用のためには、電解質の固体化が望まれている。
【0004】
また、Liイオン二次電池に用いられている液体電解質は、4V以上の電圧下での安定性に劣るため、現在実用化され、又は今後開発が期待されている5V級Liイオン二次電池用正極材への適用が不可能である。
【0005】
Liイオン伝導性を有する固体電解質として、従来より、LiO−SiOやLiO−Bガラスが知られている。しかし、それらの室温での導電率は10−5S/cm以下と低く実用的な電気デバイスへの適用は困難であった。
【0006】
これらの特性を改善するため、特許第3098212号公報では、Li TiSi5−x12(0<X)相が析出したLiO−P−SiO−TiO系材料、特許第3012211号公報では、Li Al(Ga)Ti2−ySi5−y12(0≦X0.4、0<y≦0.6)相が析出したLiO−Al(Ga)−P−SiO−TiO系材料がすぐれたLiイオン伝導性を有し、これらが電池やガスセンサーに適用可能であることを開示している。
【0007】
特開2001−210374号公報では、Li TiAl(Ga)(PO相やLi Al(Ga)Ti2−ySi5−y12相(0.1<X<0.5)の粒子表面に非晶質シリカを化学結合させることがLiイオン伝導性の向上に有効であることが開示されている。
さらに、特開2000−223156号公報には、(LiLa)TiO系ペロブスカイト相が固体電解質電池に適用可能であることが開示されている。
【0008】
一方、非酸化物系材料として、窒化物、硫化物系Liイオン伝導体がある。Solid State Ionics,6,277(1982)には、窒化リチウム(LiN)が室温域で10−3S/cmを超えるイオン導電率を有することが報告されている。また、硫黄を含む硫化物ガラスやそれらを部分的に結晶化させた材料が、室温での10−3S/cmを超えるLiイオン伝導性を示すことが、特開2002−109955号公報や特開2001−250580号公報に開示されている。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来のLiO−Pを含む材料系では、実質的に100℃以下でのLiイオン伝導性は低く、Liイオン二次電池など室温付近で使用する電気デバイスへの適用は困難であるという問題点を有している。また、組成としてTi等の遷移金属を含有するために電気化学的な還元に不安定であり、例えば、Liイオン二次電池の電解質としては不向きである。
【0010】
一方、窒化リチウム(LiN)は、分解電圧が0.45Vと低く、理論的にこの電圧を超える電池を構成することができない。また、特開2002−109955号公報や特開2001−250580号公報に開示された硫化物ガラスやそれらを部分的に結晶化させた材料は、硫化物を主成分とするためのその製造上の雰囲気管理の煩雑さや大気中での安定性などの問題点を有している。
このように、実質的に固体電解質として適用可能なLiイオン固体電解質がないため、全固体型Liイオン二次電池等の電気デバイスの実用化が難しい状況にあった。
【0011】
本発明は以上のような事情に鑑みてなされたものであり、その目的は、室温付近での高いLiイオン伝導性を有し、その製造・取り扱いが容易な酸化物系のLiイオン伝導体を提供することにある。
【0012】
【課題を解決するための手段】
請求項1のLiイオン伝導体は、上記の課題を解決するために、Li、S、P、Zrを含有する酸化物系Liイオン伝導体であって、S/(P+S)モル比率が0.1〜0.9、Li及びZrの含有率が、各々LiO換算で20〜50モル%、ZrO換算で10〜50モル%の範囲内であることを特徴としている。
【0013】
上記の構成によれば、Li、S、P、Zrが、上記所定範囲内であることで、室温付近での高いLiイオン伝導性を得ることができ、かつ、製造・取り扱いが容易な酸化物系のLiイオン伝導体を提供することができる。
【0014】
【発明の実施の形態】
本発明の一実施形態について、説明すれば以下のとおりである。
本発明のLiイオン伝導体は、Li、S、P、Zrを含有する酸化物系Liイオン伝導体であって、S/(P+S)モル比率が0.1〜0.9、Li及びZrの含有率が、各々LiO換算で20〜50モル%、ZrO換算で10〜50モル%の範囲内である。
【0015】
LiOの含有比率が、20モル%以下であると、Liイオン伝導に寄与するLiイオンの数が少なくなり、目的とするLiイオン伝導度とすることができない。一方、50モル%を超えるとLiイオン伝導性の向上に寄与しなくなる。より好ましくは、30モル%から50モル%である。
【0016】
また、本発明のLiイオン伝導体は、S/(P+S)モル比率が0.1〜0.9である。Sは、ジルコニア上に硫酸基として存在することが可能であり、その結果、超強酸となる。超強酸の末端に存在するHがLiイオンに置き換わることで、優れたLiイオン伝導が発現すると考えられる。従って、S含有量が少ない、すなわち、S/(P+S)モル比率が0.1未満であるとLiイオンのイオン性が低下し、Liイオン伝導率が低下する。
【0017】
ジルコニアに結合した硫酸末端には、活性点が一つしか存在しない。一方、リン酸末端には二つの活性点を導入することが可能であり、移動可能なより多くのLiイオンを導入できる。従って、S含有量が多い、すなわち、S/(P+S)モル比率が0.9をこえるとLiイオン伝導に寄与しうるLiイオン数が少なくなるため、Liイオン伝導率が低下する。
【0018】
硫酸末端との相互作用により超強酸性を維持するためには、ZrOの含有比率が10モル%以上である必要がある。一方、ZrOが50モル%より多いと、Liイオン伝導に寄与するLiイオン量が少なくなるため好ましくない。
本発明のLiイオン伝導体の製造方法は、同業者により公知の方法で製造可能であり、特に限定されない。例えば、各構成成分の酸化物、水酸化物、金属塩を混合、加熱処理することにより製造される。また、LiPO、LiSOなどのリチウム塩や硫酸、リン酸などとして添加することも可能である。
【0019】
【実施例】
次に、本発明の具体的な実施例について、説明するが、本発明は、これら実施例により限定されるものではない。
【0020】
〔実施例1〜3〕
ZrO粉末(平均粒径:0.3μm)を8%硫酸中に添加し(Zr/S=2モル比)、3時間室温で撹拌した。得られた反応スラリーより水を除去し、200℃で3時間加熱処理し白色粉末を得た。得られた白色粉末にLiPO、LiSOを混合した後、600℃で30分加熱処理し、Liイオン伝導体を得た。合成されたLiイオン伝導体の化学組成(モル%)を表1にまとめる。
得られたLiイオン伝導体粉末を1軸プレス法(成形圧:1.5T/cm)により直径10mm、厚み1mmのペレットに成形した後、インピーダンス法により、Liイオン伝導度の測定を行った(表1)。
【0021】
〔実施例4〕
ZrO粉末(平均粒径:0.3μm)を6%硫酸中に添加し(Zr/S=2.5モル比)、3時間室温で撹拌した。得られた反応スラリーより水を除去し、200℃で3時間加熱処理し白色粉末を得た。得られた白色粉末にLiPO、LiO、HPOを混合した後、600℃で30分加熱処理し、Liイオン伝導体を得た。合成されたLiイオン伝導体の化学組成を表1にまとめる。ペレットを作成した後、室温(25℃)でのLiイオン伝導度の測定を行った(表1)。
【0022】
〔実施例5〕
ZrO粉末(平均粒径:0.3μm)を6%硫酸中に添加し(Zr/S=4モル比)、3時間室温で撹拌した。得られた反応スラリーより水を除去し、200℃で3時間加熱処理し白色粉末を得た。得られた白色粉末にLiPO、LiO、HPOを混合した後、600℃で30分加熱処理し、Liイオン伝導体を得た。合成されたLiイオン伝導体の化学組成を表1にまとめる。ペレットを作成した後、室温(25℃)でのLiイオン伝導度の測定を行った(表1)。
【0023】
〔比較例1〕
LiO/SiOのモル比率が、18/82となるように、水系シリカゾル(平均粒径:16nm、固形分濃度20重量%)にLiCl水溶液(LiO換算濃度:20重量%)を添加した。乾燥後、600℃で30分加熱処理し、LiO−SiO組成物を得た。室温(25℃)でのLiイオン伝導度(伝導度(S/cm))は、6.4x10−6S/cmであった。
【0024】
〔比較例2〕
LiPO、LiS、SiSをアルゴン気流中、1:63:36モル比となるように秤量した。アルゴン気流中で溶解させた融液を急冷することで、LiPO−LiS−SiSガラスを得た。得られた硫化物ガラスは、室温(25℃)で、1.8×10−3S/cmのLiイオン伝導度を示した。
【0025】
【表1】

Figure 2004039549
【0026】
表1に示されるように、本発明のLiイオン伝導体成物は、室温でのLiイオン伝導度が、10 S/cm以上と優れている。一方、比較例1のLiO−SiOガラスのLiイオン伝導率は、6.4×10−6S/cmと本発明の実施例と比べ大幅に小さい値となった。
比較例2の硫化物ガラスは、本実施例と同レベルのLiイオン伝導度を有するが、硫化物の酸化を抑制するためにその製造過程を非酸素雰囲気中で行う必要があり、その操作が非常に煩雑であり、本発明の実施例に大きな工業的優位性がある。
【0027】
【発明の効果】
本発明のLiイオン伝導体は、室温付近の温度領域で、優れたLiイオン伝導性を有する。また、製造手法が簡便である。本発明によれば、これらLiイオン伝導体を固体電解質とした、例えばLiイオン二次電池などを提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Li ion conductor having high Li ion conductivity even at room temperature.
[0002]
[Prior art]
Li ion conductors are widely used as electrolytes for electrochemical devices such as Li ion secondary batteries and electrochromic devices. Currently, liquid electrolytes represented by ethylene carbonate and propylene carbonate are used in Li-ion secondary batteries.
[0003]
However, in order to improve the reliability and stability of the electronic device against liquid leakage and the like, to create an on-chip type device, and to use the device for a device used at a high temperature, solidification of an electrolyte is desired.
[0004]
In addition, liquid electrolytes used in Li-ion secondary batteries are inferior in stability under a voltage of 4 V or more, and therefore are used for 5 V-class Li-ion secondary batteries that are currently in practical use or expected to be developed in the future. It cannot be applied to the cathode material.
[0005]
Li 2 O—SiO 2 and Li 2 O—B 2 O 3 glasses are conventionally known as solid electrolytes having Li ion conductivity. However, their electrical conductivity at room temperature is as low as 10 −5 S / cm or less, making it difficult to apply them to practical electric devices.
[0006]
To improve these properties, patent CHAPTER 3,098,212 discloses, Li 1 + x Ti 2 Si x P 5-x O 12 Li (0 <X) phase is precipitated 2 O-P 2 O 5 -SiO 2 - TiO 2 based materials, in Japanese Patent No. 3012211, Li 1 + x + y Al (Ga) x Ti 2-y Si y P 5-y O 12 (0 ≦ X0.4,0 <y ≦ 0.6) Li 2 O—Al 2 O 3 (Ga 2 O 3 ) —P 2 O 5 —SiO 2 —TiO 2 based material with excellent phase has excellent Li ion conductivity, and these are applied to batteries and gas sensors. It discloses that it is possible.
[0007]
JP-A-2001-210374 discloses, Li 1 + x Ti 2 Al (Ga) x (PO 4) 3 phase or Li 1 + x + y Al ( Ga) x Ti 2-y Si y P 5-y O 12 It is disclosed that chemically bonding amorphous silica to the particle surface of the phase (0.1 <X <0.5) is effective for improving Li ion conductivity.
Further, Japanese Patent Application Laid-Open No. 2000-223156 discloses that a (LiLa) TiO 3 -based perovskite phase is applicable to a solid electrolyte battery.
[0008]
On the other hand, non-oxide-based materials include nitride and sulfide-based Li ion conductors. Solid State Ionics, 6, 277 (1982) reports that lithium nitride (Li 3 N) has an ionic conductivity exceeding 10 −3 S / cm at room temperature. Further, it is disclosed in Japanese Patent Application Laid-Open No. 2002-109955 and Japanese Patent Application Laid-Open No. 2002-109955 that a sulfide glass containing sulfur and a material obtained by partially crystallizing the same exhibit Li ion conductivity exceeding 10 −3 S / cm at room temperature. It is disclosed in Japanese Unexamined Patent Publication No. 2001-250580.
[0009]
[Problems to be solved by the invention]
However, in the conventional material system containing Li 2 O—P 2 O 5 , the Li ion conductivity at substantially 100 ° C. or less is low, and application to an electric device used near room temperature such as a Li ion secondary battery. Has a problem that it is difficult. In addition, since the composition contains a transition metal such as Ti, the composition is unstable in electrochemical reduction, and is not suitable as, for example, an electrolyte for a Li-ion secondary battery.
[0010]
On the other hand, lithium nitride (Li 3 N) has a decomposition voltage as low as 0.45 V, and a battery that theoretically exceeds this voltage cannot be formed. Further, the sulfide glass disclosed in JP-A-2002-109955 and JP-A-2001-250580 and a material obtained by partially crystallizing the sulfide glass are manufactured by using sulfides as a main component. There are problems such as complicated atmosphere management and stability in the atmosphere.
As described above, since there is substantially no Li-ion solid electrolyte applicable as a solid electrolyte, practical use of an electric device such as an all-solid-state Li-ion secondary battery has been difficult.
[0011]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an oxide-based Li ion conductor having high Li ion conductivity around room temperature and easy to manufacture and handle. To provide.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the Li ion conductor according to claim 1 is an oxide-based Li ion conductor containing Li, S, P, and Zr, and has an S / (P + S) molar ratio of 0.1. 1 to 0.9, the content of Li and Zr, each 20 to 50 mol% Li 2 O in terms of, and being in the range of 10 to 50 mol% in terms of ZrO 2.
[0013]
According to the above configuration, since Li, S, P, and Zr are within the above-mentioned predetermined range, it is possible to obtain high Li ion conductivity near room temperature, and to manufacture and handle an oxide easily. It is possible to provide a Li ion conductor of the system.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention will be described below.
The Li ion conductor of the present invention is an oxide-based Li ion conductor containing Li, S, P, and Zr, wherein the S / (P + S) molar ratio is 0.1 to 0.9, and content, each 20 to 50 mol% Li 2 O in terms, in the range of 10 to 50 mol% in terms of ZrO 2.
[0015]
When the content ratio of Li 2 O is 20 mol% or less, the number of Li ions contributing to Li ion conduction decreases, and the desired Li ion conductivity cannot be obtained. On the other hand, if it exceeds 50 mol%, it does not contribute to the improvement of Li ion conductivity. More preferably, it is from 30 mol% to 50 mol%.
[0016]
The Li ion conductor of the present invention has an S / (P + S) molar ratio of 0.1 to 0.9. S can be present as a sulfate group on zirconia, resulting in a super strong acid. It is considered that excellent Li ion conduction is exhibited by replacing H existing at the terminal of the super strong acid with Li ions. Therefore, if the S content is small, that is, if the S / (P + S) molar ratio is less than 0.1, the ionicity of Li ions decreases, and the Li ion conductivity decreases.
[0017]
There is only one active site at the sulfate end bound to zirconia. On the other hand, two active sites can be introduced into the phosphate terminal, and more mobile Li ions can be introduced. Therefore, when the S content is large, that is, when the S / (P + S) molar ratio exceeds 0.9, the number of Li ions that can contribute to Li ion conduction decreases, and the Li ion conductivity decreases.
[0018]
In order to maintain super-strong acidity by interaction with the sulfuric acid terminal, the content ratio of ZrO 2 needs to be 10 mol% or more. On the other hand, if ZrO 2 is more than 50 mol%, the amount of Li ions contributing to Li ion conduction decreases, which is not preferable.
The method for producing the Li ion conductor of the present invention can be produced by a method known to those skilled in the art, and is not particularly limited. For example, it is manufactured by mixing an oxide, a hydroxide, and a metal salt of each component, and performing a heat treatment. It is also possible to add lithium salts such as Li 3 PO 4 and Li 2 SO 4 , sulfuric acid, phosphoric acid and the like.
[0019]
【Example】
Next, specific examples of the present invention will be described, but the present invention is not limited to these examples.
[0020]
[Examples 1 to 3]
ZrO 2 powder (average particle size: 0.3 μm) was added to 8% sulfuric acid (Zr / S = 2 molar ratio) and stirred at room temperature for 3 hours. Water was removed from the obtained reaction slurry, and heat treatment was performed at 200 ° C. for 3 hours to obtain a white powder. After mixing the obtained white powder with Li 3 PO 4 and Li 2 SO 4 , the mixture was heated at 600 ° C. for 30 minutes to obtain a Li ion conductor. Table 1 summarizes the chemical composition (mol%) of the synthesized Li ion conductor.
The obtained Li ion conductor powder was formed into a pellet having a diameter of 10 mm and a thickness of 1 mm by a uniaxial pressing method (forming pressure: 1.5 T / cm 2 ), and then the Li ion conductivity was measured by an impedance method. (Table 1).
[0021]
[Example 4]
ZrO 2 powder (average particle size: 0.3 μm) was added to 6% sulfuric acid (Zr / S = 2.5 molar ratio) and stirred at room temperature for 3 hours. Water was removed from the obtained reaction slurry, and heat treatment was performed at 200 ° C. for 3 hours to obtain a white powder. After mixing the obtained white powder with Li 3 PO 4 , Li 2 O, and H 3 PO 4 , a heat treatment was performed at 600 ° C. for 30 minutes to obtain a Li ion conductor. Table 1 summarizes the chemical composition of the synthesized Li ion conductor. After preparing the pellets, the Li ion conductivity was measured at room temperature (25 ° C.) (Table 1).
[0022]
[Example 5]
ZrO 2 powder (average particle size: 0.3 μm) was added in 6% sulfuric acid (Zr / S = 4 molar ratio) and stirred at room temperature for 3 hours. Water was removed from the obtained reaction slurry, and heat treatment was performed at 200 ° C. for 3 hours to obtain a white powder. After mixing the obtained white powder with Li 3 PO 4 , Li 2 O, and H 3 PO 4 , a heat treatment was performed at 600 ° C. for 30 minutes to obtain a Li ion conductor. Table 1 summarizes the chemical composition of the synthesized Li ion conductor. After preparing the pellets, the Li ion conductivity was measured at room temperature (25 ° C.) (Table 1).
[0023]
[Comparative Example 1]
An aqueous LiCl solution (concentration in terms of Li 2 O: 20% by weight) was added to an aqueous silica sol (average particle size: 16 nm, solid content concentration: 20% by weight) such that the molar ratio of Li 2 O / SiO 2 became 18/82. Was added. After drying, heat treatment was performed at 600 ° C. for 30 minutes to obtain a Li 2 O—SiO 2 composition. The Li ion conductivity (conductivity (S / cm)) at room temperature (25 ° C.) was 6.4 × 10 −6 S / cm.
[0024]
[Comparative Example 2]
Li 3 PO 4 , Li 2 S and SiS 2 were weighed in an argon stream at a molar ratio of 1:63:36. By quenching the melt dissolved in an argon stream, Li 3 PO 4 —Li 2 S—SiS 2 glass was obtained. The obtained sulfide glass had a Li ion conductivity of 1.8 × 10 −3 S / cm at room temperature (25 ° C.).
[0025]
[Table 1]
Figure 2004039549
[0026]
As shown in Table 1, Li ion conductor composition as the present invention, the Li-ion conductivity at room temperature, 10 - is better with 3 S / cm or more. On the other hand, the Li ion conductivity of the Li 2 O—SiO 2 glass of Comparative Example 1 was 6.4 × 10 −6 S / cm, which was a significantly smaller value than the Example of the present invention.
The sulfide glass of Comparative Example 2 has the same level of Li ion conductivity as that of the present example, but its production process must be performed in a non-oxygen atmosphere in order to suppress oxidation of sulfide, and the operation is Very cumbersome, embodiments of the present invention have significant industrial advantages.
[0027]
【The invention's effect】
The Li ion conductor of the present invention has excellent Li ion conductivity in a temperature range around room temperature. Further, the manufacturing method is simple. According to the present invention, for example, a Li-ion secondary battery or the like using these Li-ion conductors as a solid electrolyte can be provided.

Claims (1)

Li、S、P、及び、Zrを含有する酸化物系Liイオン伝導体であって、S/(P+S)モル比率が0.1〜0.9、Li及びZrの含有率が、各々LiO換算で20〜50モル%、ZrO換算で10〜50モル%の範囲内であることを特徴とするLiイオン伝導体。An oxide-based Li ion conductor containing Li, S, P, and Zr, wherein the S / (P + S) molar ratio is 0.1 to 0.9, and the Li and Zr contents are each Li 2. 20 to 50 mol% in O terms, Li ion conductor, characterized in that in the range of 10 to 50 mol% in terms of ZrO 2.
JP2002197531A 2002-07-05 2002-07-05 Li ION CONDUCTOR Pending JP2004039549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197531A JP2004039549A (en) 2002-07-05 2002-07-05 Li ION CONDUCTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197531A JP2004039549A (en) 2002-07-05 2002-07-05 Li ION CONDUCTOR

Publications (1)

Publication Number Publication Date
JP2004039549A true JP2004039549A (en) 2004-02-05

Family

ID=31705280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197531A Pending JP2004039549A (en) 2002-07-05 2002-07-05 Li ION CONDUCTOR

Country Status (1)

Country Link
JP (1) JP2004039549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229308A (en) * 2012-03-26 2013-11-07 Semiconductor Energy Lab Co Ltd Power storage element, method for manufacturing the same, and power storage device
US11587959B2 (en) 2012-03-26 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Power storage element, manufacturing method thereof, and power storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229308A (en) * 2012-03-26 2013-11-07 Semiconductor Energy Lab Co Ltd Power storage element, method for manufacturing the same, and power storage device
US9646771B2 (en) 2012-03-26 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Power storage element including positive electrode and negative electrode in the same plane over substrate and power storage device
US11587959B2 (en) 2012-03-26 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Power storage element, manufacturing method thereof, and power storage device

Similar Documents

Publication Publication Date Title
Pan et al. Li-and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications
EP2717364B1 (en) Use of a positive electrode material for a sulfide-based solid electrolyte battery and sulfide-based solid electrolyte battery with such positive electrode material
JP5602380B2 (en) Solid electrolyte material
Bensalah et al. Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries
Qian et al. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries
Kaur et al. Surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance
CN107078341B (en) Solid electrolyte for Li battery and method for preparing same
JP6063503B2 (en) Pure phase lithium aluminum titanium phosphate, process for its production and use thereof
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
Zheng et al. Interfacial reactions in inorganic all‐solid‐state lithium batteries
CN109755641A (en) A kind of composite material and preparation method and lithium ion battery
JP5347522B2 (en) Active material and electrode manufacturing method, active material and electrode
WO2015050031A1 (en) Covered cathode active material and lithium battery
JP6681570B2 (en) Battery and positive electrode material for battery
Chen et al. Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries
EP3778494A1 (en) Positive electrode active substance for lithium ion secondary battery and method for producing same
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
Sharma et al. Polyanionic insertion hosts for aqueous rechargeable batteries
Sanad et al. Chemical activation of nanocrystalline LiNbO3 anode for improved storage capacity in lithium-ion batteries
WO2014041669A1 (en) Ionic conductor and secondary cell
JP2012199101A (en) Lithium-transition metal complex oxide powder and method for manufacturing the same, and positive electrode active material for all-solid lithium battery using the powder
Kapaev et al. Conductivity and electrochemical behavior of Li 1-x Fe 1-2 x (M II M III) x PO 4 with olivine structure
Gan et al. Zr doped NASICON-type LATP glass-ceramic as a super-thin coating onto deoxidized carbon wrapped CNT-S cathode for lithium-sulphur battery
JP2004039359A (en) Li-ION CONDUCTOR AND MANUFACTURING METHOD THEREOF
Etacheri Sol-gel processed cathode materials for lithium-ion batteries