JP2004036139A - Earthquake-resistance reinforcing tool - Google Patents

Earthquake-resistance reinforcing tool Download PDF

Info

Publication number
JP2004036139A
JP2004036139A JP2002192353A JP2002192353A JP2004036139A JP 2004036139 A JP2004036139 A JP 2004036139A JP 2002192353 A JP2002192353 A JP 2002192353A JP 2002192353 A JP2002192353 A JP 2002192353A JP 2004036139 A JP2004036139 A JP 2004036139A
Authority
JP
Japan
Prior art keywords
load
earthquake
seismic
column
wooden building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002192353A
Other languages
Japanese (ja)
Inventor
Tadayuki Mori
毛利 忠之
Norimitsu Sukejima
祐島 典光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIFU SEPPAN KOGYO KK
Original Assignee
GIFU SEPPAN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIFU SEPPAN KOGYO KK filed Critical GIFU SEPPAN KOGYO KK
Priority to JP2002192353A priority Critical patent/JP2004036139A/en
Publication of JP2004036139A publication Critical patent/JP2004036139A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-resistance reinforcing tool inhibiting the deformation or collapse of a wooden building due to the load of an earthquake. <P>SOLUTION: An earthquake-resistance reinforcing tool body 13 is constituted linealy by inserting one end section of supporting members 14 formed in a pair of cylindrical shapes into each inserting recessed section 16 recessed at both end sections of a load buffer 15 formed of an elastic material in a columnar shape. Connecting sections 19 joined at the other end sections of each supporting member 14 are supported rotatably to each T-shaped sectional mounting member 23. The earthquake-resistance reinforcing tool 11 is installed between a column 12a and a beam 12b, and the load buffer 15 absorbs a part of an elastic deformation by elastically deforming the buffer 15 when load is applied to the column 12a and the beam 12b from the outside so that the reinforcing tool 11 is deflected or twisted by the earthquake. When load is reduced or removed, the reinforcing tool body 13 is returned to an original shape by a return to the original shape of the load buffer 15, and the column 12a and the beam 12b are returned to a usual place. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、木造建築物の耐震補強具に関するものである。より詳しくは、地震の負荷による木造建築物の変形又は倒壊を抑制することができる耐震補強具に関するものである。
【0002】
【従来の技術】
従来、この種の耐震補強具は、筒状をなすとともに内部にコイルばねが配設されているガイド部材と、柱状をなし、一端がガイド部材の端部にそれぞれ内挿されるとともに、他端が真壁構造や大壁構造を有する木造建築物の柱又は梁にそれぞれ取付けられている一対の支持部材とを備えている。コイルばねは、外方からの負荷によって、ガイド部材内をその長手方向にのみ弾性変形するように構成されている。
【0003】
そして、地震によって、耐震補強具が取付けられた柱や梁に外方から負荷が加わったときには、その負荷によってコイルばねがガイド部材内を弾性変形することにより、負荷を吸収するようになっている。
【0004】
【発明が解決しようとする課題】
ところが、この従来の耐震補強具においては、コイルばねは、外方からの負荷によって、ガイド部材内をその長手方向にのみ弾性変形するように、即ちガイド部材内を一方向にのみ伸縮するように構成されている。このため、地震によって、柱や梁に、耐震補強具が撓むように又は捻れるように外方から負荷が加わったときには、コイルばねは、弾性変形しにくいために負荷を十分に吸収することができない。よって、地震の負荷によって木造建築物が変形又は倒壊する場合があるという問題があった。
【0005】
本発明は、上記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、地震の負荷による木造建築物の変形又は倒壊を抑制することができる耐震補強具を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の発明の耐震補強具は、木造建築物を補強するための耐震補強具本体と、耐震補強具本体の端部に回動可能に設けられるとともに、木造建築物に取付けられる取付け部材とを備え、前記耐震補強具本体は、一対の支持部材と、弾性材料により形成され、支持部材間に設けられるとともに、撓み及び捻れが許容される負荷緩衝部材とを備えているものである。
【0007】
請求項2に記載の発明の耐震補強具は、請求項1に記載の発明において、前記負荷緩衝部材には支持部材の端部が内挿され、負荷緩衝部材及び支持部材には、支持部材の端部を負荷緩衝部材内に抜け止め保持するための抜け止め保持手段がそれぞれ設けられているものである。
【0008】
請求項3に記載の発明の耐震補強具は、請求項1又は請求項2に記載の発明において、前記木造建築物の柱と、梁又は桁との間に取付けられ、柱に加わる負荷の10〜15%の力に耐える強度に設定されているものである。
【0009】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図面に基づいて詳細に説明する。
図1及び図4に示すように、木造建築物12を構成する柱12aの上端部側面には図示しないホゾ孔が凹設され、梁12b又は桁の端面に突設された図示しないホゾが挿入されることにより、柱12aの上端部側面には梁12b又は桁が取付けられている。この木造建築物12は、柱12a、梁12b及び桁が図示しない壁の中に埋込まれている大壁構造や、柱12a、梁12b及び桁の一部が壁から露出している真壁構造等の構造を有している。
【0010】
図1及び図2(a),(b)に示すように、木造建築物12を補強する耐震補強具本体13は、円筒状をなす一対の支持部材14の一端部が、円柱状をなす負荷緩衝部材15の両端部に凹設された断面円形状の各挿入凹部16にそれぞれ挿入されることにより、直線状に構成されている。各挿入凹部16の内径は、各支持部材14の外径よりも若干大きくなるようにそれぞれ設定されている。
【0011】
図2(a)に示すように、各挿入凹部16の底部には、抜け止め保持手段を構成する円環状の抜け止め保持凹部17がそれぞれ凹設され、各支持部材14の一端部の外周面には、抜け止め保持手段を構成する円環状の抜け止め保持突条18がそれぞれ突設されている。そして、各支持部材14の一端部が各挿入凹部16にそれぞれ挿入されたときには、各抜け止め保持突条18が各抜け止め保持凹部17にそれぞれ嵌合することにより、各支持部材14の一端部は負荷緩衝部材15内にそれぞれ抜け止め保持されるようになっている。
【0012】
図1及び図3に示すように、各支持部材14の他端部には、支持円板20と、その一側面の中央に突設された半円板状の第1連結板21とから断面T字状に形成された接続部19がそれぞれ接合されている。第1連結板21には、円孔状の第1連結孔22が貫通形成されている。また、両第1連結板21は、同一平面上に位置している。
【0013】
耐震補強具11を構成する取付け部材23は、四角板状の取付け板24と、取付け板24に対して直交方向に延びるように取付け板24の一側面の中央部に突設された半円板状の第2連結板25とから、断面T字状に形成されている。取付け板24には図示しない取付け孔が複数貫通形成され、複数の釘26を各取付け孔に挿通して柱12a又は梁12bにそれぞれ打付けることにより、耐震補強具11を例えば柱12aと梁12bとの間に取付けることができるようになっている。
【0014】
第2連結板25には、第1連結板21の第1連結孔22に対応する箇所に円孔状の第2連結孔27が貫通形成されている。そして、回動支持ボルト28を第1及び第2連結孔22,27に挿通した後、ナット29を回動支持ボルト28に螺合させることにより、各取付け部材23には第1連結板21が回動可能に支持されている。
【0015】
各支持部材14、各接続部19及び各取付け部材23は、アルミニウムや鋼材等の金属材料によりそれぞれ形成されている。一方、負荷緩衝部材15は弾性材料により形成され、撓み、捻れ、縮み及び伸びが許容されている。そして、外方からの負荷によって撓むように、捻れるように、縮むように又は伸びるように弾性変形することにより負荷を吸収するように構成されている。弾性材料の具体例としては、クロロプレンゴム等のゴム材料やポリウレタン等の合成樹脂材料等が挙げられる。
【0016】
図1及び図4に示すように、耐震補強具11は、柱12aと、梁12b又は桁との間に取付けられたときには、地震の負荷による木造建築物12の変形又は倒壊をより確実に抑制するために、地震によって柱12aに加わる負荷の10〜15%の力に耐える強度に好ましくは設定されている。10%未満の力に耐える強度では、強度が不十分なために、木造建築物12が変形又は倒壊しやすい。
【0017】
一方、15%を超える力に耐える強度では、強度を高くするために支持部材14等の厚みが厚くなりやすいために、又は支持部材14等が比重の大きい鋼材等によって形成されやすいために、耐震補強具11の重さが重くなりやすい。震度6〜7の地震によって耐震補強具11が取付けられた柱12aに例えば2.0〜3.0kNの負荷が加わるときには、耐震補強具11は200〜450Nの力に耐える強度に設定されている。
【0018】
さて、この耐震補強具11を使用するときには、例えば柱12aと梁12bとの間に耐震補強具11を取付ける。即ち、まず柱12aにおいて、梁12bと対向する側面の所定の箇所に一方の取付け板24の他側面を当接させた後、複数の釘26を各取付け孔に挿通して柱12aにそれぞれ打付ける。
【0019】
次いで、梁12bの柱12aと対向する側面において、耐震補強具本体13と柱12a又は梁12bとのなす角度が例えば45度となる位置に他方の取付け板24の他側面を当接させる。そして、複数の釘26を各取付け孔に挿通して梁12bにそれぞれ打付けることにより、柱12aと梁12bとの間に耐震補強具11を取付ける。
【0020】
図5の実線で示すように、柱12a及び梁12bに、耐震補強具11が撓むように外方から負荷が加わったときには、この負荷によって、各支持部材14は、各回動支持ボルト28を回動中心としてそれぞれ回動する。このため、負荷緩衝部材15は撓むように弾性変形し、この弾性変形によって、柱12a及び梁12bに加わった負荷の一部は負荷緩衝部材15に吸収されるとともに、耐震補強具本体13は略V字状に撓むように変形する。
【0021】
即ち、柱12a及び梁12bは、負荷緩衝部材15に吸収されなかった負荷によって、図5の二点鎖線で示す通常位置から実線で示す変位位置に、耐震補強具本体13の変形に伴ってそれぞれ一旦移動する。
【0022】
一方、柱12a及び梁12bに、耐震補強具11が捻れるように外方から負荷が加わったときには、図6に示すように、この負荷によって、各支持部材14は、それらの中心軸を回動中心としてそれぞれ回動する。このため、負荷緩衝部材15は捻れるように弾性変形し、この弾性変形によって、柱及び梁に加わった負荷の一部は負荷緩衝部材15に吸収されるとともに、耐震補強具本体13は捻れるように変形する。
【0023】
即ち、図6及び図7に示すように、一方の第1連結板21は、他方の第1連結板21に対して傾斜する。さらに、柱及び梁は、通常位置から変位位置にそれぞれ一旦移動する。
【0024】
柱12a及び梁12bに、柱12aと梁12bとが互いに接近するように外方から負荷が加わったときには、この負荷によって、各支持部材14は互いに接近する方向に押圧される。また、柱12a及び梁12bに、柱12aと梁12bとが互いに離間するように外方から負荷が加わったときには、この負荷によって、各支持部材14は互いに離間する方向に引っ張られる。
【0025】
このため、負荷緩衝部材15は、縮むように、又は伸びるように弾性変形し、この弾性変形によって、柱12a及び梁12bに加わった負荷の一部は負荷緩衝部材15に吸収されるとともに、耐震補強具本体13は縮むように又は伸びるように変形する。即ち、柱12a及び梁12bは、通常位置から変位位置に一旦移動する。
【0026】
地震によって木造建築物12に負荷が加わるときには、柱12aや梁12bには、上記の各負荷が複合して加わる。そして、負荷緩衝部材15によって吸収されなかった負荷が減少又は除去されたときには、負荷緩衝部材15がその弾性力によって元の形状に戻ることにより、耐震補強具本体13は元の形状に戻る。このため、柱12a及び梁12bは、変位位置から通常位置にそれぞれ戻る。
【0027】
以上詳述した本実施形態によれば、次のような効果が発揮される。
・ 本実施形態の耐震補強具11においては、耐震補強具本体13を構成する負荷緩衝部材15は、弾性材料により円柱状に形成されている。この負荷緩衝部材15は、撓むように又は捻れるように弾性変形するとともに、その弾性力によって元の形状に戻るように構成されている。
【0028】
このため、耐震補強具11が取付けられた柱12aや梁12bに、耐震補強具11が撓むように又は捻れるように外方から負荷が加わったときには、負荷緩衝部材15の弾性変形によって負荷の一部を吸収することができる。さらに、負荷緩衝部材15に吸収されなかった負荷が減少又は除去されたときには、耐震補強具本体13が元の形状に戻ることにより、柱12a及び梁12bを通常位置に戻すことができる。よって、木造建築物12は耐震補強具本体13によって補強されるために、地震の負荷による木造建築物12の変形又は倒壊を抑制することができる。
【0029】
・ 本実施形態の耐震補強具11においては、各取付け部材23には第1連結板21が回動可能に支持されている。このため、耐震補強具11が取付けられた柱12aや梁12bに、耐震補強具11が撓むように外方から負荷が加わったときには、各支持部材14は、回動支持ボルト28を回動中心として容易に回動することができる。よって、負荷緩衝部材15を容易に撓むように弾性変形させることができる。さらに、負荷緩衝部材15がその弾性力によって元の形状に戻るときには、各支持部材14が回動することによって、耐震補強具本体13を元の形状に容易に戻すことができる。
【0030】
・ 本実施形態の耐震補強具11においては、各抜け止め保持突条18が各抜け止め保持凹部17にそれぞれ嵌合することにより、各支持部材14の一端部は負荷緩衝部材15内にそれぞれ抜け止め保持されている。このため、負荷緩衝部材15の弾性変形に伴って各支持部材14の一端部が負荷緩衝部材15内から抜け落ちるのを防止することができる。よって、耐震補強具11は耐震機能を保持することができる。
【0031】
・ 本実施形態の耐震補強具11においては、耐震補強具11は、柱12aと、梁12b又は桁との間に取付けられたときには、地震によって柱12aに加わる負荷の10〜15%の力に耐える強度に好ましくは設定されている。このため、地震の負荷による木造建築物12の変形又は倒壊をより確実に抑制することができる。
【0032】
・ 本実施形態の耐震補強具11においては、負荷緩衝部材15は、縮むように又は伸びるように弾性変形するとともに、その弾性力によって元の形状に戻るように構成されている。よって、耐震補強具11が取付けられた柱12aや梁12bに、柱12aと梁12bとが互いに接近するように、又は互いに離間するように外方から負荷が加わったときには、負荷緩衝部材15の弾性変形によって負荷の一部を吸収することができる。
【0033】
さらに、負荷緩衝部材15に吸収されなかった負荷が減少又は除去されたときには、耐震補強具本体13が元の形状に戻ることにより、柱12a及び梁12bを通常位置に戻すことができる。このため、地震の負荷による木造建築物12の変形又は倒壊をさらに確実に抑制することができる。
【0034】
・ 本実施形態の耐震補強具11においては、例えば木造建築物12を構成する柱12aと梁12bとの間に耐震補強具11を取付けるときには、複数の釘26を、各取付け板24の各取付け孔に挿通して柱12a又は梁12bにそれぞれ打付ける。よって、耐震補強具11を木造建築物12に容易に取付けることができるために、木造建築物12を建てるときだけでなく、既存の木造建築物12にも耐震補強具11を容易に取付けることができる。
【0035】
さらに、接着剤を使用して耐震補強具11を柱12aと梁12bとの間に取付ける場合に対して、耐震補強具11の柱12a及び梁12bへの取付け強度が高いために、耐震補強具11の柱12a及び梁12bへの取付け状態を安定させることができる。
【0036】
なお、前記実施形態を次のように変更して構成することもできる。
・ 図8に示すように、前記接続部19を、支持部材14の他端部がプレス成形されることにより略半円板状に形成してもよい。このとき、接続部19には第1連結孔22が貫通形成される。
【0037】
・ 図9に示すように、前記各支持部材14の形状を、断面L字状をなすアングル状に変更してもよい。このとき、支持部材14を構成する側板14a及び底板14bの一端部の側面には、抜け止め保持手段を構成する四角柱状の抜け止め保持突起30がそれぞれ突設されている。さらに、接続部は省略されるとともに、支持部材14の側板14aの他端部には、第1連結孔22が貫通形成されている。一方、負荷緩衝部材の各挿入凹部は、断面L字状にそれぞれ凹設されるとともに、抜け止め保持突起30に対応する箇所に抜け止め保持凹部がそれぞれ凹設されている。
【0038】
また、各支持部材14の形状を、四角筒状や断面H字状等に変更してもよい。さらに、チャンネル状や断面L字状等の形状をなす一対の板材を、それらの側板同士で接合させることにより、各支持部材14を、断面横H字状や階段状等の形状に形成してもよい。このとき、各支持部材14は、その中心軸を中心として線対称となる形状が好ましい。
【0039】
・ 前記各支持部材14、各接続部19及び各取付け部材23を、FRP等の合成樹脂材料等によりそれぞれ形成してもよい。このとき、各接続部19を、加熱溶着又は接着等によって各支持部材14の他端部に接合することができる。
【0040】
・ 前記各挿入凹部16の内径を、各支持部材14の外径よりも若干小さく形成してもよい。また、各支持部材14の一端部を各挿入凹部16にそれぞれ挿入するときに、各支持部材14の一端部の外周面又は各挿入凹部16に内周面に接着剤を塗布してもよい。
【0041】
さらに、各支持部材14及び負荷緩衝部材15が合成樹脂材料によりそれぞれ形成されているときには、各支持部材14の一端部を各挿入凹部16にそれぞれ挿入した後、負荷緩衝部材15と各支持部材14の一端部とを加熱溶着してもよい。このように構成した場合は、各支持部材14の一端部を負荷緩衝部材15内により強固に抜け止め保持することができる。
【0042】
・ 前記耐震補強具11を例えば柱12aと梁12bとの間に取付けるときに、各取付け板24の他側面に接着剤を塗布してもよい。このように構成したときには、耐震補強具11を柱12a及び梁12bにより強固に取付けることができる。
【0043】
・ 前記各取付け孔にねじを挿通して柱12a又は12bに螺入することにより、耐震補強具11を例えば柱12aと梁12bとの間に取付けても良い。
・ 前記負荷緩衝部材15の形状を、四角柱状等に変更してもよい。このとき、負荷緩衝部材15は、その中心軸を含む平面を中心として対称となる形状が好ましい。
【0044】
・ 前記抜け止め保持突条18を、一方の支持部材14の一端部の外周面にのみ突設してもよい。
・ 前記耐震補強具11を、梁12b同士、桁同士、又は梁12bと桁との間等に取付けてもよい。
【0045】
次に、前記実施形態から把握できる技術的思想について以下に記載する。
(1)前記負荷緩衝部材は、さらに縮み及び伸びが許容されるように構成されている請求項1から請求項3のいずれか一項に記載の耐震補強具。この構成によれば、地震の負荷による木造建築物の変形又は倒壊をより確実に抑制することができる。
【0046】
(2)請求項1から請求項3及び上記(1)のいずれか一項に記載の耐震補強具を木造建築物に取付けることにより、木造建築物に補強を施すことを特徴とする木造建築物の耐震補強方法。この構成によれば、地震の負荷による木造建築物の変形又は倒壊を抑制することができる。
【0047】
【発明の効果】
本発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の発明の耐震補強具によれば、地震の負荷による木造建築物の変形又は倒壊を抑制することができる。
【0048】
請求項2に記載の発明の耐震補強具によれば、請求項1に記載の発明の効果に加え、耐震機能を保持することができる。
請求項3に記載の発明の耐震補強具によれば、請求項1又は請求項2に記載の発明の効果に加え、地震の負荷による木造建築物の変形又は倒壊をより確実に抑制することができる。
【図面の簡単な説明】
【図1】本実施形態の耐震補強具が柱と梁との間に取付けられた状態を示す要部拡大側面図。
【図2】(a)は負荷緩衝部材を示す断面図、(b)は(a)のb−b線における端面図。
【図3】耐震補強具を示す要部拡大断面図(図1のA矢視図)。
【図4】耐震補強具が柱と梁との間に取付けられた状態を示す要部斜視図。
【図5】耐震補強具本体が撓んだ状態を示す要部拡大側面図。
【図6】耐震補強具本体が捻れた状態を示す側面図。
【図7】耐震補強具本体が捻れた状態を示す正面図。
【図8】接続部の別例を示す斜視図。
【図9】支持部材の別例を示す斜視図。
【符号の説明】
11…耐震補強具、12…木造建築物、12a…柱、12b…梁、13…耐震補強具本体、14…支持部材、15…負荷緩衝部材、17…抜け止め保持手段を構成する抜け止め保持凹部、18…抜け止め保持手段を構成する抜け止め保持突条、23…取付け部材、30…抜け止め保持手段を構成する抜け止め保持突起。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic reinforcement for wooden buildings. More specifically, the present invention relates to a seismic retrofit that can suppress deformation or collapse of a wooden building due to an earthquake load.
[0002]
[Prior art]
Conventionally, this type of earthquake-resistant reinforcement has a guide member having a cylindrical shape and a coil spring disposed therein, and a columnar shape. One end is inserted into the end of the guide member, and the other end is formed. A pair of support members respectively attached to columns or beams of a wooden building having a true wall structure or a large wall structure. The coil spring is configured to be elastically deformed only in the longitudinal direction in the guide member by an external load.
[0003]
When a load is applied to a column or a beam to which the seismic reinforcement is attached from outside due to an earthquake, the load is absorbed by the coil spring elastically deforming the inside of the guide member by the load. .
[0004]
[Problems to be solved by the invention]
However, in this conventional seismic reinforcement, the coil spring is elastically deformed only in the longitudinal direction of the guide member by an external load, that is, expanded and contracted only in one direction in the guide member. It is configured. For this reason, when a load is applied to a column or a beam from the outside such that the seismic stiffener is bent or twisted due to an earthquake, the coil spring is not easily elastically deformed and cannot sufficiently absorb the load. . Therefore, there is a problem that the wooden building may be deformed or collapsed by an earthquake load.
[0005]
The present invention has been made by paying attention to the problems existing in the prior art as described above. It is an object of the present invention to provide a seismic retrofit that can suppress deformation or collapse of a wooden building due to an earthquake load.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the seismic stiffener according to the first aspect of the present invention is provided rotatably at an end of the seismic stiffener main body for reinforcing a wooden building and an end of the seismic stiffener main body. And an attachment member attached to a wooden building, wherein the seismic stiffener body is formed of a pair of support members and an elastic material, is provided between the support members, and has a load buffer in which bending and twisting are allowed. And a member.
[0007]
According to a second aspect of the present invention, in the seismic retrofitting device according to the first aspect, an end of a support member is inserted into the load buffering member, and the load buffering member and the support member are provided with support members. A retaining means for retaining the end portion in the load buffer member is provided.
[0008]
According to the third aspect of the present invention, there is provided the seismic retrofit according to the first or second aspect, wherein the seismic reinforcement is mounted between a pillar and a beam or a girder of the wooden building and has a load of 10%. The strength is set to withstand a force of 1515%.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1 and FIG. 4, a not-shown mortise is formed in a side surface of an upper end portion of a pillar 12 a constituting the wooden building 12, and a not-shown mortise projecting from an end face of a beam 12 b or a girder is inserted. As a result, a beam 12b or a girder is attached to the side surface of the upper end of the column 12a. The wooden building 12 has a large wall structure in which columns 12a, beams 12b, and girders are embedded in a wall (not shown), and a true wall structure in which columns 12a, beams 12b, and part of girders are exposed from the walls. Etc.
[0010]
As shown in FIGS. 1 and 2 (a) and 2 (b), the seismic retrofitting body 13 for reinforcing the wooden building 12 is configured such that one end of a pair of cylindrical support members 14 has a cylindrical load. Each of the cushioning members 15 is linearly inserted by being inserted into each of the insertion recesses 16 having a circular cross section which is recessed at both ends. The inner diameter of each insertion recess 16 is set to be slightly larger than the outer diameter of each support member 14.
[0011]
As shown in FIG. 2A, annular retaining retaining recesses 17 constituting retaining retaining means are respectively provided in the bottom of each insertion concave portion 16, and the outer peripheral surface of one end of each support member 14 is provided. Are provided with annular retaining retaining ridges 18 which constitute retaining retaining means, respectively. When one end of each support member 14 is inserted into each insertion recess 16, each retaining holding ridge 18 is fitted into each retaining holding recess 17, whereby one end of each support member 14 is inserted. Are retained in the load buffering member 15 respectively.
[0012]
As shown in FIGS. 1 and 3, the other end of each support member 14 is formed by a support disk 20 and a semi-disk-shaped first connection plate 21 protruding from the center of one side surface thereof. The connection portions 19 formed in a T shape are respectively joined. A circular first connection hole 22 is formed through the first connection plate 21. Further, both first connecting plates 21 are located on the same plane.
[0013]
The mounting member 23 constituting the seismic retrofit 11 is a square plate-shaped mounting plate 24 and a semicircular plate protruding from the center of one side surface of the mounting plate 24 so as to extend in a direction perpendicular to the mounting plate 24. The second connecting plate 25 is formed in a T-shaped cross section. A plurality of mounting holes (not shown) are formed through the mounting plate 24, and a plurality of nails 26 are inserted into the mounting holes and are hit on the columns 12a or the beams 12b, respectively. It can be installed between.
[0014]
A circular second connection hole 27 is formed through the second connection plate 25 at a position corresponding to the first connection hole 22 of the first connection plate 21. After the rotation support bolt 28 is inserted through the first and second connection holes 22 and 27, the nut 29 is screwed into the rotation support bolt 28, so that the first connection plate 21 is attached to each mounting member 23. It is rotatably supported.
[0015]
Each support member 14, each connection portion 19, and each attachment member 23 are each formed of a metal material such as aluminum or steel. On the other hand, the load buffering member 15 is formed of an elastic material, and is allowed to bend, twist, contract, and expand. The load is absorbed by being elastically deformed so as to bend, twist, contract, or expand by an external load. Specific examples of the elastic material include a rubber material such as chloroprene rubber and a synthetic resin material such as polyurethane.
[0016]
As shown in FIGS. 1 and 4, the seismic stiffener 11 more reliably suppresses deformation or collapse of the wooden building 12 due to an earthquake load when attached between the column 12 a and the beam 12 b or girder. Therefore, the strength is preferably set to withstand a force of 10 to 15% of the load applied to the column 12a by the earthquake. If the strength withstands a force of less than 10%, the wooden building 12 is likely to deform or collapse due to insufficient strength.
[0017]
On the other hand, with a strength that can withstand a force exceeding 15%, the strength of the support member 14 or the like tends to be increased in order to increase the strength, or the support member 14 or the like is easily formed of a steel material or the like having a large specific gravity. The weight of the reinforcement 11 tends to be heavy. When a load of, for example, 2.0 to 3.0 kN is applied to the column 12a on which the seismic retrofit 11 is attached due to an earthquake of seismic intensity 6 to 7, the seismic retrofit 11 is set to have a strength to withstand a force of 200 to 450N. .
[0018]
When the seismic stiffener 11 is used, for example, the seismic stiffener 11 is attached between the column 12a and the beam 12b. That is, first, the other side surface of one of the mounting plates 24 is brought into contact with a predetermined portion of the side surface of the column 12a facing the beam 12b, and then a plurality of nails 26 are inserted into the mounting holes to strike the column 12a. wear.
[0019]
Next, the other side surface of the other mounting plate 24 is brought into contact with a position where the angle between the seismic stiffener body 13 and the column 12a or the beam 12b is, for example, 45 degrees on the side surface of the beam 12b facing the column 12a. Then, by inserting a plurality of nails 26 into the respective mounting holes and hitting the beams 12b, the seismic stiffener 11 is attached between the columns 12a and the beams 12b.
[0020]
As shown by the solid line in FIG. 5, when a load is applied to the columns 12a and the beams 12b from the outside so that the seismic stiffener 11 bends, each load causes each support member 14 to rotate each rotation support bolt 28. Each rotates as a center. For this reason, the load buffering member 15 is elastically deformed so as to bend. Due to the elastic deformation, a part of the load applied to the column 12a and the beam 12b is absorbed by the load buffering member 15, and the seismic stiffener body 13 is substantially V It is deformed so as to bend in a letter shape.
[0021]
In other words, the column 12a and the beam 12b are respectively moved from the normal position shown by the two-dot chain line to the displacement position shown by the solid line in FIG. Move once.
[0022]
On the other hand, when a load is applied to the columns 12a and the beams 12b from the outside so that the seismic stiffener 11 is twisted, as shown in FIG. 6, the loads cause the respective support members 14 to rotate around their central axes. Each rotates as a moving center. For this reason, the load buffering member 15 is elastically deformed to be twisted, and by this elastic deformation, a part of the load applied to the column and the beam is absorbed by the load buffering member 15 and the seismic stiffener main body 13 is twisted. To be deformed.
[0023]
That is, as shown in FIGS. 6 and 7, one first connecting plate 21 is inclined with respect to the other first connecting plate 21. Further, the column and the beam once move from the normal position to the displacement position, respectively.
[0024]
When a load is applied to the column 12a and the beam 12b from the outside such that the column 12a and the beam 12b approach each other, the load presses the support members 14 in a direction toward each other. Further, when a load is applied to the column 12a and the beam 12b from the outside so as to separate the column 12a and the beam 12b from each other, the load pulls the support members 14 in the direction away from each other.
[0025]
For this reason, the load buffering member 15 is elastically deformed so as to contract or expand, and by this elastic deformation, a part of the load applied to the column 12a and the beam 12b is absorbed by the load buffering member 15, and the seismic reinforcement is performed. The tool body 13 is deformed so as to contract or expand. That is, the column 12a and the beam 12b temporarily move from the normal position to the displacement position.
[0026]
When a load is applied to the wooden building 12 due to the earthquake, the loads described above are combined and applied to the columns 12a and the beams 12b. Then, when the load not absorbed by the load buffering member 15 is reduced or removed, the load buffering member 15 returns to its original shape by its elastic force, and the seismic stiffener body 13 returns to its original shape. Therefore, the columns 12a and the beams 12b return to the normal positions from the displaced positions.
[0027]
According to the present embodiment described in detail above, the following effects are exhibited.
In the seismic stiffener 11 of the present embodiment, the load buffering member 15 constituting the seismic stiffener main body 13 is formed in a cylindrical shape with an elastic material. The load buffering member 15 is configured to elastically deform to bend or twist, and to return to its original shape by its elastic force.
[0028]
For this reason, when a load is applied to the column 12 a or the beam 12 b to which the seismic stiffener 11 is attached from the outside so that the seismic stiffener 11 bends or twists, the load buffering member 15 elastically deforms the load. Part can be absorbed. Further, when the load not absorbed by the load buffering member 15 is reduced or removed, the columns 12a and the beams 12b can be returned to the normal positions by returning the seismic stiffener body 13 to its original shape. Therefore, since the wooden building 12 is reinforced by the seismic stiffener 13, deformation or collapse of the wooden building 12 due to an earthquake load can be suppressed.
[0029]
In the earthquake-resistant reinforcement 11 of the present embodiment, the first connecting plate 21 is rotatably supported by each mounting member 23. Therefore, when a load is applied to the column 12a or the beam 12b to which the seismic stiffener 11 is attached from the outside so that the seismic stiffener 11 bends, each of the support members 14 pivots about the pivot support bolt 28. It can be easily rotated. Therefore, the load buffering member 15 can be elastically deformed so as to be easily bent. Furthermore, when the load buffering member 15 returns to its original shape due to its elastic force, each of the support members 14 rotates, so that the seismic stiffener main body 13 can be easily returned to its original shape.
[0030]
In the anti-seismic reinforcement 11 of the present embodiment, one end of each support member 14 comes out of the load buffering member 15 by fitting each retaining ridge 18 into each retaining recess 17. Stopped and held. Therefore, it is possible to prevent one end of each support member 14 from dropping out of the load buffering member 15 due to the elastic deformation of the load buffering member 15. Therefore, the earthquake-resistant reinforcement 11 can maintain the earthquake-resistant function.
[0031]
In the seismic stiffener 11 of the present embodiment, when the seismic stiffener 11 is attached between the column 12a and the beam 12b or the girder, the seismic stiffener 11 is subjected to a force of 10 to 15% of the load applied to the column 12a due to the earthquake. The strength to withstand is preferably set. For this reason, deformation or collapse of the wooden building 12 due to the load of the earthquake can be suppressed more reliably.
[0032]
In the earthquake-resistant reinforcement 11 of this embodiment, the load buffering member 15 is configured to elastically deform so as to contract or expand, and to return to its original shape by its elastic force. Therefore, when a load is applied to the column 12a or the beam 12b to which the seismic stiffener 11 is attached from the outside such that the column 12a and the beam 12b approach each other or separate from each other, the load buffer member 15 Part of the load can be absorbed by the elastic deformation.
[0033]
Further, when the load not absorbed by the load buffering member 15 is reduced or removed, the columns 12a and the beams 12b can be returned to the normal positions by returning the seismic stiffener body 13 to its original shape. For this reason, the deformation or collapse of the wooden building 12 due to the load of the earthquake can be suppressed more reliably.
[0034]
In the aseismic reinforcement 11 of the present embodiment, for example, when attaching the aseismic reinforcement 11 between the column 12 a and the beam 12 b constituting the wooden building 12, a plurality of nails 26 are attached to each of the attachment plates 24. It is inserted into the hole and hits the column 12a or the beam 12b, respectively. Therefore, since the seismic stiffener 11 can be easily attached to the wooden building 12, the seismic stiffener 11 can be easily attached not only to the case where the wooden building 12 is built but also to the existing wooden building 12. it can.
[0035]
Further, when the seismic stiffener 11 is attached between the column 12a and the beam 12b using an adhesive, the seismic stiffener 11 has a higher attachment strength to the column 12a and the beam 12b. 11 can be stably attached to the pillar 12a and the beam 12b.
[0036]
The above-described embodiment can be modified as follows.
As shown in FIG. 8, the connecting portion 19 may be formed in a substantially semi-disc shape by pressing the other end of the supporting member 14. At this time, the first connection hole 22 is formed through the connection portion 19.
[0037]
As shown in FIG. 9, the shape of each of the support members 14 may be changed to an angle having an L-shaped cross section. At this time, on the side surface of one end of the side plate 14a and the bottom plate 14b constituting the support member 14, a square columnar retaining retaining projection 30 constituting the retaining retaining means is provided in a protruding manner. Further, the connection portion is omitted, and a first connection hole 22 is formed through the other end of the side plate 14 a of the support member 14. On the other hand, each of the insertion concave portions of the load buffering member is concavely formed in an L-shaped cross section, and a retaining retaining concave portion is concavely formed at a position corresponding to the retaining retaining projection 30.
[0038]
Further, the shape of each support member 14 may be changed to a square tube shape, an H-shaped cross section, or the like. Furthermore, by joining a pair of plate members having a channel shape or an L-shaped cross section with their side plates, each support member 14 is formed into a shape such as a horizontal H-shape or a step shape. Is also good. At this time, each support member 14 preferably has a shape that is line-symmetric about the center axis.
[0039]
The support members 14, the connection portions 19, and the attachment members 23 may be formed of a synthetic resin material such as FRP. At this time, each connecting portion 19 can be joined to the other end of each supporting member 14 by heat welding or bonding.
[0040]
The inside diameter of each insertion recess 16 may be formed slightly smaller than the outside diameter of each support member 14. When one end of each support member 14 is inserted into each insertion recess 16, an adhesive may be applied to the outer peripheral surface of one end of each support member 14 or the inner peripheral surface of each insertion recess 16.
[0041]
Further, when each of the support members 14 and the load buffering members 15 are respectively formed of a synthetic resin material, one end of each of the support members 14 is inserted into each of the insertion recesses 16, and then the load buffering member 15 and each of the support members 14 are inserted. May be heated and welded to one end. In the case of such a configuration, one end of each support member 14 can be more securely retained and held in the load buffering member 15.
[0042]
When attaching the seismic stiffener 11 between, for example, the column 12a and the beam 12b, an adhesive may be applied to the other side surface of each mounting plate 24. With this configuration, the seismic stiffener 11 can be firmly attached to the columns 12a and the beams 12b.
[0043]
By inserting a screw into each of the mounting holes and screwing into the columns 12a or 12b, the seismic stiffener 11 may be mounted between the columns 12a and the beams 12b, for example.
-The shape of the load buffering member 15 may be changed to a square pole or the like. At this time, the load buffering member 15 preferably has a shape that is symmetrical about a plane including the central axis.
[0044]
The retaining ridge 18 may be provided only on the outer peripheral surface of one end of the support member 14.
The seismic reinforcement 11 may be attached between the beams 12b, between the beams, or between the beams 12b and the beams.
[0045]
Next, technical ideas that can be grasped from the embodiment will be described below.
(1) The seismic retrofit according to any one of claims 1 to 3, wherein the load buffering member is configured to allow further contraction and elongation. According to this configuration, it is possible to more reliably suppress the deformation or collapse of the wooden building due to the load of the earthquake.
[0046]
(2) A wooden building characterized by reinforcing a wooden building by attaching the seismic retrofitting device according to any one of claims 1 to 3 and (1) to the wooden building. Seismic reinforcement method. According to this configuration, deformation or collapse of the wooden building due to the load of the earthquake can be suppressed.
[0047]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
ADVANTAGE OF THE INVENTION According to the earthquake-resistant reinforcement of the invention of Claim 1, the deformation | transformation or collapse of a wooden building by the load of an earthquake can be suppressed.
[0048]
According to the seismic retrofitting device of the second aspect, in addition to the effects of the first aspect, it is possible to maintain the antiseismic function.
According to the seismic retrofitting device of the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, it is possible to more reliably suppress deformation or collapse of a wooden building due to an earthquake load. it can.
[Brief description of the drawings]
FIG. 1 is an enlarged side view of a main part showing a state in which an earthquake-resistant reinforcement of this embodiment is attached between a column and a beam.
FIG. 2A is a cross-sectional view showing a load buffering member, and FIG. 2B is an end view taken along line bb of FIG.
FIG. 3 is an enlarged sectional view of a main part showing the seismic retrofitting (a view in the direction of arrow A in FIG. 1).
FIG. 4 is an essential part perspective view showing a state in which the seismic retrofit is mounted between the column and the beam.
FIG. 5 is an enlarged side view of a main part showing a state in which the main body of the earthquake-resistant reinforcement is bent.
FIG. 6 is a side view showing a state in which the main body of the earthquake-resistant reinforcement is twisted.
FIG. 7 is a front view showing a state in which the main body of the earthquake-resistant reinforcement is twisted.
FIG. 8 is a perspective view showing another example of the connection unit.
FIG. 9 is a perspective view showing another example of the support member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Seismic reinforcement, 12 ... Wooden building, 12a ... Column, 12b ... Beam, 13 ... Seismic reinforcement main body, 14 ... Support member, 15 ... Load buffering member, 17 ... Retainer holding which comprises retaining means Depressions, 18: retaining retaining ridges constituting retaining retaining means, 23: mounting members, 30: retaining retaining projections constituting retaining retaining means.

Claims (3)

木造建築物を補強するための耐震補強具本体と、耐震補強具本体の端部に回動可能に設けられるとともに、木造建築物に取付けられる取付け部材とを備え、
前記耐震補強具本体は、一対の支持部材と、弾性材料により形成され、支持部材間に設けられるとともに、撓み及び捻れが許容される負荷緩衝部材とを備えていることを特徴とする耐震補強具。
An earthquake-resistant reinforcement body for reinforcing a wooden building, and an attachment member that is rotatably provided at an end of the earthquake-resistant reinforcement body and that is attached to the wooden building,
The seismic stiffener is characterized in that the seismic stiffener body includes a pair of support members and a load buffer member formed of an elastic material, provided between the support members, and capable of allowing bending and twisting. .
前記負荷緩衝部材には支持部材の端部が内挿され、負荷緩衝部材及び支持部材には、支持部材の端部を負荷緩衝部材内に抜け止め保持するための抜け止め保持手段がそれぞれ設けられている請求項1に記載の耐震補強具。An end of a support member is inserted into the load buffering member, and the load buffering member and the support member are provided with retaining means for retaining the end of the support member in the load buffering member. The seismic retrofit according to claim 1, wherein: 前記木造建築物の柱と、梁又は桁との間に取付けられ、柱に加わる負荷の10〜15%の力に耐える強度に設定されている請求項1又は請求項2に記載の耐震補強具。The seismic retrofit according to claim 1 or 2, which is attached between the pillar and the beam or the girder of the wooden building, and has a strength set to withstand a force of 10 to 15% of a load applied to the pillar. .
JP2002192353A 2002-07-01 2002-07-01 Earthquake-resistance reinforcing tool Pending JP2004036139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192353A JP2004036139A (en) 2002-07-01 2002-07-01 Earthquake-resistance reinforcing tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192353A JP2004036139A (en) 2002-07-01 2002-07-01 Earthquake-resistance reinforcing tool

Publications (1)

Publication Number Publication Date
JP2004036139A true JP2004036139A (en) 2004-02-05

Family

ID=31701649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192353A Pending JP2004036139A (en) 2002-07-01 2002-07-01 Earthquake-resistance reinforcing tool

Country Status (1)

Country Link
JP (1) JP2004036139A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481163A (en) * 2014-11-20 2015-04-01 中冶天工上海十三冶建设有限公司 L beam construction device and method for building structure reinforcement
CN105466709A (en) * 2015-11-20 2016-04-06 同济大学 Assembling type post removing device for progressive collapsing of frame structure
CN106285139A (en) * 2016-09-18 2017-01-04 西安建筑科技大学 One wears bucket type wood-structure old building pylon power consumption bracing means and erection method
CN107100406A (en) * 2017-05-17 2017-08-29 大连大学 With double anti-buckling supports for reversing anti-unstability device
CN113047456A (en) * 2021-05-06 2021-06-29 江苏旺材科技有限公司 Assembled beam column connected node reinforcing mechanism
CN114086661A (en) * 2021-11-19 2022-02-25 中铁第四勘察设计院集团有限公司 Yield energy consumption rod, cantilever section yield energy consumption beam column node and maintenance method thereof
CN114908992A (en) * 2022-05-05 2022-08-16 西安建筑科技大学 Friction energy consumption enhancing device and method for loosening mortise and tenon joints
CN114941381A (en) * 2022-06-22 2022-08-26 方圆建设集团有限公司 Assembled bracing power consumption beam column connecting device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481163B (en) * 2014-11-20 2016-03-30 中冶天工上海十三冶建设有限公司 A kind of L beam construction equipment for building structure reinforcing and method
CN104481163A (en) * 2014-11-20 2015-04-01 中冶天工上海十三冶建设有限公司 L beam construction device and method for building structure reinforcement
CN105466709A (en) * 2015-11-20 2016-04-06 同济大学 Assembling type post removing device for progressive collapsing of frame structure
CN106285139B (en) * 2016-09-18 2018-08-24 西安建筑科技大学 One kind wearing bucket type wood-structure old building pylon energy consumption bracing means and erection method
CN106285139A (en) * 2016-09-18 2017-01-04 西安建筑科技大学 One wears bucket type wood-structure old building pylon power consumption bracing means and erection method
CN109025451A (en) * 2017-05-17 2018-12-18 大连大学 Double anti-unstability methods of torsion
CN108035597A (en) * 2017-05-17 2018-05-15 大连大学 Anti- unstability device
CN107100406B (en) * 2017-05-17 2018-11-27 大连大学 Anti-buckling support with double anti-unstability devices of torsion
CN107100406A (en) * 2017-05-17 2017-08-29 大连大学 With double anti-buckling supports for reversing anti-unstability device
CN108035597B (en) * 2017-05-17 2019-10-08 大连大学 Anti- unstability device
CN113047456A (en) * 2021-05-06 2021-06-29 江苏旺材科技有限公司 Assembled beam column connected node reinforcing mechanism
CN114086661A (en) * 2021-11-19 2022-02-25 中铁第四勘察设计院集团有限公司 Yield energy consumption rod, cantilever section yield energy consumption beam column node and maintenance method thereof
CN114908992A (en) * 2022-05-05 2022-08-16 西安建筑科技大学 Friction energy consumption enhancing device and method for loosening mortise and tenon joints
CN114908992B (en) * 2022-05-05 2023-10-03 西安建筑科技大学 Friction energy consumption enhancing device and method for loosening mortise and tenon joint
CN114941381A (en) * 2022-06-22 2022-08-26 方圆建设集团有限公司 Assembled bracing power consumption beam column connecting device
CN114941381B (en) * 2022-06-22 2023-07-28 方圆建设集团有限公司 Assembled bracing energy dissipation beam column connecting device

Similar Documents

Publication Publication Date Title
US20060193687A1 (en) Moment resisting frame bearing connector
JP2008088641A (en) Reinforcing member of building or structure
KR100944363B1 (en) Iron frame brace having bucking protection part
JP2004036139A (en) Earthquake-resistance reinforcing tool
KR101862038B1 (en) Strengthening Steel Structure of Reinforced Concrete Buildings
JP5575838B2 (en) Beam support structure of building
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
JP5651198B2 (en) Beam support structure of building
JP5037031B2 (en) Wall panel fixing structure and building
JP2003321946A (en) Structural body for earthquake-resistant building
JP4746023B2 (en) Seismic retrofit method for steel structures and seismic steel structures
CN107574944A (en) A kind of anti-buckling fan-shaped metal damper applied to assembled beam-column node region
JP2010222802A (en) Earthquake resistant brace and earthquake resistant structure
CN113605559B (en) Assembled self-resetting reinforced concrete shear wall
JP4275689B2 (en) Seismic strengthening method using seismic structure and curved shell pipe
JP2001349091A (en) Seismic control wall structure and seismic control wall unit
JP4330026B1 (en) Damping device and damping structure
JP4950259B2 (en) Construction method of the falling bridge prevention device
JP4191357B2 (en) Structure for preventing collapse of structures
JPH0742727B2 (en) Connection structure of columns and beams
KR102337941B1 (en) Composite structure with earthquake-proof of reinforced concrete columns and steel beams
JP3895866B2 (en) Multistage history damper
JP4091500B2 (en) Seismic reinforcement members
JPH0728429Y2 (en) Elastic-plastic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227