JP2004036598A - Suction device for internal combustion engine - Google Patents

Suction device for internal combustion engine Download PDF

Info

Publication number
JP2004036598A
JP2004036598A JP2002198872A JP2002198872A JP2004036598A JP 2004036598 A JP2004036598 A JP 2004036598A JP 2002198872 A JP2002198872 A JP 2002198872A JP 2002198872 A JP2002198872 A JP 2002198872A JP 2004036598 A JP2004036598 A JP 2004036598A
Authority
JP
Japan
Prior art keywords
intake
valve
valve element
intake passage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002198872A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Abe
阿部 和佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002198872A priority Critical patent/JP2004036598A/en
Publication of JP2004036598A publication Critical patent/JP2004036598A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Lift Valve (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suction device for an internal combustion engine provided with a suction passage closing valve in which a flow of suction gas is not inhibited in a suction passage when the suction passage is opened and a large valve operation torque is not required even in the case where the suction passage is closed or held closed. <P>SOLUTION: Both of a valve element and a valve operation means are not projected into the suction passage when the valve element opens the suction passage and a substantial torque is not applied to the valve operation means by a suction negative pressure received by the valve element when the valve element closes the suction passage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気装置に係り、特に並列に分岐する第一および第二の吸気通路と、前記第二の吸気通路を選択的に開閉する弁要素と、前記弁要素を開閉位置の間に動かす弁作動手段とを有する内燃機関の吸気装置の改良に係わる。
【0002】
【従来の技術】
上記の如く内燃機関の各気筒へ吸気を導く吸気通路を第一および第二の吸気通路に分岐させ、第二の吸気通路を弁要素にて選択的に開閉できるようにしておくことにより、機関への吸気の供給を低負荷運転から高負荷運転に至る全ての運転状態によりよく適合させることができる。即ち、機関の低負荷乃至中負荷運転時には、第二の吸気通路を弁要素にて閉じ、第一の吸気通路のみから吸気を供給することにより、吸入空気量が少ない場合にも燃焼室内へ吸入された吸気に強いスワールを発生させ、火炎の伝播速度を高めて燃焼室内に於ける燃料の燃焼を良くし、また高負荷運転時には弁要素を開いて第一および第二の吸気通路を共に作動させることにより増大した吸気量の供給に必要な吸気通路を確保することができる。
【0003】
そのような従来公知の吸気装置の一例を添付の図7および8に示す。図7は吸気装置の解図的平断面図であり、図8は図7の吸気装置を矢印8‐8の方向に見たところを示す端面図であり、この例では端部がシリンダヘッドへの取り付けのためのフランジを有する形状に形成されている。この例は3気筒に対するものであり、例えばV型6気筒エンジンの片側3気筒に対して設けられるものである。
【0004】
これらの図に於いて、10が各気筒に対する第一の吸気通路であり、12が各気筒に対する第二の吸気通路である。第二の吸気通路12内にはバタフライ型の弁要素14が共通の弁軸16によりその中心軸線の周りに回動可能に設けられており、弁軸16の回動操作により適宜回動されて第二の吸気通路12を連通したり遮断したり(即ち開閉)するようになっている。図示の状態は第二の吸気通路12が開かれている状態である。尚、弁軸16はその一端に連結された歯車18と図には示されていないその他の弁作動手段により回動されるようになっている。
【発明が解決しようとする課題】
【0005】
これらの図、特に図8、より分かる通り、かかる従来の吸気装置に於いては、常時開状態とされる第一の吸気通路10を横切って弁軸16が延在しており、また弁要素14を開いて第二の吸気通路12を連通させるとき、該吸気通路内には、吸気の流れ方向に沿っているとはいえ、弁要素が存在し、またそれを担持する弁軸も一部存在している。従って第一の吸気通路10内を流れる吸気流には、常に図9の(a)に示す如き弁軸16による吸気流の乱れによる流れ抵抗が及ぼされ、また第二の吸気通路12が開かれたとき、これを流れる吸気流には図9の(b)に示す如き弁要素と弁軸による流れ抵抗が及ぼされる。かかる流れ抵抗は機関の吸入効率を下げ、また負荷変動に対する応答性を悪くするものであり、好ましくない。
【0006】
吸気通路を横切ってバタフライ型弁要素のための弁軸を配置することによる上記の問題に対処して、図10に示す如く弁要素を弁板20がその一端部にて弁軸22により支持されたフラップ型とし、弁軸22を吸気通路24の外に配置することにより、開弁時には弁要素および弁軸のいずれもが吸気通路内に突き出ないようにすることが実開平5−36037号に於いて提案されている。
【0007】
このようにバタフライ型に代えてフラップ型の弁要素を用い、弁軸を吸気通路の外に配置することにより、開弁時には弁要素や弁軸を吸気通路外に退避させることができるが、弁要素がフラップ型にされると、弁要素に作用する吸気負圧により弁軸に大きなトルクが作用するので、弁要素を閉じるにもまた弁要素を閉じた状態に維持するにも弁軸に大きなトルクを要し、それだけ弁作動手段が大掛かりなものとされなければならないという問題がある。
【0008】
本発明は、この種の内燃機関の吸気装置に於ける上記の問題に鑑み、吸気通路を開いたときには吸気通路内に於ける吸気の流れを妨げず、また吸気通路を閉じるにもまた吸気通路を閉じた状態に維持するにも大きな弁作動トルクを要しないよう改良された内燃機関の吸気装置を提供することを課題としている。
【0009】
【課題を解決するための手段】
上記の課題を解決するものとして、本発明は、並列に分岐する第一および第二の吸気通路と、前記第二の吸気通路を選択的に開閉する弁要素と、前記弁要素を開閉位置の間に動かす弁作動手段とを有する内燃機関の吸気装置にして、前記弁要素が前記第二の吸気通路を開いているとき前記弁要素および前記弁作動手段のいずれも前記第二の吸気通路内に突き出ることはなく、前記弁要素が前記第二の吸気通路を閉じているとき前記弁要素が受ける吸気負圧によって前記弁作動手段に実質的なトルクが作用することはないことを特徴とする内燃機関の吸気装置を提案するものである。
【0010】
上記の如き内燃機関の吸気装置に於いて、前記弁要素は各々が前記第二の吸気通路の断面の半分ずつを閉じる一対の回動遮蔽要素であり、各回動遮蔽要素は各々の回動軸の両側に実質的に同一の吸気負圧受圧面積を有していてよい。
【0011】
この場合、前記一対の回動遮蔽要素が設けられる部分に該一対の回動遮蔽要素の各々を回動可能に受け入れる一対の回動遮蔽要素受け入れ窪みを有し、各回動遮蔽要素受け入れ窪みは対応する回動遮蔽要素が前記第二の吸気通路を閉じる位置にあるとき該回動遮蔽要素の回動する周縁と密に接するが封止壁部を有していてよい。
【0012】
前記回動遮蔽要素は、本発明による一つのより具体的な構成として、前記回動軸の両側に一対の羽根板部が延在するバタフライ形状をなしており、前記一対の羽根板部の一方の周縁にて前記回動遮蔽要素受け入れ窪みの前記封止壁部に接するようになっていてよい。
【0013】
或いはまた、前記回動遮蔽要素は、本発明による他の一つのより具体的な構成として、前記回動軸の中心軸線を中心とする実質的に半円筒形状の弁要素であり、その円筒形状の外縁にて前記回動遮蔽要素受け入れ窪みの前記封止壁部に接してよい。
【0014】
更にまた、前記回動遮蔽要素は、本発明による更に他の一つのより具体的な構成として、前記第一および第二の吸気通路を横切って回動式に設けられた孔明き円板であり、該孔明き円板はそれが一つの回動位置にあるとき前記第一の吸気通路のみを連通させる第一の孔と、それが他の一つの回動位置にあるとき前記第一および第二の吸気通路をそれぞれ連通させる第二および第三の孔を有していてよい。この場合、前記第一および第二の吸気通路は横断面で見て両者間の中間点に対し点対称であり、前記孔明き円板は前記中間点の周りに回動し、前記第二と第三の孔は前記中間点に対し点対称であり、前記第一の孔は前記中間点の周りに前記第二と第三の孔よりその中間に角偏位された位置にあってよい。
【0015】
【発明の作用及び効果】
上記の如く弁要素が第二の吸気通路を開いているとき弁要素および弁作動手段のいずれも第二の吸気通路内に突き出ることはなく、また弁要素が第二の吸気通路を閉じているとき弁要素が受ける吸気負圧によって弁作動手段に実質的なトルクが作用することはないとの2つの条件が共に満足されれば、並列に分岐する第一および第二の吸気通路を有し、機関が低負荷乃至中負荷運転状態にあるときには弁作動手段により弁要素を作動させて第二の吸気通路を閉じ、機関を第一の吸気通路のみにて作動させ、吸気量が少ないときにも燃焼室内に強いスワールを発生させて燃料の良好な燃焼を行わせ、機関が高負荷運転を行なうときには弁作動手段により弁要素を作動させて第二の吸気通路を開き、第一および第二の吸気通路を共に作動させて高負荷運転に必要な吸気の供給を確保するよう内燃機関を作動させることのできる吸気装置の作動性能をより一層改善することができる。
【0016】
弁要素が各々第二の吸気通路の断面の半分ずつを閉じる一対の回動遮蔽要素であれば、各回動遮蔽要素に作用する吸気負圧による力は、吸気通路が単一の弁要素により開閉される場合に比して半分となり、従って弁要素に作用する吸気負圧によって弁作動手段に作用する力はそれだけ小さくなる。更に各回動遮蔽要素が各々の回動軸の両側に実質的に同一の吸気負圧受圧面積を有するように構成されていれば、弁要素に作用する吸気負圧によって弁作動手段に作用する作動トルクは殆ど零にされ得る。
【0017】
一対の回動遮蔽要素が設けられる部分に該一対の回動遮蔽要素の各々を回動可能に受け入れる一対の回動遮蔽要素受け入れ窪みが設けられ、各回動遮蔽要素受け入れ窪みに対応する回動遮蔽要素が第二の吸気通路を閉じる位置にあるとき回動遮蔽要素の回動する周縁と密に接するが封止壁部が設けられていれば、回動遮蔽要素が回動軸の両側に一対の羽根板部を延在させたバタフライ形状とされるときにも、或は回動遮蔽要素が回動軸の中心軸線を中心とする実質的に半円筒形状の弁要素とされるときにも、第二の吸気通路を閉じたとき回動遮蔽要素の周りを回って吸気が漏れることが確実に阻止される。
【0018】
また、弁要素が第一および第二の吸気通路を横切って回動式に設けられた孔明き円板とされ、それが一つの回動位置にあるとき第一の吸気通路のみを連通させる第一の孔と、それが他の一つの回動位置にあるとき第一および第二の吸気通路をそれぞれ連通させる第二および第三の孔を有する構造とされるときには、円板を90度回転させるだけで第二の吸気通路のみの開閉を切り換えることができ、開閉の切り換え中にもまた第二の吸気通路を閉じた状態に維持する間にも、円板には吸気負圧によるトルクは一切作用しない。
【0019】
この場合、第一および第二の吸気通路が横断面で見て両者間の中間点に対し点対称であり、孔明き円板は該中間点の周りに回動し、第二と第三の孔は該中間点に対し点対称であり、第一の孔は前記中間点の周りに第二と第三の孔よりその中間に角偏位された位置にあるようにされれば、断面で見て第一と第二の吸気通路を包含する円の直径より僅かに大きい直径を有する円板により弁要素を構成することができ、多気筒内燃機関に於いて各気筒に対する第一および第二の吸気通路が互いに近接して配置されている場合にも、円板を互いに隣り合って直線上に配置することが可能となる。
【0020】
【発明の実施の形態】
以下に本発明を実施例について更に詳細に説明する。
【0021】
図1、2および3は本発明による内燃機関の吸気装置の第一の実施例を示す。このうち図2は従来技術について説明した図7に対応する解図的平断面図であり、図1の(a)および(b)は弁要素とその作動手段の一部を図2の矢印1−1に沿って2つの異なる作動状態に於いて見た拡大断面図であり、また図3は従来技術について説明した図8に対応する端面図である。この実施例に於ける吸気通路そのものは図7について説明した従来技術の例と同様に3つの気筒に対し設けられているので、各気筒に対する第一および第二の吸気通路を図7に於けると同様にそれぞれ10および12として示す。
【0022】
この実施例の於いては、第二の吸気通路12の開閉は一対のバタフライ型の弁要素26および28により行われるようになっている。これら一対の弁要素はそれぞれ吸気通路の断面の半分ずつの開閉を受け持つようになっている。即ち、図1の(a)に示す如く吸気通路を閉じるときには、弁要素26は吸気通路横断面の上半分の閉じ、弁要素28は吸気通路横断面の下半分を閉じる。両弁要素の向かい合った端部は幾分重なり合っている。弁要素26は弁軸30によりその中心軸線の周りに、また弁要素28は弁軸32によりその中心軸線の周りに、それぞれ90度にわたって回動されるようになっている。弁軸30および32はそれぞれ吸気通路12内に突き出ることのないよう図示の如く吸気通路の壁面より吸気装置本体内に後退して配置されている。
【0023】
吸気通路12を構成する吸気装置本体には、弁要素26および28がそれぞれ弁軸30および32によりその中心軸線の周りに90度にわたって回動できる弁要素回動用窪み34および36が形成されている。図示の実施例では、窪み34および36はそれぞれ弁軸30および32の中心軸線を中心とし半径が弁要素26および28の外側羽根板部の外縁の回動半径に等しい半径の半円筒形状をなすように形成されているが、窪み34については、弁軸30の垂直上方にあるt点(実際には紙面に垂直な直線)とその近傍が弁要素26の周縁と封止係合する封止壁部として形成されていれば(但し羽根板部の両側縁は窪みの両側壁と常時実質的に封止係合しているとする)、その他の部分は弁要素26の回動を許す範囲で任意の形状とされてよい。同様に窪み36についても、弁軸32の垂直下方にあるb点(実際には紙面に垂直な直線)とその近傍が弁要素28の周縁と封止係合する封止壁部として形成されていれば、その他の部分は弁要素28の回動を許す範囲で任意の形状とされてよい。従って、窪み34および36は、例えば二点鎖線fおよびgにて示されている如き長方形断面の窪みであってもよい。
【0024】
弁軸30上には歯車38が取り付けられており、弁軸32上には歯車40が取り付けられている。これら両歯車には歯車42が噛み合っており、これによって弁要素26と28とは、例えば歯車42が図には示されていない弁作動手段の他の部分により回転駆動されるとき、互いに同期して同じ角度だけ同じ方向に回動し、吸気通路12を開閉する。図1の(b)はそのようにして弁要素26および28が図1の(a)の状態から図にて時計回り方向に90度回動され、吸気通路12を開いた状態を示す。
【0025】
図1の(a)および(b)より理解される通り、弁要素26および28は、それぞれ弁軸30および32の両側に一対の羽根板部を対称に延在させたバタフライ型の弁要素であることから、図の(a)に示す如く弁要素が吸気通路を閉じ、その下流側に吸気負圧が作用する状態、および弁開閉作動の途中のいずれの状態に於いても、弁要素に吸気負圧が作用することにより弁軸30または32に実質的な大きさのトルクが作用することはない。また図の(b)に示す如く、弁要素が開いたときには、弁要素および弁作動手段のいずれも吸気通路内に突き出ることはなく、吸気通路12が作動すべきとき、図9の(b)について説明したように開状態にもたらされた弁要素或いは弁作動手段の一部が吸気通路内にあって吸気流を妨げるという問題は生じない。
【0026】
またこの場合、複数の気筒に対する弁要素を共通の弁軸32により開閉操作する構造とされていても、弁軸は第一および第二の吸気通路のいずれをも横切らないように配置されているので、第一の吸気通路10は常に弁軸により妨げられることなく開口した状態にある。従って、弁要素が開かれた状態にあるとき吸気装置を図2の矢印3−3の方向に見た端面図は図3のようになり、すべての吸気通路は障害物のない全開状態となる。
【0027】
図4は本発明の他の一つの実施例を示す図1と同様の図である。図4に於いては、図1に示す部分に対応する部分は図1に於ける符号と同じ符号を付されている。この実施例に於いては、弁要素44および46はそれぞれ弁軸30および32の中心軸線に一致した中心軸線を有する半円筒体の形状をなしている。また弁要素44および46のそれぞれを90度回動可能に収容する窪み34および36は、図示の実施例では、それぞれ下流側の半分は弁軸30および32の中心軸線に一致する中心軸線を有する円筒面をなし、上流側の半分は弁軸30および32の中心軸線より幾分上流側に偏倚した中心軸線を有する円筒面をなすよう形成されている。
【0028】
しかし、この場合にも、窪み34および36は、その両側壁が各弁要素の両側縁と常時実質的に封止係合をなしているとした上で、図1の場合と同様に、弁要素44および46が図の(a)に示されている如く閉じ位置にあるとき、t点およびb点とその近傍にて各弁要素と封止係合するようになっていれば、その他の部分に於いては弁要素44および46の90度にわたる回動を許す範囲で他の適当な断面形状とされてよく、例えば図中二点鎖線fおよびgにて示されている如き四角形状の窪みとされてもよい。
【0029】
かかる実施例の構造によっても、図4の(a)に示す如く弁要素44および46が吸気通路12を閉じる位置にあり、それに吸気負圧が作用する状態であっても、吸気負圧は各弁要素に対し弁軸の両側にほぼ均等に作用するので、弁要素に作用する吸気負圧により弁軸に実質的なトルクが作用することはない。また弁要素が吸気通路を開く位置にあるときには、図4の(b)に示す通り弁要素および弁作動手段のいずれも吸気通路内に突き出ることはない。またこの場合、複数の気筒に対する複数の吸気通路が図2に示す如く共通の弁軸により作動されるようになっていても、常時開いている第一の吸気通路に弁軸による障害物を生ずることはない。
【0030】
図5は本発明の更に他の一つの実施例を示す図2と同様の解図的平断面図であり、図6は図5の矢印6−6の方向に見た吸気装置の横断面を2つの作動状態にて示す幾分解図的な横断面図である。この場合、吸気通路の構成は図2に示したものと同じであるので、第一および第二の吸気通路はそれぞれ先の実施例に於けると同じく10および12として示されている。この実施例に於いては、弁要素は第一および第二の吸気通路10および12にまたがってこれらを横断するよう配置された孔明き円板48として構成されている。各孔明き円板48は吸気装置の本体内に形成された円板の補形をなす円板室50内に回動可能に収容されている。この円板収容室には第一および第二の吸気通路10および12がそれを貫通するように開口している。各孔明き円板48の周縁の一部には歯車の歯形が形成されており、この歯型に噛み合って孔明き円板を回転駆動することができるよう、吸気装置本体の側にピニオン52が回動可能に設けられている。図示の例に於ける3つのピニオンは図には示されていない駆動機構により同期して駆動されるようになっている。
【0031】
各孔明き円板48にはその中心の周りに90度ずつ偏位して3つの孔54、56、58が明けられている。これらの孔は、孔明き円板が吸気通路10および12対し図6の(a)に示す如き回動位置にあるときには、孔54のみが第一の吸気通路10に整合し、また孔明き円板が吸気通路10および12に対し図6の(b)に示す如き回動位置にあるときには、孔56が吸気通路10に整合し、孔58が吸気通路12に整合するような形、大きさ、配置になっている。図示の実施例では、吸気通路10、12および孔54、56、58はいずれも同径の円形をなしている。
【0032】
互いに並列に配置された第一および第二の吸気通路10および12に対しこれを横切って上記の如く孔明き円板を配置し、これを適宜回転させることによっても、第一の吸気通路のみが開かれた作動モードと第一および第二の吸気通路が開かれた作動モードとの間に切り換えられる吸気装置を、吸気通路が開かれたときには弁要素および弁作動手段のいずれもが吸気通路内に突き出ることなく、また弁要素に吸気負圧が作用しても弁要素に何ら実質的なトルクが作用しない吸気通路切り換え機構を備えた吸気装置を得ることができる。
【0033】
この場合、第一の吸気通路10は常時開いており、開閉の制御を要する吸気通路は第二の吸気通路12のみであるので、原理的には一つの孔を有する弁板によるスライド弁により第二の吸気通路12を適宜開閉する構造を得ることができるが、多気筒内燃機関に於いて第一および第二の吸気通路が図示の例の如く互いに近接して配置されるときには、一つのみの孔を有する弁板を制御が容易な回動式の弁板とすることはスペースの都合上非常に困難である。この点に於いて、円板が上記の如き3つの孔を備え、第一の吸気通路のみが開かれるときにはそれを第一の孔にて達成し、第一および第二の吸気通路が共に開かれるときにはそれを第二および第三の孔にて達成するようにすれば、第一および第二の吸気通路が並列に近接して配置される吸気通路構造に於いても小さな直径の円板を用いることにより図示の如く回転式に切り換えられる弁構造による吸気装置を得ることができる。
【0034】
以上に於いては本発明をいくつかの実施例について詳細に説明したが、これらの実施例について本発明の範囲内にて種々の修正が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】本発明による内燃機関の吸気装置の一つの実施例を2つの作動状態にて示す解図的断面図。
【図2】図1に示す吸気装置の解図的平断面図。
【図3】図2の矢印3−3による吸気装置の端面図。
【図4】本発明による内燃機関の吸気装置の他の一つの実施例を2つの作動状態にて示す図1と同様の解図的断面図。
【図5】本発明による内燃機関の吸気装置の更に他の一つの実施例を示す図2と同様の解図的平断面図。
【図6】図5の矢印6−6による吸気装置の解図的横断面図。
【図7】従来技術を示す図2と同様の解図的平断面図。
【図8】図7の矢印8−8による端面図。
【図9】図7に示す従来技術の吸気通路10および12内の吸気の流れを示す図。
【図10】他の一つの従来技術に於ける吸気通路の構造を示す解図的断面図。
【符号の説明】
10、12…吸気通路
14…弁要素
16…弁軸
18…歯車
20…弁板
22…弁軸
24…吸気通路
26、28…弁要素
30、32…弁軸
34、36…弁要素回動用窪み
38、40、42…歯車
44、46…弁要素
48…弁板
50…円板室
52…ピニオン
54、56、58…孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intake device for an internal combustion engine, in particular, first and second intake passages that branch in parallel, a valve element that selectively opens and closes the second intake passage, and an opening and closing position of the valve element. The present invention relates to an improvement of an intake device of an internal combustion engine having a valve operating means to be moved therebetween.
[0002]
[Prior art]
As described above, the intake passage that guides intake air to each cylinder of the internal combustion engine is branched into first and second intake passages, and the second intake passage is selectively opened and closed by a valve element. The supply of intake air to the engine can be better adapted to all operating conditions from low-load operation to high-load operation. That is, during low to medium load operation of the engine, the second intake passage is closed by the valve element and the intake air is supplied only from the first intake passage, so that the intake air into the combustion chamber even when the intake air amount is small. A strong swirl is generated in the intake air, which increases the propagation speed of the flame to improve the combustion of fuel in the combustion chamber, and opens the valve element to operate both the first and second intake passages during high load operation. By doing so, it is possible to secure an intake passage necessary for supplying the increased intake air amount.
[0003]
An example of such a conventionally known intake device is shown in FIGS. FIG. 7 is a schematic plan sectional view of the intake device, and FIG. 8 is an end view showing the intake device of FIG. 7 as viewed in the direction of arrow 8-8. In this example, the end is connected to the cylinder head. It is formed in a shape having a flange for mounting. This example is for three cylinders, and is provided, for example, for one side of three cylinders of a V-6 engine.
[0004]
In these figures, reference numeral 10 denotes a first intake passage for each cylinder, and reference numeral 12 denotes a second intake passage for each cylinder. A butterfly valve element 14 is provided in the second intake passage 12 so as to be rotatable around a central axis thereof by a common valve shaft 16, and is appropriately rotated by a rotation operation of the valve shaft 16. The second intake passage 12 is communicated or blocked (that is, opened and closed). The illustrated state is a state in which the second intake passage 12 is open. The valve shaft 16 is rotated by a gear 18 connected to one end of the valve shaft 16 and other valve operating means (not shown).
[Problems to be solved by the invention]
[0005]
As can be seen in these figures, and in particular in FIG. 8, in such a conventional intake system, the valve shaft 16 extends across the first intake passage 10 which is normally open, and the valve element When the second intake passage 12 is opened to communicate with the second intake passage 12, a valve element is present in the intake passage although it is along the flow direction of the intake air. Existing. Therefore, the flow of the intake air flowing through the first intake passage 10 is constantly affected by the disturbance of the intake flow by the valve shaft 16 as shown in FIG. 9A, and the second intake passage 12 is opened. In this case, the intake air flowing therethrough is subjected to flow resistance by the valve element and the valve shaft as shown in FIG. 9B. Such a flow resistance lowers the intake efficiency of the engine and deteriorates the response to a load change, which is not preferable.
[0006]
To address the above-mentioned problem of arranging the valve stem for the butterfly valve element across the intake passage, the valve element is supported by a valve plate 20 at one end by a valve stem 22 as shown in FIG. By adopting a flap type and disposing the valve shaft 22 outside the intake passage 24, it is disclosed in Japanese Utility Model Laid-Open No. 5-36037 that neither the valve element nor the valve shaft protrudes into the intake passage when the valve is opened. It is proposed in.
[0007]
By using the flap type valve element instead of the butterfly type and disposing the valve shaft outside the intake passage, the valve element and the valve shaft can be retracted outside the intake passage when the valve is opened. When the element is made into a flap type, a large torque acts on the valve shaft due to the intake negative pressure acting on the valve element, so that a large amount of force is applied to the valve shaft both to close the valve element and to keep the valve element closed. There is a problem in that torque is required, and the valve operating means must be enlarged accordingly.
[0008]
The present invention has been made in view of the above-described problems in an intake device for an internal combustion engine of the type described above, and when the intake passage is opened, does not hinder the flow of intake air in the intake passage. It is an object of the present invention to provide an improved intake device for an internal combustion engine such that a large valve operating torque is not required to maintain a closed state.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides first and second intake passages that branch in parallel, a valve element that selectively opens and closes the second intake passage, and an opening and closing position of the valve element. An intake device for an internal combustion engine having valve actuating means for moving between the valve element and the valve actuating means when the valve element is opening the second intake passage. And no substantial torque acts on the valve actuating means by the intake negative pressure received by the valve element when the valve element is closing the second intake passage. An intake device for an internal combustion engine is proposed.
[0010]
In the intake device for an internal combustion engine as described above, each of the valve elements is a pair of rotation shielding elements each closing half of a cross section of the second intake passage, and each of the rotation shielding elements is a respective rotation shaft. May have substantially the same intake negative pressure receiving area on both sides.
[0011]
In this case, a portion provided with the pair of rotation shielding elements has a pair of rotation shielding element receiving recesses for rotatably receiving each of the pair of rotation shielding elements, and each rotation shielding element receiving recess has a corresponding recess. When the rotatable shielding element is in a position to close the second intake passage, the rotatable shielding element closely contacts the rotatable peripheral edge of the rotatable shielding element, but may have a sealing wall portion.
[0012]
As one more specific configuration according to the present invention, the rotation shielding element has a butterfly shape in which a pair of blade portions extend on both sides of the rotation shaft, and one of the pair of blade portions. May be adapted to contact the sealing wall portion of the rotation shielding element receiving recess at the periphery thereof.
[0013]
Alternatively, as another more specific configuration according to the present invention, the rotation shielding element is a substantially semi-cylindrical valve element centered on a center axis of the rotation shaft, and the cylindrical shielding element has a cylindrical shape. May be in contact with the sealing wall of the rotary shielding element receiving recess at the outer edge of the rotary shielding element receiving recess.
[0014]
Still further, as another still more specific configuration according to the present invention, the rotation shielding element is a perforated disk provided rotatably across the first and second intake passages. The perforated disc has a first hole communicating only with the first intake passage when it is in one pivot position, and the first and second holes when it is in another pivot position. It may have second and third holes respectively connecting the two intake passages. In this case, the first and second intake passages are point-symmetric with respect to an intermediate point between the two when viewed in a cross section, and the perforated disc rotates around the intermediate point, and The third hole may be point symmetrical with respect to the midpoint, and the first hole may be at a position about the midpoint that is angularly deflected halfway between the second and third holes.
[0015]
Function and effect of the present invention
As described above, when the valve element opens the second intake passage, neither the valve element nor the valve operating means protrudes into the second intake passage, and the valve element closes the second intake passage. If the two conditions that the substantial negative torque does not act on the valve operating means due to the intake negative pressure received by the valve element are satisfied, the first and second intake passages branching in parallel are provided. When the engine is in a low to medium load operation state, the valve element is operated by the valve operating means to close the second intake passage, the engine is operated only in the first intake passage, and when the intake air amount is small. Also, a strong swirl is generated in the combustion chamber to perform good combustion of fuel, and when the engine performs high load operation, the valve element is operated by the valve operating means to open the second intake passage, and the first and second intake passages are opened. Activate both intake passages together Operating performance of the air intake device capable of operating the internal combustion engine to ensure the supply of necessary load operation intake can more be further improved.
[0016]
If the valve elements are a pair of rotary shielding elements each closing half of the cross section of the second intake passage, the force due to the negative pressure of the intake air acting on each rotary shielding element will cause the intake passage to be opened and closed by a single valve element Therefore, the force acting on the valve operating means by the intake negative pressure acting on the valve element is reduced accordingly. Further, if each of the rotary shielding elements is configured to have substantially the same intake negative pressure receiving area on both sides of each rotary shaft, the operation acting on the valve operating means by the intake negative pressure acting on the valve element. The torque can be almost zero.
[0017]
A pair of turning shield elements is provided at a portion where the pair of turning shield elements is provided, and a pair of turning shield elements receiving recesses are provided to rotatably receive each of the pair of turning shield elements. When the element is in the position to close the second intake passage, it is in close contact with the rotating peripheral edge of the rotation shielding element, but if a sealing wall portion is provided, the rotation shielding element is paired on both sides of the rotation shaft. When the rotary shield element is formed into a substantially semi-cylindrical valve element centering on the central axis of the rotary shaft, When the second intake passage is closed, the leakage of the intake air around the rotary blocking element is reliably prevented.
[0018]
Further, the valve element is a perforated disc provided rotatably across the first and second intake passages, and when the valve element is in one rotation position, only the first intake passage is communicated. When the structure has one hole and second and third holes that respectively communicate the first and second intake passages when it is in the other one rotation position, the disc is rotated by 90 degrees. The opening / closing of only the second intake passage can be switched by simply causing the disk to maintain the torque due to the intake negative pressure during switching between opening and closing and while maintaining the second intake passage closed. Does not work at all.
[0019]
In this case, the first and second intake passages are point-symmetric with respect to an intermediate point between the two in a cross section, and the perforated disk rotates around the intermediate point, and the second and third intake passages are rotated. The holes are point symmetric with respect to the midpoint, and the first hole is in a cross-section if the first hole is located at an intermediate position between the second and third holes around the midpoint. The valve element can be constituted by a disk having a diameter slightly larger than the diameter of the circle containing the first and second intake passages, and in a multi-cylinder internal combustion engine the first and second When the intake passages are arranged close to each other, the disks can be arranged on a straight line adjacent to each other.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0021]
1, 2 and 3 show a first embodiment of an intake device for an internal combustion engine according to the present invention. 2 is an exploded plan sectional view corresponding to FIG. 7 for explaining the prior art, and FIGS. 1 (a) and 1 (b) show a valve element and a part of its operating means by arrows 1 in FIG. FIG. 3 is an enlarged sectional view taken in two different operating states along -1, and FIG. 3 is an end view corresponding to FIG. 8 illustrating the prior art. Since the intake passage itself in this embodiment is provided for three cylinders as in the prior art example described with reference to FIG. 7, the first and second intake passages for each cylinder are shown in FIG. Are shown as 10 and 12, respectively.
[0022]
In this embodiment, the opening and closing of the second intake passage 12 is performed by a pair of butterfly-type valve elements 26 and 28. Each of the pair of valve elements is responsible for opening and closing a half of the cross section of the intake passage. That is, when closing the intake passage as shown in FIG. 1A, the valve element 26 closes the upper half of the intake passage cross section, and the valve element 28 closes the lower half of the intake passage cross section. The opposite ends of the two valve elements overlap somewhat. The valve element 26 is pivoted about its central axis by a valve stem 30 and the valve element 28 is pivoted by 90 degrees around its central axis by a valve shaft 32, respectively. As shown, the valve shafts 30 and 32 are arranged to be retracted from the wall surface of the intake passage into the intake device body so as not to protrude into the intake passage 12.
[0023]
In the main body of the intake device constituting the intake passage 12, valve element turning recesses 34 and 36 are formed so that the valve elements 26 and 28 can be turned by 90 degrees around their central axes by valve shafts 30 and 32, respectively. . In the embodiment shown, the depressions 34 and 36 have a semi-cylindrical shape with a radius about the central axis of the valve shafts 30 and 32 and a radius equal to the radius of rotation of the outer edges of the outer slats of the valve elements 26 and 28, respectively. However, as for the depression 34, a point t (actually, a straight line perpendicular to the plane of the drawing) vertically above the valve shaft 30 and the vicinity thereof are sealingly engaged with the peripheral edge of the valve element 26. If it is formed as a wall (provided that both side edges of the blade portion are always substantially in sealing engagement with both side walls of the recess), the other portions are within a range allowing the rotation of the valve element 26. May be any shape. Similarly, with respect to the recess 36, a point b (actually, a straight line perpendicular to the paper surface) vertically below the valve shaft 32 and the vicinity thereof are formed as a sealing wall portion that sealingly engages with the peripheral edge of the valve element 28. If so, the other portions may have any shape as long as the rotation of the valve element 28 is allowed. Accordingly, the depressions 34 and 36 may be, for example, depressions having a rectangular cross section as shown by two-dot chain lines f and g.
[0024]
A gear 38 is mounted on the valve shaft 30, and a gear 40 is mounted on the valve shaft 32. Gears 42 mesh with both gears so that the valve elements 26 and 28 are synchronized with each other, for example when the gears 42 are driven in rotation by other parts of the valve actuating means not shown. To rotate in the same direction by the same angle to open and close the intake passage 12. FIG. 1B shows a state in which the valve elements 26 and 28 are thus rotated clockwise by 90 degrees in the figure from the state of FIG. 1A, and the intake passage 12 is opened.
[0025]
As understood from FIGS. 1 (a) and 1 (b), the valve elements 26 and 28 are butterfly type valve elements in which a pair of blades are symmetrically extended on both sides of the valve shafts 30 and 32, respectively. Therefore, the valve element closes the intake passage as shown in (a) of the figure, and the valve element is closed regardless of the state in which the intake negative pressure acts on the downstream side and the state during the valve opening / closing operation. A substantial amount of torque does not act on the valve shaft 30 or 32 due to the operation of the intake negative pressure. Also, as shown in FIG. 9B, when the valve element is opened, neither the valve element nor the valve operating means protrudes into the intake passage, and when the intake passage 12 is to be operated, FIG. As described above, there is no problem that a part of the valve element or the valve operating means brought into the open state is in the intake passage and obstructs the intake flow.
[0026]
In this case, even if the valve elements for a plurality of cylinders are opened and closed by a common valve shaft 32, the valve shaft is arranged so as not to cross any of the first and second intake passages. Therefore, the first intake passage 10 is always open without being obstructed by the valve shaft. Therefore, when the valve element is in the opened state, the end view of the intake device as viewed in the direction of arrow 3-3 in FIG. 2 is as shown in FIG. 3, and all the intake passages are in the fully open state without obstacles. .
[0027]
FIG. 4 is a view similar to FIG. 1 showing another embodiment of the present invention. In FIG. 4, portions corresponding to those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. In this embodiment, the valve elements 44 and 46 are in the form of a semi-cylinder having a central axis coinciding with the central axes of the valve shafts 30 and 32, respectively. The recesses 34 and 36, which accommodate the respective valve elements 44 and 46 in a rotatable manner by 90 degrees, have, in the embodiment shown, a central axis that coincides with the central axis of the valve shafts 30 and 32 in the respective downstream halves. The upstream half is formed to have a cylindrical surface with a central axis offset somewhat upstream from the central axis of the valve shafts 30 and 32.
[0028]
However, in this case as well, the recesses 34 and 36 are provided with the same valve as in FIG. 1, provided that both side walls are always substantially in sealing engagement with both side edges of each valve element. When the elements 44 and 46 are in the closed position as shown in FIG. 2A, if they are in sealing engagement with each valve element at and near the points t and b, other The portion may have any other suitable cross-sectional shape as long as the valve elements 44 and 46 can be rotated through 90 degrees, for example, a rectangular shape as shown by two-dot chain lines f and g in the figure. It may be a depression.
[0029]
Also according to the structure of this embodiment, even if the valve elements 44 and 46 are in the position where the intake passage 12 is closed as shown in FIG. Since substantially equally acts on both sides of the valve shaft with respect to the valve element, a substantial torque does not act on the valve shaft due to the intake negative pressure acting on the valve element. When the valve element is at the position where the intake passage is opened, neither the valve element nor the valve operating means protrudes into the intake passage as shown in FIG. Further, in this case, even if a plurality of intake passages for a plurality of cylinders are operated by a common valve shaft as shown in FIG. 2, an obstacle due to the valve shaft occurs in the first intake passage which is always open. Never.
[0030]
FIG. 5 is a schematic plan sectional view similar to FIG. 2 showing still another embodiment of the present invention, and FIG. 6 is a cross sectional view of the intake device viewed in the direction of arrow 6-6 in FIG. FIG. 3 is a cross-sectional view in a partially exploded view in two operating states. In this case, since the configuration of the intake passage is the same as that shown in FIG. 2, the first and second intake passages are shown as 10 and 12, respectively, as in the previous embodiment. In this embodiment, the valve element is configured as a perforated disk 48 disposed across and across the first and second intake passages 10 and 12. Each perforated disc 48 is rotatably housed in a disc chamber 50 that is complementary to a disc formed in the body of the intake device. First and second intake passages 10 and 12 are opened in the disk accommodation chamber so as to pass therethrough. A tooth profile of a gear is formed on a part of the periphery of each perforated disk 48, and a pinion 52 is provided on the side of the intake device main body so that the perforated disk can be rotationally driven by meshing with the tooth profile. It is provided rotatably. The three pinions in the illustrated example are driven synchronously by a drive mechanism not shown.
[0031]
Each perforated disk 48 is provided with three holes 54, 56, 58 deviated by 90 degrees around its center. These holes are such that when the perforated disks are in the pivot position as shown in FIG. 6A with respect to the intake passages 10 and 12, only the holes 54 are aligned with the first intake passage 10 and the perforated circles When the plate is in a pivot position as shown in FIG. 6B with respect to the intake passages 10 and 12, the shape and size are such that the hole 56 is aligned with the intake passage 10 and the hole 58 is aligned with the intake passage 12. , Is arranged. In the illustrated embodiment, the intake passages 10, 12 and the holes 54, 56, 58 are all circular with the same diameter.
[0032]
By arranging the perforated disks as described above across the first and second intake passages 10 and 12 arranged in parallel with each other and rotating them appropriately, only the first intake passage can be formed. When the intake device is switched between an open operation mode and an operation mode in which the first and second intake passages are opened, when the intake passage is opened, both the valve element and the valve operating means are in the intake passage. Thus, an intake device provided with an intake passage switching mechanism in which no substantial torque acts on the valve element even if the intake element negative pressure acts on the valve element.
[0033]
In this case, the first intake passage 10 is always open, and only the second intake passage 12 requires opening / closing control. Therefore, in principle, the first intake passage 10 is formed by a slide valve with a valve plate having one hole. Although a structure for appropriately opening and closing the two intake passages 12 can be obtained, when the first and second intake passages are arranged close to each other as in the illustrated example in a multi-cylinder internal combustion engine, only one It is very difficult to use a valve plate having the above holes as a rotary valve plate that can be easily controlled due to space limitations. At this point, the disc is provided with the three holes as described above, and when only the first intake passage is opened, this is achieved by the first hole, and both the first and second intake passages are opened. When this is achieved by the second and third holes, a small-diameter disc is used in the intake passage structure in which the first and second intake passages are arranged in parallel and close to each other. By using this, it is possible to obtain an intake device having a valve structure that can be switched in a rotary manner as shown in the figure.
[0034]
While the invention has been described in detail with reference to several embodiments, it will be apparent to those skilled in the art that various modifications can be made to these embodiments within the scope of the invention.
[Brief description of the drawings]
FIG. 1 is an illustrative sectional view showing one embodiment of an intake device for an internal combustion engine according to the present invention in two operating states.
FIG. 2 is an exploded plan sectional view of the intake device shown in FIG. 1;
FIG. 3 is an end view of the intake device according to an arrow 3-3 in FIG. 2;
FIG. 4 is an exploded sectional view similar to FIG. 1, showing another embodiment of the intake device for an internal combustion engine according to the present invention in two operating states.
FIG. 5 is a schematic plan sectional view similar to FIG. 2, showing still another embodiment of the intake device for the internal combustion engine according to the present invention.
FIG. 6 is an illustrative cross-sectional view of the intake device taken along arrow 6-6 in FIG. 5;
FIG. 7 is an exploded plan sectional view similar to FIG. 2 showing a conventional technique.
FIG. 8 is an end view taken along arrow 8-8 in FIG. 7;
9 is a diagram showing the flow of intake air in the intake passages 10 and 12 according to the related art shown in FIG.
FIG. 10 is an illustrative sectional view showing the structure of an intake passage according to another related art.
[Explanation of symbols]
10, 12 ... intake passage 14 ... valve element 16 ... valve shaft 18 ... gear 20 ... valve plate 22 ... valve shaft 24 ... intake passages 26 and 28 ... valve elements 30, 32 ... valve shafts 34 and 36 ... valve element rotation recesses 38, 40, 42 ... gears 44, 46 ... valve element 48 ... valve plate 50 ... disk chamber 52 ... pinions 54, 56, 58 ... holes

Claims (7)

並列に分岐する第一および第二の吸気通路と、前記第二の吸気通路を選択的に開閉する弁要素と、前記弁要素を開閉位置の間に動かす弁作動手段とを有する内燃機関の吸気装置にして、前記弁要素が前記第二の吸気通路を開いているとき前記弁要素および前記弁作動手段のいずれも前記第二の吸気通路内に突き出ることはなく、前記弁要素が前記第二の吸気通路を閉じているとき前記弁要素が受ける吸気負圧によって前記弁作動手段に実質的なトルクが作用することはないことを特徴とする内燃機関の吸気装置。Intake of an internal combustion engine having first and second intake passages branched in parallel, a valve element for selectively opening and closing the second intake passage, and valve actuation means for moving the valve element between open and closed positions In the device, when the valve element is opening the second intake passage, neither the valve element nor the valve operating means protrudes into the second intake passage, and the valve element is Wherein a substantial torque does not act on the valve operating means due to the negative intake pressure received by the valve element when the intake passage is closed. 前記弁要素は各々が前記第二の吸気通路の断面の半分ずつを閉じる一対の回動遮蔽要素であり、各回動遮蔽要素は各々の回動軸の両側に実質的に同一の吸気負圧受圧面積を有していることを特徴とする請求項1に記載の内燃機関の吸気装置。The valve elements are a pair of rotary shield elements each closing half of the cross section of the second intake passage, and each rotary shield element has substantially the same intake negative pressure receiving pressure on both sides of each rotary shaft. The intake device for an internal combustion engine according to claim 1, wherein the intake device has an area. 前記一対の回動遮蔽要素が設けられる部分に該一対の回動遮蔽要素の各々を回動可能に受け入れる一対の回動遮蔽要素受け入れ窪みを有し、各回動遮蔽要素受け入れ窪みは対応する回動遮蔽要素が前記第二の吸気通路を閉じる位置にあるとき該回動遮蔽要素の回動する周縁と密に接する封止壁部を有することを特徴とする請求項2に記載の内燃機関の吸気装置。A portion provided with the pair of rotation shielding elements has a pair of rotation shielding element receiving recesses for rotatably receiving each of the pair of rotation shielding elements, and each rotation shielding element receiving recess has a corresponding rotation. 3. The internal combustion engine intake according to claim 2, further comprising a sealing wall portion which is in close contact with a rotating peripheral edge of the rotary shielding element when the shielding element is in a position for closing the second intake passage. apparatus. 前記回動遮蔽要素は前記回動軸の両側に一対の羽根板部が延在するバタフライ形状をなしており、前記一対の羽根板部の一方の周縁にて前記回動遮蔽要素受け入れ窪みの前記封止壁部に接することを特徴とする請求項3に記載の内燃機関の吸気装置。The rotation shielding element has a butterfly shape in which a pair of blade plates extend on both sides of the rotation shaft, and the rotation shielding element receiving recess is formed at one peripheral edge of the pair of blade plates. The intake device for an internal combustion engine according to claim 3, wherein the intake device is in contact with the sealing wall. 前記回動遮蔽要素は前記回動軸の中心軸線を中心とする実質的に半円筒形状の弁要素であり、その円筒形状の外縁にて前記回動遮蔽要素受け入れ窪みの前記封止壁部に接することを特徴とする請求項3に記載の内燃機関の吸気装置。The turning shield element is a substantially semi-cylindrical valve element centered on the center axis of the turning shaft, and the outer peripheral edge of the cylindrical shape is provided on the sealing wall portion of the turning shield element receiving recess. The intake device for an internal combustion engine according to claim 3, wherein the intake device is in contact with the intake device. 前記弁要素は前記第一および第二の吸気通路を横切って回動式に設けられた孔明き円板であり、該孔明き円板はそれが一つの回動位置にあるとき前記第一の吸気通路のみを連通させる第一の孔と、それが他の一つの回動位置にあるとき前記第一および第二の吸気通路をそれぞれ連通させる第二および第三の孔を有していることを特徴とする請求項1に記載の内燃機関の吸気装置。The valve element is a perforated disc pivotally provided across the first and second intake passages, the perforated disc being the first disc when it is in one pivot position. A first hole communicating only with the intake passage, and a second hole and a third hole communicating with the first and second intake passages when the first hole is in the other one rotation position, respectively. The intake device for an internal combustion engine according to claim 1, wherein: 前記第一および第二の吸気通路は横断面で見て両者間の中間点に対し点対称であり、前記孔明き円板は前記中間点の周りに回動し、前記第二と第三の孔は前記中間点に対し点対称であり、前記第一の孔は前記中間点の周りに前記第二と第三の孔よりその中間に角偏位された位置にあることを特徴とする請求項6に記載の内燃機関の吸気装置。The first and second intake passages are point-symmetric with respect to an intermediate point between the two when viewed in cross section, and the perforated disc rotates about the intermediate point, and The hole is point-symmetric with respect to the intermediate point, and the first hole is located at a position which is angularly deviated around the intermediate point and between the second and third holes. Item 7. An intake device for an internal combustion engine according to Item 6.
JP2002198872A 2002-07-08 2002-07-08 Suction device for internal combustion engine Pending JP2004036598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198872A JP2004036598A (en) 2002-07-08 2002-07-08 Suction device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198872A JP2004036598A (en) 2002-07-08 2002-07-08 Suction device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004036598A true JP2004036598A (en) 2004-02-05

Family

ID=31706205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198872A Pending JP2004036598A (en) 2002-07-08 2002-07-08 Suction device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004036598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121551A (en) * 2008-11-20 2010-06-03 Denso Corp Intake system for internal combustion engine
JP2020090914A (en) * 2018-12-04 2020-06-11 トヨタ紡織株式会社 Intake manifold for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121551A (en) * 2008-11-20 2010-06-03 Denso Corp Intake system for internal combustion engine
JP4623206B2 (en) * 2008-11-20 2011-02-02 株式会社デンソー Intake device for internal combustion engine
US8171913B2 (en) 2008-11-20 2012-05-08 Denso Corporation Intake system for internal combustion engine
JP2020090914A (en) * 2018-12-04 2020-06-11 トヨタ紡織株式会社 Intake manifold for internal combustion engine
JP7087970B2 (en) 2018-12-04 2022-06-21 トヨタ紡織株式会社 Internal combustion engine intake manifold

Similar Documents

Publication Publication Date Title
EP1426604B9 (en) Flow path switching valve
KR101387627B1 (en) Exhaust-Gas Recirculation Valve
JP2004263723A (en) Flow control valve
EP2103793A2 (en) Flow rate control system for turbocharger
EP1801382B1 (en) Air intake device for internal combustion engine
WO2017085856A1 (en) Air intake device for internal combustion engine
KR20140062633A (en) Bypass valve assembly for egr cooler
JP2004036598A (en) Suction device for internal combustion engine
JP2001065356A (en) Turbo-charger
JP4939473B2 (en) Exhaust gas recirculation device
JP2011064138A (en) Engine intake control device
CN217177481U (en) Plug valve, refrigerant control device of motor vehicle air conditioner, motor vehicle air conditioner and motor vehicle
JPH04128516A (en) Gas-turbine engine
JPH05133234A (en) Air intake control valve device of internal combustion engine
KR101210637B1 (en) Device for control simultaneously swirl control valve and throttle valve
BR9914854A (en) Double isolation valve
KR20230165079A (en) a 3-Way valve for Vehicle
JPH0634058A (en) Opening and closing valve
JP2002317637A (en) Variable intake device for engine
JPH0488270A (en) Flow passage selecting valve device
JP2002317636A (en) Variable intake device for engine
JPH11336539A (en) Exhaust device
JP2005140051A (en) Variable intake device
JP2005171813A (en) Intake system for internal combustion engine
JP2003049956A (en) Flow control valve