JP2004035367A - Method and apparatus for manufacturing glass wire material - Google Patents

Method and apparatus for manufacturing glass wire material Download PDF

Info

Publication number
JP2004035367A
JP2004035367A JP2002197985A JP2002197985A JP2004035367A JP 2004035367 A JP2004035367 A JP 2004035367A JP 2002197985 A JP2002197985 A JP 2002197985A JP 2002197985 A JP2002197985 A JP 2002197985A JP 2004035367 A JP2004035367 A JP 2004035367A
Authority
JP
Japan
Prior art keywords
heating furnace
glass
furnace
heating
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002197985A
Other languages
Japanese (ja)
Inventor
Tomohiro Ishihara
石原 朋浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002197985A priority Critical patent/JP2004035367A/en
Priority to PCT/JP2003/008273 priority patent/WO2004002912A1/en
Publication of JP2004035367A publication Critical patent/JP2004035367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus capable of preventing characteristic deterioration of optical fibers caused by generated OH groups in optical preforms inserted in a heating furnace and stably manufacturing glass wire materials having high quality. <P>SOLUTION: In drawing process which makes glass preforms to glass wire materials, the specific humidity of peripheral atmosphere of glass preforms 1 inserted in the heating furnace 10 is held in 0.05 g/kg or less. Thereby, H<SB>2</SB>O or OH group of peripheral atmosphere of the glass preform 1 is prevented from dissolving and diffusing in the glass preform inside part during a heating process, and the residual OH amount of the manufactured optical fibers can be reduced. An inert gas is introduced to the heating furnace 10 and/or purge boxes 13, 18, and by controlling the introductory flow amount, the internal pressure of the heating furnace 10 is held higher than the external pressure not to flow the external gas into the heating furnace 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス線材の製造方法及び製造装置、より詳細には、透明ガラス母材を加熱炉において加熱し、線引き工程によってガラス線材化して光ファイバを得るためのガラス線材の製造方法及び製造装置に関する。
【0002】
【従来の技術】
光ファイバの製造においては、まず、例えばOVD法やVAD法によってガラス微粒子を堆積させたガラス微粒子堆積体を作成する。例えば、VAD法やOVD法による製造方法においては、SiCl等のガラス原料、GeCl等のドーパント、Hなどの燃料ガス、及びOなどの助燃性ガスをバーナから噴出させ、火炎加水分解反応によってSiOのガラス微粒子を生成させて、出発棒に堆積させることにより、ガラス微粒子堆積体を得ている。
【0003】
得られたガラス微粒子堆積体は、次工程において脱水焼結炉によって脱水焼結され、透明ガラス化したガラス母材となる。得られたガラス母材は、線引きを行うための加熱炉(線引き炉)に入れられて、さらに高温に加熱され、線引きすることによって線材化され光ファイバとなる。なお、脱水焼結して透明ガラス化したガラス母材を線引きする前に、一定の外径に加熱して延伸する延伸工程や、熱処理によって内部歪みを取り除くためのアニール工程を実施し、これら工程を経て線引き用のガラス母材を得るようにしたプロセスもある。
【0004】
線引き工程においては、ガラス母材を線引き炉内に挿入し、石英ガラスが溶融する2000℃前後に線引き炉の温度をセットする。炉内ではガラス母材の先端が溶融して粘度が下がり自重によって落下する。この落下したガラスを引き取りながら、その周囲に樹脂を被覆してボビンに巻き取る。この際、線引き炉の加熱温度、及び引き取りの速度によってガラス線材の外径を制御する。例えば、線引きしたガラス線材の外径をレーザ等で測定しながら線引きの条件を制御して、光ファイバ規格の125μmの外径となるように線引きする。
【0005】
【発明が解決しようとする課題】
光ファイバの伝送特性において、水分子の存在が影響を与えると考えられている。例えば、線引き工程の加熱雰囲気下において、ガラス母材の周辺に存在する水分子HOが、加熱によってガラス中に溶解し、拡散していき、ガラスのSi−O−Si結合部分と反応してSi−OHとなる。
【0006】
ガラス母材内部に溶解して拡散したOH基は、波長1.38μmに光吸収ピークを有しており、光ファイバ内で伝送される光の伝送損失の原因となる。従って、線引き工程におけるガラス母材周辺の水分は、ガラス母材内部に拡散して、線引き後の光ファイバ内に残留し、光ファイバの特性劣化の要因となる。波長1.38μmを含む帯域は、安価で優れた増幅特性を有するラマン増幅器の光源波長と一致しているため、この波長における伝送損失低減は高速光通信技術において重要な問題となる。
【0007】
光ファイバの製造工程においては、ガラス微粒子堆積体の脱水焼結工程や、上述した延伸工程、及びアニ−ル工程における加熱雰囲気下においても、水分子自体や生成したOH基のガラス母材への溶解・拡散が問題となるが、ガラス径が最も小さくなる線引き工程の場合、水分子もしくはOH基がガラス中心部まで浸透しやすいため、特性劣化の要因となりやすい。
【0008】
上記のような問題に対して、例えば、特開平11−171575号公報では、光ファイバの作製工程においてガラス中のOH分子量を低減する技術が開示されている。しかしながら、上記公報には光ファイバの線引き工程において、ガラス母材の周囲の雰囲気中における水分量を表す条件、例えば比湿条件との関係を示す記載はなく、これを示唆する記載もない。
【0009】
本発明は、上述のごとき実情に鑑みてなされたもので、線引き雰囲気の比湿を制御することにより、加熱炉内に挿入されたガラス母材における生成OH基に起因する光ファイバの特性劣化を抑制し、高品質の光ファイバを安定的に製造できるようにしたガラス線材の製造方法及び製造装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明のガラス線材製造方法は、ガラス母材を加熱炉を用いて加熱し、線引きによってガラス線材化するガラス線材の製造方法であって、加熱炉内部における前記ガラス母材の周辺雰囲気の比湿を0.05g/kg以下に保持して線引きを実行することを特徴とするものである。
【0011】
本発明のガラス線材の製造装置は、炉心管と、炉心管を加熱するためにその炉心管の外側に配設されたヒータと、ヒータの外側に配設された断熱材と、炉心管内部にガスを導入するためのガス導入用配管とを有し、炉心管の上部にガラス母材を挿入するための開口を備えるとともに、炉心管の下部にガラス母材を線引きして形成したガラス線材を引き取るための開口を備える加熱炉であって、炉心管の上部の開口及び下部の開口の形成部分に、パージガスを導入可能なパージボックスをそれぞれ設けたことを特徴とするものである。
【0012】
【発明の実施の形態】
図1は、本発明によるガラス線材の製造装置の一実施形態を説明するための図である。図中、1はガラス母材、2は線材、3は一次被覆された線材、4は二次被覆された線材、10は加熱炉、11は炉心管、12はヒータ、13は第1のパージボックス、14は第1のパージガス導入管、15は第1の差圧測定器、16は加熱炉のガス導入用配管、17は断熱材、18は第2のパージボックス、19は第2のパージガス導入管、20は第2の差圧測定器、21は一次被覆用のダイス、22は一次被覆用のパージガス導入管、23は第1の紫外線照射装置、24は二次被覆用のダイス、25は二次被覆用のパージガス導入管、26は第2の紫外線照射装置、27は線材の引き取り方向を変える方向変化ロール、28は加熱炉の差圧測定器である。
【0013】
本発明は、ガラス母材を線材化させる線引き工程において、加熱炉10に挿入されたガラス母材1の周辺雰囲気の比湿を0.05g/kg以下に保持するものである。これにより、加熱中にガラス母材1周囲の雰囲気中におけるHO分子がガラス母材1内部に溶解、拡散することを防止することができ、製造された光ファイバに残存するOH量を低減することができる。なお、比湿は、単位質量の湿潤空気中に存在する水蒸気重量を示すもので、単位はg/kgである。
【0014】
さらに本発明は、加熱炉10に挿入されたガラス母材1の周辺雰囲気中の比湿を下げるために、水を含まないドライな不活性ガス(窒素ガスなど)を加熱炉10に導入し、かつその不活性ガスの導入流量を制御することにより加熱炉10の内部圧力をその外部圧力より高く保つようにする。これによって加熱炉10外部の水分を含むガスが加熱炉10の内部に流入しないようにする。
【0015】
さらに本発明は、加熱炉10に挿入されたガラス母材1の周辺雰囲気中の比湿を下げるために、加熱炉10の内部空間から加熱炉10の外部空間に連通する通路に、パージ用のパージボックス13,18を設置し、これらパージボックス13,18の内部圧力が加熱炉10の外部圧力より高くなるように管理する。これにより、加熱炉10外部の水分を含むガスが加熱炉10の内部に流入しないようにする。
【0016】
以下に本実施形態の加熱炉について、さらに詳しく説明する。
加熱炉10にはその中心部に炉心管11が備えられ、炉心管11の内部にガラス母材1を挿入して加熱し、線引きして線材化する。炉心管11の外側にはヒータ12が設けられ、さらに外側に断熱材17が配されている。ガス導入用配管16からは、窒素ガス等の水分を含まないドライな不活性ガスが炉心管11の内部に導入される。上述のごとくに、炉心管11内部へのガス導入によって、内部圧力をその外部圧力より高く保つようにし、外部のガスが加熱炉10の内部に流入しないようにする。また炉心管11内の圧力は差圧測定器28によって測定される。
【0017】
炉心管11の上下には、第1及び第2のパージボックス13,18が設けられ、それぞれ第1及び第2のパージガス導入管14,19からパージガスが導入される。これら各パージボックス13,18に対しても水分を含まないドライな不活性ガスが導入される。これら各パージボックス13,18は、上述のごとくに、加熱炉10の外部圧力よりも高い圧力になるようにパージガスの導入量を制御することによって、加熱炉外部から加熱炉内部へのガスの流入を阻止するようにしたものである。各パージボックス13,18への導入ガス圧力は、それぞれ第1及び第2の差圧測定器15,20によって測定され管理される。
【0018】
線引き工程においては、ヒータ12によって炉心管11の内部を所定の線引き温度に加熱し、ガラス母材1の溶融先端部を引き取って線材2とし、一次被覆用のダイス21を通すことにより紫外線硬化型樹脂で一次被覆する。ダイス21は、容器状の形態を有していて、そこに紫外線硬化型樹脂の液体材料が投入され、線材2がその液体材料を上方から下方に向かって通過した後、ダイス下部の貫通孔から引き出されるようにしたもので、ダイス21を通過することによって連続的に線材2の周囲に紫外線硬化型樹脂が被覆される。通常ダイス21では、液体材料に不純物や気泡が混在しないように液体材料を加圧して被覆を行う。
【0019】
紫外線硬化型樹脂で被覆されたガラス線材2は、第1の紫外線照射装置23で紫外線を照射され硬化される。紫外線硬化型樹脂により一次被覆された線材3は、さらに一次被覆用のダイス21と同様な二次被覆用のダイス24を通過することによって、紫外線硬化性樹脂が二次被覆され、第2の紫外線照射装置20で硬化される。また、各紫外線照射装置23,26に対しては、それぞれ一次被覆用のパージガス導入管22、二次被覆用のパージガス導入管25から不活性ガスが導入される。なお、光ファイバにおいては、通常上述のように樹脂の被覆層を2層構造とし、内層(一次被覆層)を緩衝性のある柔らかい樹脂で被覆し、外層(二次被覆層)をある程度剛性があり対摩擦特性の良い堅い樹脂で被覆している。
【0020】
このようにして、加熱炉によって線引きされたガラス線材は、加熱炉下方に配置したダイス及び紫外線照射装置によって、その外周に2層構造で樹脂が被覆される。二層に被覆された線材4は、方向変化ロール27でその引き取り方向を変えて、図示しないボビンに巻き取られて、光ファイバ素線または心線として製品化される。
【0021】
(実施例1)
コア/クラッド部を有する直径36mmのガラス母材1を、その長手方向が鉛直になるように加熱炉10の炉心管11内部に設置した。そして炉心管11内部でガラス母材1をガラスの軟化温度以上に加熱溶融して線引きし、ガラス線材化した。このときの炉心管11の内部には、ガス導入用配管16から窒素ガスを1000SLM(Standard Liter/Min.)で導入し、加熱炉10の内部圧力を加熱炉10の外部圧力より100Pa高くなるように管理した。
【0022】
さらに加熱炉10の上部及び下部に備えられた第1及び第2のパージボックス13,18に対しても、窒素ガスを200SLMで導入し、各パージボックス13,18の内部圧力を加熱炉10の外部圧力より200Pa高くなるように管理した。
【0023】
上記のごとくの条件により、炉心管11の内部の比湿は0.001〜0.002g/kgに管理された。このような状態でガラス母材1を線材化し、得られた光ファイバの伝送損失を測定したところ、波長1.38μmにおけるOH吸収による損失の増加量は0.005dB/kmであった。
【0024】
(実施例2)
本実施例は、図1の各パージボックス13,18を外した状態でガラス母材1を線引きして光ファイバ化した。コア/クラッド部を有する直径36mmのガラス母材1を、その長手方向が鉛直になるように加熱炉10の炉心管11内部に設置した。そして炉心管11内部でガラス母材1をガラスの軟化温度以上に加熱溶融して線引きし、ガラス線材化した。このとき炉心管11内部には、ガス導入用配管16から窒素ガスを1100SLMで導入し、炉心管11の内部圧力を加熱炉10の外部圧力より100Pa高くなるように管理した。これにより、炉心管11の内部の比湿は0.004〜0.005g/kgに管理された。このような状態でガラス母材を線引きして線材化し、得られた光ファイバの伝送損失を測定したところ、波長1.38μmにおけるOH吸収によるロス増加量は0.02dB/kmであった。
【0025】
(実施例3)
本実施例は、図1のシステムを用いてガラス母材を線引きして光ファイバ化した。コア/クラッド部を有する直径36mmのガラス母材1を、その長手方向が鉛直になるように加熱炉10の炉心管11内部に設置した。そして炉心管11内部でガラス母材1をガラスの軟化温度以上に加熱溶融して線引きし、ガラス線材化した。このとき炉心管11の内部には、ガス導入用配管16から窒素ガスを100SLMで導入し、加熱炉10の内部圧力を加熱炉10の外部圧力より10Pa高くなるように管理した。また加熱炉10の上部及び下部に備えられた第1及び第2のパージボックス13,18に対して、窒素ガスを50SLMで導入し、各パージボックス13,18の内部圧力が加熱炉10の外部圧力より40Pa高くなるように管理した。
【0026】
上記のごとくの条件により、炉心管11の内部の比湿は0.006〜0.007g/kgに管理された。このような状態でガラス母材1を線材化し、得られた光ファイバの伝送損失を測定したところ、波長1.38μmにおけるOH吸収によるロス増加量は0.05dB/kmであった。
【0027】
(比較例1)
本比較例は、図1の各パージボックス13,18を外した状態でガラス母材を線引きして光ファイバ化した。コア/クラッド部を有する直径36mmのガラス母材によるガラス母材1を、その長手方向が鉛直になるように加熱炉10の炉心管11内部に設置した。そして炉心管11内部でガラス母材1をガラスの軟化温度以上に加熱溶融して線引きし、ガラス線材化した。このとき炉心管11の内部には、ガス導入用配管16から窒素ガスを20SLMで導入し、炉心管11の内部圧力が加熱炉10の外部圧力と同じになるように管理した。これにより、炉心管11の内部の比湿は0.16〜0.20g/kgに管理された。このような状態でガラス母材1を線引きして線材化し、得られた光ファイバの伝送損失を測定したところ、波長1.38μmにおけるOH吸収によるロス増加量は5.0dB/kmであった。
【0028】
以上の実施例及び比較例における管理比湿とロスデータとを図2にまとめて示す。なお、図2において、パージボックスの圧力差,及び加熱炉の圧力差は、加熱炉の外部雰囲気との圧力差をそれぞれ示すものとする。図2に示すように、加熱炉内部へのパージガスの導入量の制御,及びパージボックスへのパージガスの導入量の制御を行うことにより、加熱炉内部の比湿をコントロールできる。
【0029】
加熱炉内の比湿と、光ファイバのロスの増加分には相関がみられ、比湿の増加とともにロスも増大する。実用レベルにおいてOH基の吸収による伝送ロスの増分は、0.5dB1/km以下とすることが必要であり、これを実現するためには、加熱炉内の比湿は0.05g/kg以下にする必要がある。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明によれば、線引き雰囲気の比湿を制御することにより、加熱炉内に挿入されたガラス母材における生成OH基に起因する光ファイバの特性劣化を抑制し、安定的に高品質のガラス線材を製造できるようにすることができる。
すなわち、本発明によって加熱雰囲気の比湿を管理することにより、加熱中にガラス母材周囲のHO分子やOH基がガラス材に溶解、拡散することを防止し、製造された光ファイバに残存するOH量を低減できる。これにより波長1.38μm付近における吸収損失を低減でき、高品質の光ファイバを得ることができる。
【図面の簡単な説明】
【図1】本発明によるガラス線材の製造装置の一実施形態を説明するための図である。
【図2】実施例及び比較例における管理比湿とロスデータを示す図である。
【符号の説明】
1…ガラス母材、2…線材、3…一次被覆された線材、4…二次被覆された線材、10…加熱炉、11…炉心管、12…ヒータ、13…第1のパージボックス、14…第1のパージガス導入管、15…第1の差圧測定器、16…ガス導入用配管、17…断熱材、18…第2のパージボックス、19…第2のパージガス導入管、20…第2の差圧測定器、21…ダイス、22…一次被覆用のパージガス導入管、23…第1の紫外線照射装置、24…二次被覆用のダイス、25…二次被覆用のパージガス導入管、26…第2の紫外線照射装置、27…方向変化ロール。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a glass wire, and more particularly, to a method and an apparatus for manufacturing a glass wire for obtaining an optical fiber by heating a transparent glass base material in a heating furnace and forming a glass wire by a drawing process. About.
[0002]
[Prior art]
In the production of an optical fiber, first, a glass particle deposit body in which glass particles are deposited by, for example, the OVD method or the VAD method is prepared. For example, in a manufacturing method based on the VAD method or the OVD method, a glass material such as SiCl 4 , a dopant such as GeCl 4 , a fuel gas such as H 2 , and an auxiliary gas such as O 2 are ejected from a burner to perform flame hydrolysis. Glass fine particles of SiO 2 are generated by the reaction and deposited on the starting rod to obtain a glass fine particle deposit.
[0003]
The obtained glass fine particle deposit is dehydrated and sintered in a dehydration sintering furnace in the next step, and becomes a transparent glassy glass base material. The obtained glass base material is put into a heating furnace (drawing furnace) for drawing, further heated to a high temperature, and drawn into a wire to be an optical fiber. Prior to drawing the glass base material which has been dehydrated and sintered and turned into a transparent glass, a stretching step of heating and stretching to a constant outer diameter and an annealing step for removing internal strain by heat treatment are performed. There is also a process in which a glass base material for drawing is obtained through
[0004]
In the drawing step, the glass base material is inserted into the drawing furnace, and the temperature of the drawing furnace is set to about 2000 ° C. at which the quartz glass melts. In the furnace, the tip of the glass base material melts, the viscosity decreases, and the glass base material falls by its own weight. While collecting the dropped glass, the periphery is covered with a resin and wound around a bobbin. At this time, the outer diameter of the glass wire is controlled by the heating temperature of the drawing furnace and the speed of drawing. For example, the drawing conditions are controlled while measuring the outer diameter of the drawn glass wire material with a laser or the like, and the drawing is performed so that the outer diameter of the optical fiber standard is 125 μm.
[0005]
[Problems to be solved by the invention]
It is believed that the presence of water molecules affects the transmission characteristics of an optical fiber. For example, under a heating atmosphere in the drawing step, water molecules H 2 O present around the glass base material are dissolved and diffused in the glass by heating, and react with the Si—O—Si bonding portion of the glass. To become Si-OH.
[0006]
The OH group dissolved and diffused in the glass base material has a light absorption peak at a wavelength of 1.38 μm, and causes transmission loss of light transmitted in the optical fiber. Therefore, the moisture around the glass preform in the drawing step is diffused into the glass preform and remains in the optical fiber after the drawing, causing deterioration of the characteristics of the optical fiber. Since the band including the wavelength of 1.38 μm coincides with the light source wavelength of the Raman amplifier which is inexpensive and has excellent amplification characteristics, reduction of transmission loss at this wavelength is an important problem in high-speed optical communication technology.
[0007]
In the manufacturing process of the optical fiber, even under the heating atmosphere in the dehydration sintering process of the glass fine particle deposit, the above-described stretching process, and the annealing process, the water molecules themselves and the generated OH group are not added to the glass base material. Although the melting and diffusion are problematic, in the case of the drawing step in which the glass diameter becomes the smallest, water molecules or OH groups easily penetrate to the center of the glass, which is likely to cause deterioration of characteristics.
[0008]
To solve the above problem, for example, Japanese Patent Application Laid-Open No. H11-171575 discloses a technique for reducing the OH molecular weight in glass in a process of manufacturing an optical fiber. However, in the above publication, there is no description indicating a condition indicating the amount of moisture in the atmosphere around the glass base material, for example, a relationship with a specific humidity condition, and no description suggesting this in the drawing step of the optical fiber.
[0009]
The present invention has been made in view of the above-described circumstances, and by controlling the specific humidity of the drawing atmosphere, it is possible to reduce the characteristic deterioration of the optical fiber caused by the generated OH group in the glass base material inserted into the heating furnace. It is an object of the present invention to provide a method and an apparatus for manufacturing a glass wire rod that can suppress the occurrence of a high-quality optical fiber stably.
[0010]
[Means for Solving the Problems]
The glass wire manufacturing method of the present invention is a method of manufacturing a glass wire in which a glass base material is heated using a heating furnace and is drawn into a glass wire by drawing, and a specific humidity of an atmosphere around the glass base material inside the heating furnace. Is maintained at 0.05 g / kg or less, and the drawing is executed.
[0011]
The apparatus for producing a glass wire rod according to the present invention includes a furnace tube, a heater disposed outside the furnace tube for heating the furnace tube, a heat insulating material disposed outside the heater, and an inside of the furnace tube. Having a gas introduction pipe for introducing gas, and having an opening for inserting a glass base material at the upper part of the furnace tube, and forming a glass wire material by drawing the glass base material at the lower part of the furnace tube. A heating furnace having an opening for picking up, wherein a purge box capable of introducing a purge gas is provided at a portion where an upper opening and a lower opening of a furnace tube are formed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram for explaining an embodiment of a glass wire manufacturing apparatus according to the present invention. In the figure, 1 is a glass base material, 2 is a wire material, 3 is a primary-coated wire material, 4 is a secondary-coated wire material, 10 is a heating furnace, 11 is a furnace tube, 12 is a heater, and 13 is a first purge. Box, 14 is a first purge gas introduction pipe, 15 is a first differential pressure measuring instrument, 16 is a gas introduction pipe of a heating furnace, 17 is a heat insulating material, 18 is a second purge box, and 19 is a second purge gas. An inlet tube, 20 is a second differential pressure gauge, 21 is a primary coating die, 22 is a purge gas inlet tube for primary coating, 23 is a first ultraviolet irradiation device, 24 is a secondary coating die, 25 Is a purge gas introduction pipe for secondary coating, 26 is a second ultraviolet irradiation device, 27 is a direction change roll for changing the direction of wire drawing, and 28 is a differential pressure measuring device of a heating furnace.
[0013]
In the present invention, the specific humidity of the surrounding atmosphere of the glass base material 1 inserted into the heating furnace 10 is maintained at 0.05 g / kg or less in the drawing step of forming the glass base material into a wire. Thereby, it is possible to prevent H 2 O molecules in the atmosphere around the glass base material 1 from being dissolved and diffused into the glass base material 1 during heating, and to reduce the amount of OH remaining in the manufactured optical fiber. can do. The specific humidity indicates the weight of water vapor existing in a unit mass of humid air, and the unit is g / kg.
[0014]
Further, the present invention introduces a water-free dry inert gas (such as nitrogen gas) into the heating furnace 10 in order to lower the specific humidity in the surrounding atmosphere of the glass base material 1 inserted into the heating furnace 10. The internal pressure of the heating furnace 10 is kept higher than the external pressure by controlling the flow rate of the inert gas. This prevents the gas containing moisture from outside the heating furnace 10 from flowing into the inside of the heating furnace 10.
[0015]
Further, in order to reduce the specific humidity in the surrounding atmosphere of the glass base material 1 inserted into the heating furnace 10, the present invention further includes a purge passage between the inside space of the heating furnace 10 and the outside space of the heating furnace 10. Purge boxes 13 and 18 are installed and managed so that the internal pressure of the purge boxes 13 and 18 is higher than the external pressure of the heating furnace 10. This prevents the gas containing moisture from outside the heating furnace 10 from flowing into the inside of the heating furnace 10.
[0016]
Hereinafter, the heating furnace of the present embodiment will be described in more detail.
The heating furnace 10 is provided with a furnace tube 11 at the center thereof, and the glass base material 1 is inserted into the furnace tube 11 and heated, and drawn to be a wire. A heater 12 is provided outside the furnace tube 11, and a heat insulating material 17 is further provided outside. From the gas introduction pipe 16, a dry inert gas containing no water such as nitrogen gas is introduced into the furnace tube 11. As described above, by introducing gas into the furnace tube 11, the internal pressure is kept higher than its external pressure, and external gas is prevented from flowing into the heating furnace 10. The pressure in the furnace tube 11 is measured by a differential pressure measuring device 28.
[0017]
First and second purge boxes 13 and 18 are provided above and below the furnace tube 11, and purge gas is introduced from first and second purge gas introduction pipes 14 and 19, respectively. A dry inert gas containing no moisture is introduced into each of the purge boxes 13 and 18. As described above, each of the purge boxes 13 and 18 controls the flow rate of the purge gas so that the pressure becomes higher than the external pressure of the heating furnace 10, so that the gas flows from the outside of the heating furnace to the inside of the heating furnace. Is to prevent. The gas pressure introduced into each of the purge boxes 13 and 18 is measured and managed by the first and second differential pressure measuring devices 15 and 20, respectively.
[0018]
In the wire drawing step, the inside of the furnace tube 11 is heated to a predetermined wire drawing temperature by the heater 12, the molten front end portion of the glass base material 1 is drawn into the wire 2, and passed through the die 21 for primary coating, so that the ultraviolet curing type is obtained. Primary coating with resin. The die 21 has a container-like form, into which a liquid material of an ultraviolet curable resin is charged, and after the wire 2 passes through the liquid material from above to below, the die 21 passes through a through hole at the lower part of the die. The ultraviolet curable resin is continuously coated around the wire 2 by passing through the die 21. In the normal die 21, the liquid material is pressurized and coated so that impurities and bubbles are not mixed in the liquid material.
[0019]
The glass wire 2 coated with the ultraviolet curing resin is irradiated with ultraviolet light by the first ultraviolet irradiation device 23 to be cured. The wire 3 primarily coated with the ultraviolet curable resin further passes through a secondary coating dice 24 similar to the primary coating dice 21 to be secondary coated with the ultraviolet curable resin, and the second ultraviolet It is cured by the irradiation device 20. Further, an inert gas is introduced into each of the ultraviolet irradiation devices 23 and 26 from a purge gas introduction pipe 22 for primary coating and a purge gas introduction pipe 25 for secondary coating, respectively. In the optical fiber, as described above, the resin coating layer usually has a two-layer structure, the inner layer (primary coating layer) is coated with a soft resin having a buffer property, and the outer layer (secondary coating layer) has some rigidity. It is coated with a hard resin with good anti-friction properties.
[0020]
In this manner, the outer periphery of the glass wire rod drawn by the heating furnace is coated with a resin in a two-layer structure by a die and an ultraviolet irradiation device arranged below the heating furnace. The wire 4 covered in two layers is wound around a bobbin (not shown) by changing its take-off direction by a direction changing roll 27 and is commercialized as an optical fiber or a core.
[0021]
(Example 1)
A glass preform 1 having a diameter of 36 mm having a core / cladding portion was placed inside a furnace tube 11 of a heating furnace 10 so that its longitudinal direction was vertical. Then, the glass preform 1 was heated and melted at a temperature higher than the softening temperature of the glass inside the furnace tube 11 and drawn to form a glass wire. At this time, nitrogen gas is introduced at 1000 SLM (Standard Liter / Min.) From the gas introduction pipe 16 into the furnace core tube 11 so that the internal pressure of the heating furnace 10 becomes 100 Pa higher than the external pressure of the heating furnace 10. Managed.
[0022]
Furthermore, nitrogen gas is introduced at 200 SLM into the first and second purge boxes 13 and 18 provided at the upper and lower portions of the heating furnace 10, and the internal pressure of each of the purge boxes 13 and 18 is reduced. It was controlled to be 200 Pa higher than the external pressure.
[0023]
Under the conditions as described above, the specific humidity inside the furnace tube 11 was controlled to 0.001 to 0.002 g / kg. In this state, the glass preform 1 was formed into a wire, and the transmission loss of the obtained optical fiber was measured. As a result, the increase in loss due to OH absorption at a wavelength of 1.38 μm was 0.005 dB / km.
[0024]
(Example 2)
In the present embodiment, the glass preform 1 was drawn into an optical fiber with the purge boxes 13 and 18 shown in FIG. 1 removed. A glass preform 1 having a diameter of 36 mm having a core / cladding portion was placed inside a furnace tube 11 of a heating furnace 10 so that its longitudinal direction was vertical. Then, the glass preform 1 was heated and melted at a temperature higher than the softening temperature of the glass inside the furnace tube 11 and drawn to form a glass wire. At this time, nitrogen gas was introduced into the furnace tube 11 from the gas introduction pipe 16 at 1100 SLM, and the internal pressure of the furnace tube 11 was controlled to be higher than the external pressure of the heating furnace 10 by 100 Pa. Thereby, the specific humidity inside the furnace tube 11 was controlled to 0.004 to 0.005 g / kg. In such a state, the glass preform was drawn into a wire, and the transmission loss of the obtained optical fiber was measured. As a result, the increase in loss due to OH absorption at a wavelength of 1.38 μm was 0.02 dB / km.
[0025]
(Example 3)
In this embodiment, an optical fiber was formed by drawing a glass base material using the system shown in FIG. A glass preform 1 having a diameter of 36 mm having a core / cladding portion was placed inside a furnace tube 11 of a heating furnace 10 so that its longitudinal direction was vertical. Then, the glass preform 1 was heated and melted at a temperature higher than the softening temperature of the glass inside the furnace tube 11 and drawn to form a glass wire. At this time, nitrogen gas was introduced at a rate of 100 SLM from the gas introduction pipe 16 into the furnace tube 11, and the internal pressure of the heating furnace 10 was controlled to be higher than the external pressure of the heating furnace 10 by 10 Pa. In addition, nitrogen gas is introduced at 50 SLM into the first and second purge boxes 13 and 18 provided at the upper and lower portions of the heating furnace 10, and the internal pressure of each of the purge boxes 13 and 18 is set at the outside of the heating furnace 10. It was controlled to be 40 Pa higher than the pressure.
[0026]
Under the conditions described above, the specific humidity inside the furnace tube 11 was controlled to 0.006 to 0.007 g / kg. In this state, the glass preform 1 was formed into a wire, and the transmission loss of the obtained optical fiber was measured. As a result, the increase in loss due to OH absorption at a wavelength of 1.38 μm was 0.05 dB / km.
[0027]
(Comparative Example 1)
In this comparative example, the glass preform was drawn into an optical fiber with the purge boxes 13 and 18 of FIG. 1 removed. A glass preform 1 made of a glass preform having a core / cladding portion and having a diameter of 36 mm was placed inside a furnace tube 11 of a heating furnace 10 so that its longitudinal direction was vertical. Then, the glass preform 1 was heated and melted at a temperature higher than the softening temperature of the glass inside the furnace tube 11 and drawn to form a glass wire. At this time, nitrogen gas was introduced into the furnace tube 11 from the gas introduction pipe 16 at a rate of 20 SLM, and the inside pressure of the furnace tube 11 was controlled to be the same as the outside pressure of the heating furnace 10. Thereby, the specific humidity inside the furnace tube 11 was controlled to 0.16 to 0.20 g / kg. In this state, the glass preform 1 was drawn into a wire, and the transmission loss of the obtained optical fiber was measured. As a result, the increase in loss due to OH absorption at a wavelength of 1.38 μm was 5.0 dB / km.
[0028]
FIG. 2 shows the control specific humidity and the loss data in the above Examples and Comparative Examples. In FIG. 2, the pressure difference in the purge box and the pressure difference in the heating furnace indicate the pressure difference from the outside atmosphere of the heating furnace, respectively. As shown in FIG. 2, the specific humidity inside the heating furnace can be controlled by controlling the introduction amount of the purge gas into the heating furnace and controlling the introduction amount of the purge gas into the purge box.
[0029]
There is a correlation between the specific humidity in the heating furnace and the increase in the loss of the optical fiber, and the loss increases as the specific humidity increases. At a practical level, the increase in transmission loss due to the absorption of OH groups must be 0.5 dB1 / km or less, and to achieve this, the specific humidity in the heating furnace must be 0.05 g / kg or less. There is a need to.
[0030]
【The invention's effect】
As is apparent from the above description, according to the present invention, by controlling the specific humidity of the drawing atmosphere, it is possible to suppress the characteristic deterioration of the optical fiber due to the generated OH group in the glass base material inserted into the heating furnace. In addition, it is possible to stably produce a high-quality glass wire.
That is, by controlling the specific humidity of the heating atmosphere according to the present invention, it is possible to prevent H 2 O molecules and OH groups around the glass base material from being dissolved and diffused into the glass material during heating, and to provide a manufactured optical fiber. The remaining OH amount can be reduced. Thereby, the absorption loss around the wavelength of 1.38 μm can be reduced, and a high quality optical fiber can be obtained.
[Brief description of the drawings]
FIG. 1 is a view for explaining an embodiment of a glass wire manufacturing apparatus according to the present invention.
FIG. 2 is a diagram showing management specific humidity and loss data in Examples and Comparative Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... glass base material, 2 ... wire, 3 ... primary-coated wire, 4 ... secondary-coated wire, 10 ... heating furnace, 11 ... furnace tube, 12 ... heater, 13 ... first purge box, 14 ... first purge gas introduction pipe, 15 ... first differential pressure measuring instrument, 16 ... gas introduction pipe, 17 ... insulation material, 18 ... second purge box, 19 ... second purge gas introduction pipe, 20 ... second 2, a differential pressure measuring device, 21 dies, 22 a purge gas introduction pipe for primary coating, 23 a first ultraviolet irradiation device, 24 dies for secondary coating, 25 a purge gas introduction pipe for secondary coating, 26: second ultraviolet irradiation device, 27: direction changing roll.

Claims (5)

ガラス母材を加熱炉を用いて加熱し、線引きによってガラス線材化するガラス線材の製造方法であって、前記加熱炉内部における前記ガラス母材の周辺雰囲気の比湿を0.05g/kg以下に保持して線引きすることを特徴とするガラス線材の製造方法。A method for producing a glass wire, in which a glass base material is heated by using a heating furnace and drawn into a glass wire by drawing, wherein a specific humidity of an atmosphere around the glass base material inside the heating furnace is set to 0.05 g / kg or less. A method for manufacturing a glass wire, comprising holding and drawing. 前記加熱炉内部に不活性ガスを導入し、前記不活性ガスの導入量を制御して前記加熱炉の内部圧力を前記加熱炉の外部圧力より高くすることを特徴とする請求項1に記載のガラス線材の製造方法。The method according to claim 1, wherein an inert gas is introduced into the heating furnace, and an internal pressure of the heating furnace is made higher than an external pressure of the heating furnace by controlling an introduction amount of the inert gas. Manufacturing method of glass wire. 前記加熱炉の内部空間から前記加熱炉の外部空間に連通するガス流路に設けたパージボックスに不活性ガスを導入し、前記パージボックス内部の圧力を前記加熱炉の外部圧力より高くすることを特徴とする請求項1に記載のガラス線材の製造方法。Introducing an inert gas from the internal space of the heating furnace into a purge box provided in a gas flow path communicating with the external space of the heating furnace, and increasing the pressure inside the purge box to be higher than the external pressure of the heating furnace. The method for producing a glass wire according to claim 1, wherein: 前記加熱炉内部に不活性ガスを導入し、前記不活性ガスの導入量を制御して前記加熱炉の内部圧力を前記加熱炉の外部圧力より高くするとともに、前記加熱炉の内部空間から前記加熱炉の外部空間に連通するガス流路に設けたパージボックスに不活性ガスを導入し、前記パージボックス内部の圧力を前記加熱炉の外部圧力より高くすることを特徴とする請求項1に記載のガラス線材の製造方法。Introducing an inert gas into the heating furnace, controlling the introduction amount of the inert gas so that the internal pressure of the heating furnace is higher than the external pressure of the heating furnace, and performing the heating from the internal space of the heating furnace. 2. The method according to claim 1, wherein an inert gas is introduced into a purge box provided in a gas flow path communicating with an external space of the furnace, and a pressure inside the purge box is made higher than an external pressure of the heating furnace. Manufacturing method of glass wire. 炉心管と、前記炉心管を加熱するために前記炉心管の外側に配設されたヒータと、前記ヒータの外側に配設された断熱材と、前記炉心管内部にガスを導入するためのガス導入用配管とを有し、前記炉心管の上部にガラス母材を挿入するための開口を備えるとともに、前記炉心管の下部にガラス母材を線引きして形成したガラス線材を引き取るための開口を備える加熱炉であって、前記炉心管の上部の開口及び下部の開口の形成部分に、パージガスを導入可能なパージボックスをそれぞれ設けたことを特徴とするガラス線材の製造装置。A furnace tube, a heater arranged outside the furnace tube for heating the furnace tube, a heat insulating material arranged outside the heater, and a gas for introducing gas into the furnace tube. An introduction pipe, and an opening for inserting a glass base material at an upper part of the furnace tube, and an opening for drawing a glass wire formed by drawing a glass base material at a lower part of the furnace tube. An apparatus for manufacturing a glass wire, comprising: a heating furnace provided with a purge box capable of introducing a purge gas at a portion where an upper opening and a lower opening of the furnace tube are formed.
JP2002197985A 2002-06-28 2002-07-05 Method and apparatus for manufacturing glass wire material Pending JP2004035367A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002197985A JP2004035367A (en) 2002-07-05 2002-07-05 Method and apparatus for manufacturing glass wire material
PCT/JP2003/008273 WO2004002912A1 (en) 2002-06-28 2003-06-30 Process for producing glass fibrous material and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197985A JP2004035367A (en) 2002-07-05 2002-07-05 Method and apparatus for manufacturing glass wire material

Publications (1)

Publication Number Publication Date
JP2004035367A true JP2004035367A (en) 2004-02-05

Family

ID=31705576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197985A Pending JP2004035367A (en) 2002-06-28 2002-07-05 Method and apparatus for manufacturing glass wire material

Country Status (1)

Country Link
JP (1) JP2004035367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247612A (en) * 2004-03-02 2005-09-15 Shin Etsu Chem Co Ltd Optical fiber and its manufacturing method
CN102531379A (en) * 2006-02-06 2012-07-04 古河电气工业株式会社 Graphite heating furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247612A (en) * 2004-03-02 2005-09-15 Shin Etsu Chem Co Ltd Optical fiber and its manufacturing method
JP4494828B2 (en) * 2004-03-02 2010-06-30 信越化学工業株式会社 Optical fiber manufacturing method
CN102531379A (en) * 2006-02-06 2012-07-04 古河电气工业株式会社 Graphite heating furnace
US9458051B2 (en) 2006-02-06 2016-10-04 Furukawa Electric Co., Ltd. Graphite heating furnace

Similar Documents

Publication Publication Date Title
AU723038B2 (en) Optical fiber having low loss at 1385nm and method for making same
JP5674593B2 (en) Low-loss optical fiber and manufacturing method thereof
JP2009515217A (en) Microstructured optical fiber and manufacturing method thereof
US20080260339A1 (en) Manufacture of depressed index optical fibers
JP2002187733A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2011230987A (en) Method for producing glass preform
US20080276650A1 (en) Microstructured optical fibers and methods
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
KR100982765B1 (en) Optical fiber preform, method for manufacturing thereof, and optical fiber obtained by drawing thereof
US20080285927A1 (en) Single Mode Optical Fiber Having Reduced Macrobending and Attenuation Loss and Method for Manufacturing the Same
EP0100174B1 (en) Method of making glass optical fiber
WO2005049516A1 (en) Method of drawing bare optical fiber, process for producing optical fiber strand and optical fiber strand
JP2006193408A (en) Method for producing optical fiber preform and method for producing optical fiber
CN101097273A (en) Macro-bending insensitive optical fiber
US9416045B2 (en) Method of manufacturing preforms for optical fibres having low water peak
CN113461322B (en) Optical fiber and method for manufacturing optical fiber preform
JP2004035367A (en) Method and apparatus for manufacturing glass wire material
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
KR100619342B1 (en) Method of manufacturing optical fiber in mcvd
US20040118164A1 (en) Method for heat treating a glass article
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
WO2004002912A1 (en) Process for producing glass fibrous material and apparatus therefor
TW200427640A (en) Glass freform for optic fiber of reducing absorption due to oh group and manufacturing method thereof
KR100762611B1 (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
JP4215943B2 (en) Manufacturing method of optical fiber