JP2004035312A - Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium - Google Patents

Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium Download PDF

Info

Publication number
JP2004035312A
JP2004035312A JP2002193543A JP2002193543A JP2004035312A JP 2004035312 A JP2004035312 A JP 2004035312A JP 2002193543 A JP2002193543 A JP 2002193543A JP 2002193543 A JP2002193543 A JP 2002193543A JP 2004035312 A JP2004035312 A JP 2004035312A
Authority
JP
Japan
Prior art keywords
magnetic
particle powder
hematite
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002193543A
Other languages
Japanese (ja)
Other versions
JP3952171B2 (en
Inventor
Kazuyuki Hayashi
林 一之
Keisuke Iwasaki
岩崎 敬介
Seiji Ishitani
石谷 誠治
Hiroko Morii
森井 弘子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2002193543A priority Critical patent/JP3952171B2/en
Publication of JP2004035312A publication Critical patent/JP2004035312A/en
Application granted granted Critical
Publication of JP3952171B2 publication Critical patent/JP3952171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide hematite particle powder which has excellent packing properties, and is further suitable as nonmagnetic powder for a nonmagnetic underlayer of a magnetic recording medium in which the improvement of surface smoothness by calender treatment can be expected. <P>SOLUTION: The spindle-like hematite particle powder for a nonmagnetic underlayer of a magnetic recording medium has a mean major axis diameter of 0.005 to 0.6 μm and a mean minor axis diameter of 0.001 to 0.40 μm. The particle ends of the spindle-like hematite particles composing the hematite particle powder are opened. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、充填性に優れ、しかも、カレンダー処理による表面平滑性の向上が期待できる磁気記録媒体の非磁性下地層用非磁性粉末として好適なヘマタイト粒子粉末を提供する。
【0002】
【従来の技術】
近年、ビデオ用、オーディオ用磁気記録再生用機器の長時間記録化、小型軽量化が進むにつれて、磁気テープ、磁気ディスク等の磁気記録媒体に対する高性能化、即ち、高密度記録化、高出力特性、殊に周波数特性の向上、低ノイズ化の要求が強まっている。
【0003】
殊に、近時におけるビデオテープの高画像高画質化に対する要求は益々強まっており、従来のビデオテープに比べ、記録されるキャリアー信号の周波数が短波長領域に移行しており、その結果、磁気テープの表面からの磁化深度が著しく浅くなっている。
【0004】
短波長信号に対して、磁気記録媒体の高出力特性、殊に、S/N比を向上させるためには、磁気記録層の薄層化が強く要求されている。磁気記録層を薄層化するためには、磁気記録層を平滑にし、且つ、厚みむらを少なくする必要がある。そのためには、ベースフィルムの表面もまた平滑でなければならない。
【0005】
一般に磁気記録媒体は、ベースフィルム等の非磁性支持体上に磁性粒子粉末と結合剤樹脂を含む磁気記録層を形成し、カレンダーをかけて表面平滑化処理を行うことにより磁気記録層の平滑化を行っている。
【0006】
近年、磁気記録層の薄層化が一層進む中で、ベースフィルム等の非磁性支持体上に針状へマタイト粒子粉末等の非磁性粒子粉末を結合剤樹脂中に分散させてなる下地層(以下、「非磁性下地層」という。)を一層設けることにより、磁気記録層の表面性の悪化や電磁変換特性を劣化させる等の問題を解決することが提案され、実用化されている(特公平6−93297号公報、特開昭62−159338号公報、特開昭63−187418号公報、特開平4−167225号公報、特開平4−325915公報、特開平5−73882号公報、特開平5−182177号公報)。
【0007】
前記非磁性下地層を有する磁気記録媒体の場合には、非磁性支持体上に非磁性粉末と結合剤樹脂とを含有する非磁性下地層及び磁性粒子粉末と結合剤樹脂とを含有する磁気記録層を形成し、次いで、カレンダー処理を行い非磁性支持体の凹凸を非磁性下地層が吸収することによって、磁気記録層の表面平滑化を図っている。例えば、特開平5−12650号公報には、「……非磁性の緩衝層を設けることにより六方晶系フェライト磁性粉体を含む層が表面平滑化処理する際に直下の非磁性層がバッファー層として押しつぶされる。これにより下層(非磁性層のこと?)が吸収層として作用し、上層の六方晶系フェライト板状磁性粉を含む磁気記録層が平滑化されることになる。」と記載されている。
【0008】
非磁性下地層の表面平滑性を改善するためには、分散性及び充填性が優れていると共にカレンダー処理による表面平滑性の向上が期待できるヘマタイト粒子粉末を用いることが要求されている。
【0009】
従来、磁気記録媒体の諸特性改善のために、非磁性下地層用非磁性粒子粉末に対して種々の試みがなされており、例えば、特開平6−60362号公報にはAl化合物によって被覆されている針状ヘマタイト粒子粉末からなる非磁性粒子粉末を含有する磁気記録媒体用非磁性下地層が記載されており、特開平7−129947号公報及び特開平8−279138号公報には非磁性下地層用非磁性粒子粉末として粒子形状が紡錘状であるヘマタイト粒子粉末を用いた磁気記録媒体が記載されており、特開平10−334450号公報には磁気記録媒体の非磁性下地層に結晶学的なa軸方向に、同一結晶面同士が3個以内で重なり接合している針状ゲータイト微粒子を用いた磁気記録媒体が記載されている。
【0010】
【発明が解決しようとする課題】
表面平滑性がより優れた磁気記録媒体を得ることができる非磁性下地層用非磁性粒子粉末として好適なヘマタイト粒子粉末は現在最も要求されているところであるが、未だ得られていない。
【0011】
即ち、前出特開平6−60362号公報記載のヘマタイト粒子粉末は、長軸方向に方向性をもって配列した構造を有しておらず、カレンダー処理による表面平滑効果が得られにくい。
【0012】
特開平7−129947号公報及び特開平8−279138号公報記載の紡錘状ヘマタイト粒子粉末は、後述比較例に示す通り、BET比表面積値が100m/g未満であってシクロヘキサノンの吸液量が0.6ml/g未満であるため、紡錘状ヘマタイト粒子の粒子端が閉じているものと推定され、充填性に優れるとは言い難いものである。
【0013】
また、特開平10−334450号公報記載のゲータイト粒子粉末を非磁性下地層用非磁性粉末として用いた場合には、ゲータイト粒子粉末の粒子表面に多量の結晶水を含んでいるために、結合剤樹脂や溶剤とのなじみが悪く、所望の分散度が得られにくい。
【0014】
そこで、本発明は、表面平滑性に優れた磁気記録媒体の非磁性下地層用非磁性粒子粉末として好適な分散性及び充填性が優れていると共に、カレンダー処理による表面平滑性の向上が期待できるヘマタイト粒子粉末を得ることを技術的課題とする。
【0015】
【課題を解決する為の手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0016】
即ち、本発明は、平均長軸径が0.005〜0.6μmであって平均短軸径が0.001〜0.40μmである紡錘状ヘマタイト粒子粉末であって、該ヘマタイト粒子粉末を構成する紡錘状ヘマタイト粒子の粒子端が開いていることを特徴とする磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末である(本発明1)。
【0017】
また、本発明は、本発明1の紡錘状ヘマタイト粒子粉末のBET比表面積値が100〜250m/gであることを特徴とする請求項1記載の磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末である(本発明2)。
【0018】
また、本発明は、本発明1の紡錘状ヘマタイト粒子粉末のシクロヘキサノンの吸液量が0.6ml/g以上であることを特徴とする磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末である(本発明3)。
【0019】
また、本発明は、粒子の表面が、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる少なくとも一種からなる表面被覆物によって被覆されていることを特徴とする本発明1乃至本発明3のいずれかの磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末である(本発明4)。
【0020】
また、本発明は、非磁性支持体、該非磁性支持体上に形成される非磁性粉末及び結合剤樹脂を含む非磁性下地層及び該非磁性下地層の上に形成される磁性粒子粉末及び結合剤樹脂を含む磁気記録層からなる磁気記録媒体において、前記非磁性粉末が本発明1乃至本発明4のいずれかに記載の非磁性下地層用ヘマタイト粒子粉末であることを特徴とする磁気記録媒体である(本発明5)。
【0021】
また、本発明は、本発明5の磁気記録媒体において、磁性粒子粉末として、軸比が7.0以下の鉄を主成分とする紡錘状金属磁性粒子粉末を用いることを特徴とする磁気記録媒体である(本発明6)。
【0022】
本発明の構成をより詳しく説明すれば次の通りである。
【0023】
まず、本発明に係る非磁性下地層用ヘマタイト粒子粉末について述べる。
【0024】
本発明に係る非磁性下地層用ヘマタイト粒子粉末の平均長軸径は0.005〜0.6μmである。平均長軸径が0.6μmを超える場合には、粒子サイズが大きすぎるため、これを用いて非磁性下地層を形成した場合には、塗膜の表面平滑性が損なわれやすい。平均長軸径が0.005μm未満の場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、非磁性塗料の製造時におけるビヒクル中への分散性が低下する。好ましくは0.0075〜0.45μm、より好ましくは0.01〜0.3μmである。
【0025】
本発明に係る非磁性下地層用ヘマタイト粒子粉末の平均短軸径は0.00025〜0.3μmである。平均短軸径が0.00025μm未満の場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、非磁性塗料の製造時におけるビヒクル中の分散性が低下する。平均短軸径が0.3μm以上の場合には、工業的に得ることが困難である。好ましくは0.0003〜0.20μm、より好ましくは0.0005〜0.15μmである。
【0026】
本発明に係る非磁性下地層用ヘマタイト粒子の軸比(平均長軸径と平均短軸径の比)(以下、「軸比」という。)は2〜20が好ましい。軸比が2未満の場合及び20を超える場合には、得られる非磁性下地層の塗膜強度が小さくなる。より好ましくは3〜18、更により好ましくは4〜15、最も好ましくは5〜10である。
【0027】
本発明に係る非磁性下地層用ヘマタイト粒子粉末を構成するヘマタイト粒子の粒子形状は、図1に示すとおり、粒子端が開いた状態である。図2に示す従来の紡錘状ヘマタイト粒子は、粒子端が閉じており、非磁性下地層中での充填性が低下する。
【0028】
本発明に係る非磁性下地層用ヘマタイト粒子粉末を構成するヘマタイト粒子において、ヘマタイト粒子の短軸径(W)と該粒子の粒子端から長軸径の1/10の点(b)における粒子幅(Wb)との比(W/Wb)の平均値が1.20以上が好ましい。W/Wb比が1.20未満の場合には、該ヘマタイト粒子粉末を用いて非磁性下地層を形成した場合、非磁性塗料の製造時におけるビヒクル中への分散性が低下する。分散性を考慮した場合、好ましくは1.21〜3.0であり、より好ましくは1.22〜2.5である。
【0029】
本発明に係る非磁性下地層用ヘマタイト粒子粉末のBET比表面積値は90〜300m/gであることが好ましい。BET比表面積値が300m/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、非磁性塗料の製造時におけるビヒクル中への分散性が低下する。90m/g未満の場合には、粒子サイズが大きすぎるため、塗膜の表面平滑性向上の観点から好ましくない。得られる磁気記録媒体の表面平滑性を考慮すれば、BET比表面積値は95〜275m/gがより好ましく、更により好ましくは100〜250m/gである。
【0030】
本発明に係る非磁性下地層用ヘマタイト粒子粉末のシクロヘキサノンの吸液量は0.6ml/g以上が好ましく、より好ましくは0.65〜1.5ml/gである。0.6ml/g未満の場合には、紡錘状ヘマタイト粒子の粒子端が閉じた状態であると推定され、非磁性下地層中での充填性が低下する。
【0031】
本発明に係る非磁性下地層用ヘマタイト粒子粉末は、後述する測定方法で測定した塗膜収縮率が8.0〜20%が好ましい。塗膜の収縮率が8.0%未満の場合には、カレンダー処理による十分な表面平滑効果が得られない。また、20%を超える場合には、塗膜の膜厚の変動が大きいため、磁気記録媒体の設計が困難となる。より好ましくは8.5〜19%であり、より好ましくは9.0〜18%である。
【0032】
本発明に係る非磁性下地層用ヘマタイト粒子粉末は、必要により、ヘマタイト粒子粉末の表面がアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる少なくとも1種からなる表面被覆物によって被覆されていてもよい。表面が表面被覆物で被覆されているヘマタイト粒子粉末は、ビヒクル中に分散させる場合に、結合剤樹脂とのなじみがよく、所望の分散度が得られ易い。
【0033】
前記表面被覆物の量は、ヘマタイト粒子粉末に対してアルミニウムの水酸化物やアルミニウムの酸化物はAl換算で、ケイ素の水酸化物やケイ素の酸化物はSiO換算で、それぞれ0.01〜50重量%が好ましい。0.01重量%未満の場合には、被覆による分散性向上効果がほとんどなく、50重量%を超える場合には、被覆効果が飽和するため、必要以上に被覆する意味がない。ビヒクル中における分散性向上効果及び工業的な生産性を考慮すれば、0.05〜20重量%がより好ましい。
【0034】
アルミニウム化合物とケイ素化合物とを併せて使用する場合には、ヘマタイト粒子粉末に対してAl換算量とSiO換算量との総和で0.01〜50重量%が好ましい。
【0035】
本発明に係る表面被覆物で被覆されているヘマタイト粒子粉末は、表面被覆物で被覆されていない本発明に係るヘマタイト粒子粉末とほぼ同程度の粒子サイズ及びBET比表面積値を有している。
【0036】
本発明に係る非磁性下地層用ヘマタイト粒子粉末は、粒子内部にアルミニウムを含有させてもよい。粒子内部にアルミニウムを含有させたヘマタイト粒子を用いることによって、得られる磁気記録媒体の耐久性が向上する。粒子内部に含有させるアルミニウム量は、Al換算で0.05〜50重量%が好ましく、より好ましくは0.05〜40重量%である。
【0037】
殊に、磁気記録媒体の耐腐食性を考慮した場合には、ヘマタイト粒子粉末中の可溶性ナトリウム塩、可溶性硫酸塩等の含有量を低減した高純度化したヘマタイト粒子粉末が好ましい。
【0038】
高純度化したヘマタイト粒子粉末は、可溶性ナトリウム塩の含有量がNa換算で300ppm以下が好ましく、より好ましくは200ppmである。また、可溶性硫酸塩の含有量はSO換算で150ppm以下が好ましく、より好ましくは100ppm以下である。また、粉体pH値は8.0以上が好ましい。
【0039】
次に、本発明に係る非磁性下地層用ヘマタイト粒子粉末の製造法について述べる。
【0040】
本発明に係る非磁性下地層用ヘマタイト粒子粉末は、紡錘状ゲータイト粒子を摩砕処理した後、200〜540℃の温度範囲で加熱脱水処理して得ることができる。
【0041】
本発明における紡錘状ゲータイト粒子粉末は、通常の方法によって得ることができ、例えば、第一鉄塩と炭酸アルカリ水溶液又は水酸化アルカリ・炭酸アルカリ水溶液のいずれかの水溶液を用いて反応して得られる鉄含有沈殿物を含む懸濁液に空気等の酸素含有ガスを通気して得ることができる。
【0042】
紡錘状ゲータイト粒子粉末としては、平均長軸径が0.007〜0.80μm、平均短軸径が0.001〜0.35μm、軸比が2〜20であることが好ましい。
【0043】
尚、必要により、紡錘状ゲータイト粒子の粒子表面にP、Si、B、Zr、Sb等の焼結防止剤を被覆処理してもよい。
【0044】
紡錘状ゲータイト粒子の摩砕処理は、前記紡錘状ゲータイト粒子の生成反応で得られる紡錘状ゲータイト粒子を含有する懸濁液を濾別、水洗した湿ケーキを再度水に分散させた紡錘状ゲータイト粒子を含有する懸濁液、又は前記紡錘状ゲータイト粒子の生成反応で得られる紡錘状ゲータイト粒子を含有する懸濁液を濾別、水洗、乾燥して紡錘状ゲータイト粒子粉末として取り出した後、再度水に分散させた紡錘状ゲータイト粒子を含有する水懸濁液を用いてもよい。好ましくは紡錘状ゲータイト粒子の湿ケーキを再度水に分散させた紡錘状ゲータイト粒子を含有する懸濁液を用いることが好ましい。
【0045】
紡錘状ゲータイト粒子の摩砕処理は、紡錘状ゲータイト粒子を含むスラリーの濃度を30〜500g/l、好ましくは40〜250g/l、より好ましくは50〜200g/lに調製した後、スラリーに回転数1000〜9000rpm、好ましくは1200〜5000rpmのせん断力をかけて摩砕することによって行う。
【0046】
紡錘状ゲータイト粒子を含むスラリーを摩砕するための機器としては、スラリーにせん断力を加えることのできる装置が好ましく、例えば、摩砕微粒化機、超微粒磨砕機といった湿式摩砕機等を用いることができる。
【0047】
上記湿式摩砕機としては、具体的に、スーパーマスコロイダー、セレンディピター(増幸産業株式会社製)及びT.K.マイコローダーM型(特殊機化工業株式会社)等がある。
【0048】
次いで、摩砕処理後の紡錘状ゲータイト粒子粉末を200〜540℃の温度範囲で加熱処理してヘマタイト粒子粉末とする。加熱温度が200℃未満の場合には脱水反応に長時間を要するため好ましくない。540℃を超える場合には脱水反応が急激に生起し、粒子の形状が崩れやすくなったり、粒子相互間の焼結を引き起こすことになり好ましくない。加熱処理の温度は、好ましくは250〜500℃、より好ましくは280〜450℃である。また、加熱処理時間は30分〜3時間が好ましい。
【0049】
高純度化されたヘマタイト粒子粉末は、摩砕処理後、加熱処理したヘマタイト粒子粉末をアルカリ水溶液中で加熱処理し、濾別、水洗することにより得ることができる。
【0050】
アルカリ水溶液のpH値は13.0以上が好ましい。加熱処理の温度は80℃以上が好ましく、より好ましくは90℃以上である。
【0051】
本発明における表面被覆物により被覆されたヘマタイト粒子粉末は、摩砕処理後、加熱処理して得られたヘマタイト粒子粉末を分散して得られる水懸濁液に、アルミニウム化合物、ケイ素化合物又は当該両化合物を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整することにより、前記ヘマタイト粒子粉末の粒子表面を、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる一種又は二種以上の化合物で被覆し、次いで、濾別、水洗、乾燥、粉砕する。必要により、更に、脱気・圧密処理等を施してもよい。
【0052】
アルミニウム化合物としては、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ナトリウム等のアルミン酸アルカリ塩等が使用できる。ケイ素化合物としては、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム等が使用できる。
【0053】
次に、本発明に係る磁気記録媒体について述べる。
【0054】
本発明に係る磁気記録媒体は、非磁性支持体、該非磁性支持体上に形成された非磁性下地層及び該非磁性下地層上に形成された磁気記録層とからなる。
【0055】
前記非磁性支持体としては、現在、磁気記録媒体に汎用されているポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、ポリイミド等の合成樹脂フィルム、アルミニウム、ステンレス等金属の箔や板及び各種の紙を使用することができる。その厚みは、材質により種々異なるが、通常好ましくは1.0〜300μm、より好ましくは2.0〜200μmである。
【0056】
なお、磁気ディスクの場合には、一般にポリエチレンテレフタレートが用いられ、その厚みは、通常50〜300μm、好ましくは60〜200μmである。磁気テープの場合には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドなどが用いられ、ポリエチレンテレフタレートの厚みは、通常3〜100μm、好ましくは4〜20μm、ポリエチレンナフタレートの厚みは、通常3〜50μm、好ましくは4〜20μm、ポリアミドの厚みは、通常2〜10μm、好ましくは3〜7μmである。
【0057】
本発明における非磁性下地層は、本発明に係る非磁性下地層用ヘマタイト粒子粉末又は本発明に係る表面被覆物で被覆されている非磁性下地層用ヘマタイト粒子粉末及び結合剤樹脂からなる。
【0058】
結合剤樹脂としては、現在、磁気記録媒体の製造にあたって汎用されている塩化ビニル−酢酸ビニル共重合体、ウレタン樹脂、塩化ビニル−酢酸ビニル−マレイン酸共重合体、ウレタンエラストマー、ブタジエン−アクリロニトリル共重合体、ポリビニルブチラール、ニトロセルロース等セルロース誘導体、ポリエステル樹脂、ポリブタジエン等の合成ゴム系樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイソシアネート、電子線硬化型アクリルウレタン樹脂等及びこれらの混合物を使用することができる。また、各結合剤樹脂には−OH、−COOH、−SOM、−OPO、−NH等の極性基(但し、MはH、Na、Kである。)が含まれていてもよい。ヘマタイト粒子粉末及び磁性粒子粉末のビヒクル中における分散性を考慮すれば、極性基として−COOH、−SOMが含まれている結合剤樹脂が好ましい。
【0059】
本発明におけるヘマタイト粒子粉末と結合剤樹脂との配合割合は、結合剤樹脂100重量部に対してヘマタイト粒子粉末が5〜2000重量部、好ましくは100〜1000重量部である。
【0060】
ヘマタイト粒子粉末が5重量部未満の場合には、非磁性塗料中のヘマタイト粒子粉末が少なすぎるため、塗膜を形成した時に、ヘマタイト粒子粉末の連続分散した層が得られず、塗膜表面の平滑性及び塗膜の強度が不十分となる。2000重量部を超える場合には、結合剤樹脂の量に対してヘマタイト粒子粉末が多すぎるため、非磁性塗料中でヘマタイト粒子粉末が十分に分散されず、その結果、塗膜を形成した時に、十分な表面平滑性を有する塗膜が得られ難い。また、ヘマタイト粒子粉末が結合剤樹脂によって十分にバインドされないため、得られた塗膜はもろいものとなりやすい。
【0061】
非磁性支持体上に形成された非磁性下地層の塗膜厚さは、0.2〜10μmであることが好ましい。0.2μm未満の場合には、非磁性支持体の表面粗さを改善することが困難となり、強度も不十分となりやすい。磁気記録媒体の薄層化及び塗膜の強度を考慮すれば、塗膜厚さはより好ましくは0.5〜5μmである。
【0062】
なお、非磁性下地層に、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、帯電防止剤等を添加してもよい。
【0063】
本発明1乃至3のヘマタイト粒子粉末を用いた非磁性下地層は、塗膜の光沢度が182〜300%、好ましくは187〜300%であって、塗膜表面粗度Raが0.5〜7.5nm、好ましくは0.5〜7.3nmであって、塗膜の強度は、ヤング率(相対値)が126〜160、好ましくは128〜160であり、塗膜の収縮率は8.0〜20%、好ましくは8.5〜19%、より好ましくは9.0〜18%である。
【0064】
本発明4のヘマタイト粒子粉末を用いた非磁性下地層は、塗膜の光沢度が187〜300%、好ましくは192〜300%であって、塗膜表面粗度Raが0.5〜7.3nm、好ましくは0.5〜7.0nmであって、塗膜の強度は、ヤング率(相対値)が128〜160、好ましくは130〜160であり、塗膜の収縮率は8.5〜20%、好ましくは9.0〜19%、より好ましくは10.5〜18%である。
【0065】
本発明における磁気記録層は、磁性粒子粉末及び結合剤樹脂からなる。
【0066】
磁性粒子粉末としては、マグヘマイト粒子粉末(γ−Fe)やマグネタイト粒子粉末(FeO ・Fe、0<x≦1)等の磁性酸化鉄粒子粉末にCo又はCo及びFeを被着させたCo被着型磁性酸化鉄粒子粉末、前記Co被着型磁性酸化鉄粒子粉末にFe以外のCo、Al、Ni、P、Zn、Si、B、希土類金属等の異種元素を含有させたCo被着型磁性酸化鉄粒子粉末、鉄を主成分とする針状金属磁性粒子粉末、鉄以外のCo、Al、Ni、P、Zn、Si、B、希土類金属等を含有する針状鉄合金磁性粒子粉末、Ba、Sr、又はBa−Srを含有するマグネトプランバイト型板状フェライト粒子粉末並びにこれらにCo、Ni、Zn、Mn、Mg、Ti、Sn、Zr、Nb、Cu、Mo等の2価及び4価の金属から選ばれた保磁力低減剤の1種又は2種以上を含有させた板状マグネトプランバイト型フェライト粒子粉末等のいずれかを用いることができる。
【0067】
なお、近年の短波長記録、高密度記録を考慮すれば、鉄を主成分とする針状金属磁性粒子粉末、鉄以外のCo、Al、Ni、P、Zn、Si、B、希土類金属等を含有する針状鉄合金磁性粒子粉末等が好ましい。
【0068】
磁性粒子粉末は、平均長軸径(板状粒子の場合は平均板面径)が0.01〜0.5μm、好ましくは0.03〜0.3μmである。該磁性粒子粉末の粒子形状は針状もしくは板状が好ましい。ここで「針状」とは、文字通りの針状はもちろん、紡錘状や米粒状などを含む意味である。
【0069】
また、磁性粒子粉末の粒子形状が針状の場合、軸比は3以上、好ましくは5以上であり、ビヒクル中における分散性を考慮すれば、その上限値は15であり、好ましくは10である。更に、磁気記録層中の磁性粒子粉末の充填率を考慮すれば、軸比は7.0以下が好ましい。
【0070】
磁性粒子粉末の粒子形状が板状の場合、板状比(平均板面径と平均厚みの比)(以下、「板状比」という。)は2以上、好ましくは3以上であり、ビヒクル中における分散性を考慮すれば、その上限値は50であり、好ましくは45である。
【0071】
磁性粒子粉末の磁気特性は、保磁力値が39.8〜318.3kA/m(500〜4000Oe)、好ましくは43.8〜318.3kA/m(550〜4000Oe)であって、飽和磁化値が50〜170Am/kg(50〜170emu/g)、好ましくは60〜170Am/kg(60〜170emu/g)である。
【0072】
高密度記録化等を考慮して、磁性粒子粉末として鉄を主成分とする針状金属磁性粒子粉末又は針状鉄合金磁性粒子粉末を用いた場合の磁気特性は、保磁力値が63.7〜278.5kA/m(800〜3500Oe)、好ましくは71.6〜278.5kA/m(900〜3500Oe)、飽和磁化値が90〜170Am/kg(90〜170emu/g)、好ましくは100〜170Am/kg(100〜170emu/g)である。
【0073】
結合剤樹脂としては、前記非磁性下地層を形成するために用いた結合剤樹脂を使用することができる。
【0074】
非磁性下地層上に設けられた磁気記録層の塗膜厚さは、0.01〜5μmの範囲である。0.01μm未満の場合には、均一な塗布が困難であり、塗りむら等の現象が出やすくなるため好ましくない。5μmを超える場合には、反磁界の影響のため、所望の電磁変換特性が得られにくくなる。好ましくは0.05〜1μmの範囲である。
【0075】
磁性粒子粉末と結合剤樹脂との配合割合は、結合剤樹脂100重量部に対して磁性粒子粉末が200〜2000重量部、好ましくは300〜1500重量部である。
【0076】
磁気記録層中には、通常用いられている潤滑剤、研磨剤、帯電防止剤等を添加してもよい。
【0077】
本発明に係る磁気記録媒体は、磁性粒子粉末として前記磁性粒子粉末を用い、非磁性下地層用非磁性粉末として本発明1乃至3のいずれかの非磁性下地層用ヘマタイト粒子粉末を用いた場合には、保磁力値が39.8〜318.3kA/m(500〜4000Oe)、好ましくは43.8〜318.3kA/m(550〜4000Oe)、角形比(残留磁束密度Br/飽和磁束密度Bm)が0.85〜0.95、好ましくは0.86〜0.95、塗膜の光沢度が172〜300%、好ましくは177〜300%、塗膜表面粗度Raが7.8nm以下、好ましくは2.0〜7.3nm、ヤング率(相対値)が128〜160、好ましくは130〜160である。また、後述する評価法による非磁性下地層と磁気記録層とからなる塗膜の収縮率は7.5〜18%、好ましくは8.0〜17%、より好ましくは8.5〜16%である。
【0078】
本発明に係る磁気記録媒体は、磁性粒子粉末として前記磁性粒子粉末を用い、非磁性下地層用非磁性粉末として本発明4の非磁性下地層用ヘマタイト粒子粉末を用いた場合には、保磁力値が39.8〜318.3kA/m(500〜4000Oe)、好ましくは39.8〜318.3kA/m(550〜4000Oe)、角形比(残留磁束密度Br/飽和磁束密度Bm)が0.85〜0.95、好ましくは0.86〜0.95、塗膜の光沢度が177〜300%、好ましくは182〜300%、塗膜表面粗度Raが7.3nm以下、好ましくは2.0〜7.0nm、ヤング率(相対値)が130〜160、好ましくは132〜160である。また、後述する評価法による非磁性下地層と磁気記録層とからなる塗膜の収縮率は7.5〜18%、好ましくは8.0〜17%、より好ましくは8.5〜16%である。
【0079】
高密度記録等を考慮して、磁性粒子粉末として鉄を主成分とする針状金属磁性粒子粉末又は針状鉄合金磁性粒子粉末を用い、非磁性下地層用非磁性粉末として本発明1乃至3のいずれかの非磁性下地層用ヘマタイト粒子粉末を用いた場合には、保磁力値が63.7〜278.5kA/m(800〜3500Oe)、好ましくは71.6〜278.5kA/m(900〜3500Oe)、角形比(残留磁束密度Br/飽和磁束密度Bm)が0.86〜0.95、好ましくは0.87〜0.95、塗膜の光沢度が202〜300%、好ましくは207〜300%、塗膜表面粗度Raが6.8nm以下、好ましくは2.0〜6.3nm、ヤング率(相対値)が128〜160、好ましくは130〜160である。また、後述する評価法による非磁性下地層と磁気記録層とからなる塗膜の収縮率は7.5〜18%、好ましくは8.0〜17%、より好ましくは8.5〜16%である。
【0080】
磁性粒子粉末として鉄を主成分とする針状金属磁性粒子粉末又は針状鉄合金磁性粒子粉末を用い、非磁性下地層用非磁性粉末として表面被覆物によって被覆されている本発明に係る非磁性下地層用ヘマタイト粒子粉末を用いた場合には、保磁力値が63.7〜278.5kA/m(800〜3500Oe)、好ましくは71.6〜278.5kA/m(900〜3500Oe)、角形比(残留磁束密度Br/飽和磁束密度Bm)が0.87〜0.95、好ましくは0.88〜0.95、塗膜の光沢度が207〜300%、好ましくは212〜300%、塗膜表面粗度Raが6.3nm以下、好ましくは2.0〜5.8nm、ヤング率(相対値)が130〜160、好ましくは132〜160である。また、後述する評価法による非磁性下地層と磁気記録層とからなる塗膜の収縮率は7.5〜18%、好ましくは8.0〜17%、より好ましくは8.5〜16%である。
【0081】
また、非磁性下地層用非磁性粉末として粒子内部にアルミニウムを含有させた本発明に係る非磁性下地層用ヘマタイト粒子粉末を用いた場合には、磁気記録媒体の耐久性が向上し、耐久性のうち走行耐久性は20分以上、好ましくは22分以上であり、すり傷特性はA又はB、好ましくはAである。
【0082】
殊に、磁性粒子粉末として鉄を主成分とする針状金属磁性粒子粉末又は針状鉄合金磁性粒子粉末を用い、非磁性下地層用非磁性粉末として高純度化した本発明に係る非磁性下地層用ヘマタイト粒子粉末を用いた場合には、塗膜の保磁力値の変化率(%)で示す腐蝕性が10.0%以下、好ましくは9.5%以下、飽和磁化値の変化率(%)で示す腐蝕性が10.0%以下、好ましくは9.5%以下である。
【0083】
次に、本発明に係る磁気記録媒体の製造法について述べる。
【0084】
本発明に係る磁気記録媒体は、常法により、非磁性支持体上にヘマタイト粒子粉末、結合剤樹脂及び溶剤を含む非磁性塗料を塗布、乾燥して非磁性下地層を形成し、該非磁性下地層上に磁性粒子粉末、結合剤樹脂及び溶剤を含む磁性塗料を塗布して塗膜を形成した後、磁場配向し、次いで、カレンダー処理をした後、硬化させることにより得ることができる。
【0085】
前記非磁性下地層及び前記磁気記録層の形成に用いる溶剤としては、磁気記録媒体に汎用されているメチルエチルケトン、トルエン、シクロヘキサノン、メチルイソブチルケトン、テトラヒドロフラン及びその混合物等を使用することができる。
【0086】
溶剤の使用量は、ヘマタイト粒子粉末又は磁性粒子粉末100重量部に対してその総量で50〜1000重量部である。50重量部未満では塗料とした場合に粘度が高くなりすぎ塗布が困難となる。1000重量部を超える場合には、塗膜を形成する際の溶剤の揮発量が多くなりすぎ工業的に不利となる。
【0087】
【発明の実施の形態】
本発明の代表的な実施の形態は、次の通りである。
【0088】
ヘマタイト粒子、紡錘状ゲータイト粒子及び磁性粒子の平均長軸径、平均短軸径又は平均板面径、平均厚みは、電子顕微鏡写真を縦方向及び横方向にそれぞれ4倍に拡大した写真に示される粒子約350個について長軸径、短軸径をそれぞれ測定し、その平均値で示した。
【0089】
また、ヘマタイト粒子の短軸径(W)と該ヘマタイト粒子の粒子端から長軸径の1/10の点(b)の粒子幅(Wb)との比は、上記電子顕微鏡写真から、同様にして、ヘマタイト粒子の粒子端から長軸径の1/10の点(b)における粒子幅(Wb)を測定し、短軸径(W)とヘマタイト粒子の粒子端から長軸径の1/10の点(b)における粒子幅(Wb)との比(W/Wb)の平均値で示した。
【0090】
軸比は、前記平均長軸径と前記平均短軸径との比で、板状比は、平均板面径と平均厚みとの比で示した。
【0091】
比表面積値はBET法により測定した値で示した。
【0092】
ヘマタイト粒子粉末のシクロヘキサノンの吸液量は、試料1.0gを共栓付き丸底フラスコに入れ、ビューレットよりシクロヘキサノンを少量ずつ滴下し、丸底フラスコを振ってシクロヘキサノンを試料に吸液させる。試料が塊状となり吸液しなくなった時点の滴下シクロヘキサノン量を吸液量とする。
【0093】
ヘマタイト粒子粉末及び磁性粒子粉末の粒子内部や粒子表面に存在するAl量、Si量及び焼結防止剤のSi量及びP量のそれぞれは「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。
【0094】
粉体pH値は、試料5gを300mlの三角フラスコに秤り取り、煮沸した純水100mlを加え、加熱して煮沸状態を約5分間保持した後、栓をして常温まで放冷し、減量に相当する水を加えて再び栓をして1分間振り混ぜ、5分間静置した後、得られた上澄み液のpHをJIS Z 8802−7に従って測定し、得られた値を粉体pH値とした。
【0095】
可溶性ナトリウム塩の含有量及び可溶性硫酸塩の含有量は、上記粉体pH値の測定用に作製した上澄み液をNo.5Cの濾紙を用いて濾過し、濾液中のNa及びSO 2−を誘導結合プラズマ発光分光分析装置(セイコー電子工業株式会社製)を用いて測定した。
【0096】
塗料粘度は、得られた塗料の25℃における塗料粘度を、E型粘度計EMD−R(株式会社東京計器製)を用いて測定し、ずり速度D=1.92sec−1における値で示した。
【0097】
非磁性下地層及び磁気記録層の塗膜表面の光沢度は、「グロスメーターUGV−5D」(スガ試験機株式会社製)を用いて塗膜の45°光沢度を測定して求めた。
【0098】
非磁性下地層及び磁気記録層の塗膜の表面粗度Raは、「Surfcom−575A」(東京精密株式会社製)を用いて塗布膜の中心線平均粗さを測定した。
【0099】
非磁性下地層及び磁気記録層の塗膜の強度は、「オートグラフ」(株式会社島津製作所製)を用いて塗膜のヤング率を測定し、市販ビデオテープ「AV T−120(日本ビクター株式会社製)」のヤング率との相対値で表した。相対値が高いほど塗膜の強度が良好であることを示す。
【0100】
磁気記録媒体を構成する非磁性支持体、非磁性下地層及び磁気記録層の各層の厚みは、次の通りの測定手法によって測定した。
【0101】
デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて、先ず、非磁性支持体の膜厚(A)を測定する。次に、非磁性支持体と該非磁性支持体上に形成された非磁性下地層との厚み(B)(非磁性支持体の厚みと非磁性下地層の厚みとの総和)を同様にして測定する。更に、非磁性下地層上に磁気記録層を形成することにより得られた磁気記録媒体の厚み(C)(非磁性支持体の厚みと非磁性下地層の厚みと磁気記録層の厚みとの総和)を同様にして測定する。そして、非磁性下地層の厚みは(B)−(A)で示し、磁気記録層の厚みは(C)−(B)で示した。
【0102】
非磁性下地層の塗膜の収縮率は、下記測定方法によって測定した。
【0103】
▲1▼ヘマタイト粒子粉末12gと結合剤樹脂溶液(スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合して混合物(固形分率72%)を得、この混合物を更にプラストミルで30分間混練して混練物を得た。
▲2▼前記混練物を1.5mmφガラスビーズ95g、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンとともに140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料を得た。
ヘマタイト粒子粉末                100.0重量部、
スルホン酸ナトリウム基を有する
塩化ビニル−酢酸ビニル共重合樹脂    10.0重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂   10.0重量部、
シクロヘキサノン                  44.6重量部、
メチルエチルケトン                111.4重量部、
トルエン                      66.9重量部。
▲3▼次に、得られた非磁性塗料を非磁性支持体上にアプリケーターを用いて55μmの厚さに塗布し、乾燥させて非磁性下地層を形成した。
▲4▼塗布後の乾燥させた塗膜を85℃、200kg/cmで4回カレンダー処理を行い、該塗膜のカレンダー処理前の膜厚t(μm)とカレンダー処理後の膜厚t(μm)とから下記式に従って非磁性下地層の塗膜の収縮率(%)を求めた。
塗膜の収縮率(%)={(t−t)/t}×100
:カレンダー前の非磁性下地層の厚み(μm)
:カレンダー後の非磁性下地層の厚み(μm)
【0104】
非磁性下地層と磁気記録層からなる塗膜の収縮率は、下記測定方法によって測定した。
【0105】
▲1▼ヘマタイト粒子粉末12gと結合剤樹脂溶液(スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合して混合物(固形分率72%)を得、この混合物を更にプラストミルで30分間混練して混練物を得た。
▲2▼前記混練物を1.5mmφガラスビーズ95g、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンとともに140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料を得た。
ヘマタイト粒子粉末                100.0重量部、
スルホン酸ナトリウム基を有する
塩化ビニル−酢酸ビニル共重合樹脂    10.0重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂   10.0重量部、
シクロヘキサノン                  44.6重量部、
メチルエチルケトン                111.4重量部、
トルエン                      66.9重量部。
▲3▼次に、得られた非磁性塗料を非磁性支持体上にアプリケーターを用いて55μmの厚さに塗布し、乾燥させて非磁性下地層を形成した。
▲4▼磁性粒子粉末12g、研磨剤(アルミナ)1.2g、カーボンブラック微粒子粉末0.12g、結合剤樹脂溶液(スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合して混合物(固形分率78%)を得、この混合物を更にプラストミルで30分間混練して混練物を得た。
▲5▼この混練物を1.5mmφガラスビーズ95g、追加結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンとともに140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って磁性塗料を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した。
磁性粒子粉末                   100.0重量部
スルホン酸ナトリウム基を有する
塩化ビニル−酢酸ビニル共重合樹脂        10.0重量部
スルホン酸ナトリウム基を有するポリウレタン樹脂   10.0重量部
研磨剤(アルミナ)                 10.0重量部
カーボンブラック微粒子粉末              1.0重量部
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2)  3.0重量部
硬化剤(ポリイソシアネート)             5.0重量部
シクロヘキサノン                  65.8重量部
メチルエチルケトン                164.5重量部
トルエン                      98.7重量部
▲6▼得られた磁性塗料を、上述の非磁性下地層を有する基体の上にアプリケーターを用いて15μmの厚さに塗布した後、磁場中において配向・乾燥した。
▲7▼塗布後の乾燥させた塗膜を85℃、200kg/cmで4回カレンダー処理を行い、該塗膜のカレンダー処理前の膜厚t(μm)とカレンダー処理後の膜厚t(μm)とから下記式に従って塗膜の収縮率(%)を求める。
塗膜の収縮率(%)={(t−t)/t}×100
:カレンダー前の非磁性下地層の厚みと磁気記録層の厚みとの合計(μm)
:カレンダー後の非磁性下地層の厚みと磁気記録層の厚みとの合計(μm)
【0106】
磁性粒子粉末及び磁気記録媒体の磁気特性は、「振動試料型磁力計VSM−3S−15」(東英工業株式会社製)を使用し、外部磁場795.8kA/m(10kOe)までかけて測定した。
【0107】
磁気記録媒体の走行耐久性は、「Media Durability Tester MDT−3000」(Steinberg Associates社製)を用いて、負荷1.96N(200gw)、ヘッドとテープとの相対速度16m/sにおける実可動時間で評価した。実可動時間が長いほど走行耐久性が良いことを示す。
【0108】
すり傷特性は、走行後のテープの表面を顕微鏡で観察し、すり傷の有無を目視で評価し、下記の4段階の評価を行った。
【0109】
A:すり傷なし
B:すり傷若干有り
C:すり傷有り
D:ひどいすり傷有り
【0110】
磁気記録層中の鉄を主成分とする金属磁性粒子粉末の腐蝕に伴う磁気記録媒体の磁気特性の経時変化は、磁気記録媒体を温度60℃、相対湿度90%の環境下に14日間放置し、放置前後の保磁力値及び飽和磁束密度値を測定し、その変化量を放置前の値で除した値を変化率として百分率で示した。
【0111】
<ヘマタイト粒子粉末の製造>
紡錘状ゲータイト粒子の湿ケーキを水中に分散させることによって得られる紡錘状ゲータイト粒子粉末(平均長軸径0.196μm、平均短軸径0.0261μm、軸比7.5、W/wb1.31、内部含有Al量1.35重量%)20kgを含む水懸濁液中に3号水ガラス1384g(紡錘状ゲータイト粒子粉末に対してSiO換算で2.0重量%に相当する)を添加し、混合攪拌した後、濾別、水洗、乾燥して焼結防止処理を行った。
【0112】
次いで、この焼結防止処理を施した紡錘状ゲータイト粒子粉末を含むスラリーの濃度を100g/lに調製し、超微粒摩砕機「スーパーマスコロイダー」(製品名、増幸産業株式会社製)を用いて、軸回転数2000rpmにおいて5回パスさせて摩砕処理を行った後、濾別、水洗、乾燥した。
【0113】
得られた紡錘状ゲータイト粒子粉末を350℃で60分間加熱処理することにより、紡錘状ヘマタイト粒子粉末を得た。
【0114】
ここに得た紡錘状ヘマタイト粒子粉末の平均長軸径は0.168μm、平均短軸径は0.0280μm、軸比は6.0、W/Wb1.32、BET比表面積値は101.6m/g、シクロヘキサノンの吸液量は0.85ml/g、Al含有量は1.48重量%、焼結防止剤はSiO換算で1.95重量%であった。
【0115】
透過型電子顕微鏡(TEM)写真(×30,000)観察の結果、得られた紡錘状ヘマタイト粒子は、粒子の両方の粒子端が開いた状態であることが認められた。
【0116】
<非磁性下地層の製造>
ここに得た紡錘状ヘマタイト粒子粉末12gと結合剤樹脂溶液(スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを混合して混合物(固形分率72%)を得、この混合物を更にプラストミルで30分間混練して混練物を得た。
【0117】
この混練物を1.5mmφガラスビーズ95g、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエンとともに140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って塗料組成物を得た。
【0118】
得られた非磁性塗料の組成は、下記の通りであった。
【0119】
紡錘状ヘマタイト粒子粉末                100重量部、
スルホン酸ナトリウム基を有する
塩化ビニル−酢酸ビニル共重合樹脂         10重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂      10重量部、
シクロヘキサノン                   44.6重量部、
メチルエチルケトン                 111.4重量部、
トルエン                       66.9重量部。
【0120】
得られた非磁性塗料の塗料粘度は2,637cPであった。
【0121】
次に、得られた非磁性塗料を、厚さ12μmのポリエチレンテレフタレートフィルム上に、アプリケーターを用いて55μmの厚さに塗布し、乾燥させることにより非磁性下地層を形成した。
【0122】
得られた非磁性下地層の塗布厚みは3.50μm、光沢は216%、表面粗度Raは5.5nm、ヤング率(相対値)は135であった。カレンダー処理後の非磁性下地層の膜厚は3.05μmであり、非磁性下地層の塗膜の圧縮率は12.8%であった。
【0123】
<磁気記録媒体の製造>
鉄を主成分とする針状金属磁性粉末(平均長軸径0.103μm、平均短軸径0.0155μm、軸比6.6、保磁力値181.9kA/m(2,286Oe)、飽和磁化値138Am/kg(138emu/g))12g、カーボンブラック微粒子粉末0.36g及び研磨材としてアルミナ粒子粉末1.2g、結合剤樹脂溶液(スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂30重量%とシクロヘキサノン70重量%からなる)及びシクロヘキサノンとを混合し、固形分率78%において、プラストミルを用いて30分間混練して混練物を得た。
【0124】
この混練物を140mlガラス瓶に1.5mmφガラスビーズ95gと追加樹脂結合剤溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、トルエン35重量%、メチルエチルケトン35重量%からなる)及びシクロヘキサノン、トルエン、メチルエチルケトンを添加し、ペイントシェーカーで6時間、混合・分散を行った。その後、得られた塗料組成物に潤滑剤及び硬化剤を加え、更にペイントシェーカーで15分間混合・分散を行った。
【0125】
得られた磁性塗料の組成は以下の通りである。
鉄を主成分とする針状金属磁性粒子粉末     100.0重量部、
研磨剤(アルミナ粒子粉末)           10.0重量部、
カーボンブラック微粒子粉末            3.0重量部、
スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂
10.0重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 10.0重量部、
潤滑剤
(ミリスチン酸:ステアリン酸ブチル=1:2)   3.0重量部、
硬化剤(ポリイソシアネート)           5.0重量部、
シクロヘキサノン                65.8重量部、
メチルエチルケトン              164.5重量部、
トルエン                    98.7重量部。
【0126】
得られた磁性塗料の塗料粘度は8,499cPであった。
【0127】
得られた磁性塗料を、前記非磁性下地層を有する基体の上にアプリケーターを用いて15μmの厚さに塗布した後、磁場中において配向、乾燥した。このときの磁性層の厚みは1.01μm、塗布層の全厚は4.86μmであった。
【0128】
次いで、85℃、200kg/cmで4回カレンダー処理を行った後、60℃で24時間硬化反応を行い、1.27cm(0.5インチ)幅にスリットして磁気テープを得た。なお、カレンダー処理前後の塗膜の圧縮率は11.5%であった。得られた磁気テープの塗布層の全厚は4.30μm、保磁力値は185.6kA/m(2,332Oe)、角型比は0.90、光沢は236%、表面粗度Raは5.6nm、ヤング率(相対値)は136であり、耐久性のうち走行耐久性は30分以上、すり傷特性はAであった。
【0129】
【作用】
本発明において最も重要な点は、本発明に係るヘマタイト粒子粉末は分散性及び充填性に優れており、該ヘマタイト粒子粉末を用いた非磁性下地層を有する磁気記録媒体は表面平滑性に優れるという点である。
【0130】
本発明に係るヘマタイト粒子粉末の分散性及び充填性が優れている理由について、本発明者は次のように考えている。
【0131】
一般に、粒子形状が針状である場合には、ビヒクル中での粒子の絡み合いが起こりやすく、所望の分散性を得ることが困難であるが、本発明に係る非磁性下地層用ヘマタイト粒子粉末は、紡錘状ゲータイト粒子を摩砕処理することによって紡錘状ゲータイトの粒子端を開いた状態とし、当該粒子形態を崩さない温度範囲で加熱処理してヘマタイト粒子粉末にしたことにより、紡錘状であって、しかも、粒子端が開いたヘマタイト粒子となっているため、針状粒子に比べてビヒクル中における分散が容易となり、その結果、充填性も向上したものと考えている。
【0132】
更に、本発明に係る非磁性下地層用ヘマタイト粒子粉末を用いた非磁性下地層を有する磁気記録媒体の表面平滑性が優れている理由について、本発明者は、本発明に係るヘマタイト粒子粉末は、前述のように粒子端が開いた粒子形態を有しているのでカレンダー処理による圧縮が掛かり易く、表面平滑性向上効果が得られ易いためと推定している。
【0133】
【実施例】
次に、実施例並びに比較例を挙げる。
【0134】
紡錘状ゲータイト粒子A、B及び針状ゲータイト粒子C:
紡錘状ゲータイト粒子粉末として、表1に示す特性を有する紡錘状ゲータイト粒子粉末及び針状ゲータイト粒子粉末を用意した。
【0135】
【表1】

Figure 2004035312
【0136】
<摩砕処理>
実施例1及び2、比較例1〜6、参考例1:
ゲータイト粒子の種類、焼結防止処理における焼結防止剤の種類及び添加量、摩砕処理の有無、摩砕処理におけるスラリー濃度及び回転数、加熱処理における加熱温度及び時間を種々変化させた以外は前記発明の実施の形態と同様にして非磁性粒子粉末を得た。
【0137】
このときの製造条件を表2に、得られた紡錘状ヘマタイト粒子粉末の諸特性を表3に示す。
【0138】
なお、比較例5はゲータイト粒子Aを摩砕処理することなく、340℃で加熱脱水処理した後、650℃で加熱処理したヘマタイト粒子粉末である。参考例1はゲータイト粒子Aを摩砕処理した後、340℃で加熱処理したヘマタイト粒子粉末である。
【0139】
実施例1及び2で得られたヘマタイト粒子粉末は、透過型電子顕微鏡(TEM)写真観察の結果、粒子端が開いた形状を有していることが認められた。
【0140】
一方、比較例1で得られたヘマタイト粒子粉末は、粒子端が閉じた形状を有していることが認められた。
【0141】
【表2】
Figure 2004035312
【0142】
【表3】
Figure 2004035312
【0143】
<アルカリ水溶液中の加熱処理>
実施例3
実施例1で得られたヘマタイト粒子粉末600gを純水3.5lに投入し、ホモミキサー(特殊機化工業株式会社製)を用いて60分間解膠した。
【0144】
次に、得られたヘマタイト粒子粉末のスラリーを横型SGM(ディスパマットSL:エスシー・アディケム株式会社製)で循環しながら、軸回転数2000rpmのもとで3時間混合・分散した。得られたスラリー中のヘマタイト粒子粉末の325mesh(目開き44μm)における篩残分は0%であった。
【0145】
得られたヘマタイト粒子粉末のスラリーの濃度を100g/lに調製した後、スラリーを5l分取した。このスラリーを攪拌しながら、6NのNaOH水溶液を加えてスラリーのpH値を13.5に調整した。次に、このスラリーを攪拌しながら加熱して95℃まで昇温し、その温度で180分保持した。
【0146】
次に、このスラリーをデカンテーション法により水洗し、pH値が10.5のスラリーとした。正確を期すため、この時点でのスラリー濃度を確認したところ96g/lであった。
【0147】
次に、ブフナーロートを用いて濾別し、純水を通水して濾液の電導度が30μs以下になるまで水洗し、その後、常法によって乾燥させた後、粉砕して、高純度化ヘマタイト粒子粉末を得た。
【0148】
このときの製造条件を表4に、得られたヘマタイト粒子粉末の諸特性を表5に示す。
【0149】
実施例4:
ヘマタイト粒子粉末の種類、アルカリ水溶液のpH値、加熱温度及び加熱時間を種々変化させた以外は、前記実施例3と同様にして高純度化ヘマタイト粒子粉末を得た。
【0150】
このときの製造条件を表4に、得られたヘマタイト粒子粉末の諸特性を表5に示す。
【0151】
得られたヘマタイト粒子粉末の透過型電子顕微鏡(TEM)写真観察の結果、実施例3及び4で得られたヘマタイト粒子粉末は、アルカリ水溶液中の加熱処理後も、粒子端が開いた形状を有していることが認められた。
【0152】
【表4】
Figure 2004035312
【0153】
【表5】
Figure 2004035312
【0154】
<表面被覆処理>
実施例5:
実施例1のヘマタイト粒子粉末10kgと水75lとを用いて、ヘマタイト粒子粉末を含むスラリーを得た。得られたヘマタイト粒子粉末を含む再分散スラリーのpH値を、水酸化ナトリウム水溶液を用いて10.5に調整した後、該スラリーに水を加えスラリー濃度を98g/lに調整した。このスラリー75lを加熱して60℃とし、このスラリー中に1.0mol/lのアルミン酸ナトリウム溶液4083ml(ヘマタイト粒子粉末に対してAl換算で1.5重量%に相当する)を加え、30分間保持した後、酢酸を用いてpH値を7.5に調整した。この状態で30分間保持した後、濾過、水洗、乾燥、粉砕して粒子表面がアルミニウムの水酸化物により被覆されているヘマタイト粒子粉末を得た。
【0155】
このときの製造条件を表6に、得られた表面処理済みヘマタイト粒子粉末の諸特性を表7に示す。
【0156】
実施例6〜8:
実施例2〜4の各ヘマタイト粒子粉末を用い、表面被覆物の種類及び量を種々変化させた以外は、前記実施例5と同様にして粒子表面が被覆物で被覆されている非磁性粒子粉末を得た。
【0157】
このときの製造条件を表6に、得られた表面処理済ヘマタイト粒子粉末の諸特性を表7に示す。
【0158】
尚、表6の被覆物の種類は、Aがアルミニウムの水酸化物、Sがケイ素の酸化物であることを示す。
【0159】
得られたヘマタイト粒子粉末の透過型電子顕微鏡(TEM)写真(×30,000)観察の結果、実施例5〜8で得られた各ヘマタイト粒子粉末は、表面被覆処理後も粒子端が開いた形状を有していることが認められた。
【0160】
【表6】
Figure 2004035312
【0161】
【表7】
Figure 2004035312
【0162】
<非磁性下地層の製造>
実施例9〜16、比較例7〜13、参考例2:
非磁性粒子粉末の種類を種々変化させた以外は、前記発明の実施の形態と同様にして非磁性下地層を得た。
【0163】
このときの製造条件及び得られた非磁性下地層の諸特性を表8に示す。
【0164】
【表8】
Figure 2004035312
【0165】
磁性粒子粉末(1)〜(4):
磁性粒子粉末として表9に示す特性を有する磁性粒子粉末(1)〜(4)を用いた。
【0166】
【表9】
Figure 2004035312
【0167】
<磁気記録媒体の製造>
実施例17〜24、比較例14〜20、参考例3:
非磁性下地層の種類及び磁性粒子の種類を種々変化させた以外は、前記発明の実施の形態と同様にして磁気記録媒体を得た。
【0168】
このときの製造条件及び得られた磁気記録媒体の諸特性を表10及び表11に示す。
【0169】
【表10】
Figure 2004035312
【0170】
【表11】
Figure 2004035312
【0171】
【発明の効果】
本発明に係る非磁性下地層用ヘマタイト粒子粉末を用いた場合、表面平滑性に優れた非磁性下地層を得ることができ、該非磁性下地層を用いて磁気記録媒体とした場合、表面平滑性に優れた磁気記録媒体とすることができるので、非磁性下地層を有する磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末として好適である。
【0172】
また、本発明に係る磁気記録媒体は、上述した通り、表面平滑性に優れているので高密度磁気記録媒体として好適である。
【図面の簡単な説明】
【図1】本発明に係るヘマタイト粒子の概念図
【図2】従来の紡錘状ヘマタイト粒子の概念図[0001]
[Industrial applications]
The present invention provides a hematite particle powder which is excellent as a non-magnetic powder for a non-magnetic underlayer of a magnetic recording medium, which has excellent filling properties and can be expected to improve surface smoothness by calendering.
[0002]
[Prior art]
In recent years, as long-term recording and miniaturization of magnetic recording / reproducing devices for video and audio have progressed, the performance of magnetic recording media such as magnetic tapes and magnetic disks has been improved, that is, high-density recording and high-output characteristics have been achieved. In particular, there is an increasing demand for improved frequency characteristics and reduced noise.
[0003]
In particular, in recent years, the demand for higher image quality and higher image quality of video tapes has been increasing more and more, and the frequency of a carrier signal to be recorded has shifted to a shorter wavelength region as compared with conventional video tapes. The magnetization depth from the tape surface is extremely shallow.
[0004]
In order to improve the high-output characteristics of a magnetic recording medium, especially the S / N ratio, for a short-wavelength signal, it is strongly required to make the magnetic recording layer thinner. In order to reduce the thickness of the magnetic recording layer, it is necessary to smooth the magnetic recording layer and reduce unevenness in thickness. To that end, the surface of the base film must also be smooth.
[0005]
Generally, a magnetic recording medium is formed by forming a magnetic recording layer containing magnetic particle powder and a binder resin on a non-magnetic support such as a base film, calendering the surface and performing a surface smoothing treatment to smooth the magnetic recording layer. It is carried out.
[0006]
In recent years, as the thickness of a magnetic recording layer has been further reduced, an underlayer formed by dispersing nonmagnetic particles such as needle-like matite particles in a binder resin on a nonmagnetic support such as a base film ( In the following, it is proposed to solve the problems such as deterioration of the surface properties of the magnetic recording layer and deterioration of the electromagnetic conversion characteristics by providing one layer of “non-magnetic underlayer”. JP-A-6-93297, JP-A-62-159338, JP-A-63-187418, JP-A-4-167225, JP-A-4-325915, JP-A-5-73882, JP-A-5-73882 No. 5-182177).
[0007]
In the case of the magnetic recording medium having the non-magnetic underlayer, a non-magnetic underlayer containing a non-magnetic powder and a binder resin on a non-magnetic support and a magnetic recording containing a magnetic particle powder and a binder resin After the layer is formed, the surface of the magnetic recording layer is smoothed by calendering and absorbing the unevenness of the nonmagnetic support by the nonmagnetic underlayer. For example, Japanese Unexamined Patent Publication No. Hei 5-12650 discloses that "... a non-magnetic buffer layer is provided so that a layer containing hexagonal ferrite magnetic powder can be subjected to a surface smoothing treatment so that the non-magnetic layer immediately below the buffer layer is a buffer layer. As a result, the lower layer (nonmagnetic layer?) Acts as an absorbing layer, and the upper magnetic recording layer containing hexagonal ferrite plate-like magnetic powder is smoothed. " ing.
[0008]
In order to improve the surface smoothness of the non-magnetic underlayer, it is required to use a hematite particle powder which is excellent in dispersibility and filling property and can be expected to improve surface smoothness by calendering.
[0009]
Conventionally, various attempts have been made on non-magnetic particle powder for a non-magnetic underlayer in order to improve various characteristics of a magnetic recording medium. For example, Japanese Patent Application Laid-Open No. 6-60362 discloses that a non-magnetic particle powder is coated with an Al compound. Non-magnetic underlayers for magnetic recording media containing non-magnetic particles comprising acicular hematite particles are described in JP-A-7-129947 and JP-A-8-279138. A magnetic recording medium using a hematite particle powder having a spindle shape as the non-magnetic particle powder for use is described. Japanese Patent Application Laid-Open No. Hei 10-334450 discloses that a non-magnetic underlayer of a magnetic recording medium has a crystallographic structure. There is described a magnetic recording medium using needle-like goethite fine particles in which the same crystal planes are overlapped and joined together within three in the a-axis direction.
[0010]
[Problems to be solved by the invention]
Hematite particle powder suitable as a non-magnetic particle powder for a non-magnetic underlayer capable of obtaining a magnetic recording medium with more excellent surface smoothness is currently most demanded, but has not yet been obtained.
[0011]
That is, the hematite particle powder described in the above-mentioned Japanese Patent Application Laid-Open No. 6-60362 does not have a structure arranged with directionality in the major axis direction, and it is difficult to obtain a surface smoothing effect by calendering.
[0012]
The spindle-shaped hematite particles described in JP-A-7-129947 and JP-A-8-279138 have a BET specific surface area of 100 m, as shown in Comparative Examples below.2/ G and the liquid absorption of cyclohexanone is less than 0.6 ml / g, it is presumed that the end of the spindle-shaped hematite particles is closed, and it is hard to say that the filling properties are excellent.
[0013]
When the goethite particle powder described in JP-A-10-334450 is used as the non-magnetic powder for the non-magnetic underlayer, since the particle surface of the goethite particle powder contains a large amount of crystallization water, the binder It has poor compatibility with resins and solvents, and it is difficult to obtain a desired degree of dispersion.
[0014]
Therefore, the present invention has excellent dispersibility and filling properties suitable as a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium having excellent surface smoothness, and can be expected to improve surface smoothness by calendering. It is a technical object to obtain hematite particle powder.
[0015]
[Means for solving the problem]
The technical problem can be achieved by the present invention as described below.
[0016]
That is, the present invention is a spindle-shaped hematite particle powder having an average major axis diameter of 0.005 to 0.6 μm and an average minor axis diameter of 0.001 to 0.40 μm, which constitutes the hematite particle powder. The present invention provides a hematite particle powder for a non-magnetic underlayer of a magnetic recording medium, characterized in that the end of the spindle-shaped hematite particles is open (the present invention 1).
[0017]
In addition, the present invention provides a spindle-shaped hematite particle powder of the present invention 1 having a BET specific surface area of 100 to 250 m.2/ G of hematite particles for a non-magnetic underlayer of a magnetic recording medium according to claim 1 (the present invention 2).
[0018]
Further, the present invention provides a hematite particle powder for a non-magnetic underlayer of a magnetic recording medium, wherein the spindle-shaped hematite particle powder of the present invention 1 has a cyclohexanone liquid absorption of 0.6 ml / g or more ( The present invention 3).
[0019]
Further, the present invention is characterized in that the surface of the particles is coated with a surface coating made of at least one selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. The present invention is a hematite particle powder for a non-magnetic underlayer of the magnetic recording medium according to any one of Inventions 1 to 3 (Invention 4).
[0020]
The present invention also provides a non-magnetic support, a non-magnetic underlayer containing a non-magnetic powder and a binder resin formed on the non-magnetic support, and a magnetic particle powder and a binder formed on the non-magnetic under layer. A magnetic recording medium comprising a magnetic recording layer containing a resin, wherein the nonmagnetic powder is the hematite particle powder for a nonmagnetic underlayer according to any one of the present inventions 1 to 4. (The present invention 5).
[0021]
Also, the present invention provides the magnetic recording medium according to the fifth aspect, wherein the spindle-shaped metal magnetic particle powder whose main component is iron having an axial ratio of 7.0 or less is used as the magnetic particle powder. (The present invention 6).
[0022]
The configuration of the present invention will be described in more detail as follows.
[0023]
First, the hematite particle powder for a nonmagnetic underlayer according to the present invention will be described.
[0024]
The average major axis diameter of the hematite particle powder for a nonmagnetic underlayer according to the present invention is 0.005 to 0.6 μm. When the average major axis diameter exceeds 0.6 μm, the particle size is too large. Therefore, when a nonmagnetic underlayer is formed using this, the surface smoothness of the coating film tends to be impaired. When the average major axis diameter is less than 0.005 μm, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that dispersibility in a vehicle at the time of manufacturing a non-magnetic paint decreases. Preferably it is 0.0075-0.45 micrometers, More preferably, it is 0.01-0.3 micrometers.
[0025]
The average minor axis diameter of the hematite particle powder for a nonmagnetic underlayer according to the present invention is 0.00025 to 0.3 μm. When the average minor axis diameter is less than 0.00025 μm, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that the dispersibility in a vehicle at the time of producing a non-magnetic paint decreases. When the average short axis diameter is 0.3 μm or more, it is difficult to obtain industrially. Preferably it is 0.0003-0.20 micrometers, More preferably, it is 0.0005-0.15 micrometers.
[0026]
The axis ratio (the ratio of the average major axis diameter to the average minor axis diameter) of the hematite particles for a nonmagnetic underlayer according to the present invention (hereinafter, referred to as “axial ratio”) is preferably 2 to 20. When the axial ratio is less than 2 or more than 20, the strength of the obtained non-magnetic underlayer is low. It is more preferably 3 to 18, even more preferably 4 to 15, and most preferably 5 to 10.
[0027]
As shown in FIG. 1, the particle shape of the hematite particles constituting the hematite particle powder for a non-magnetic underlayer according to the present invention is such that the particle ends are open. The conventional spindle-shaped hematite particles shown in FIG. 2 have a closed particle end, and the filling property in the non-magnetic underlayer decreases.
[0028]
In the hematite particles constituting the hematite particles for a nonmagnetic underlayer according to the present invention, the minor axis diameter (W) of the hematite particles and the particle width at a point (b) 1/10 of the major axis diameter from the particle end of the particles. The average value of the ratio (W / Wb) to (Wb) is preferably 1.20 or more. When the W / Wb ratio is less than 1.20, the dispersibility in a vehicle during the production of a non-magnetic paint is reduced when a non-magnetic underlayer is formed using the hematite particle powder. When dispersibility is considered, it is preferably 1.21 to 3.0, more preferably 1.22 to 2.5.
[0029]
The BET specific surface area of the hematite particle powder for a nonmagnetic underlayer according to the present invention is 90 to 300 m.2/ G. BET specific surface area value is 300m2If it exceeds / g, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that the dispersibility in a vehicle during the production of a non-magnetic paint decreases. 90m2If it is less than / g, the particle size is too large, which is not preferable from the viewpoint of improving the surface smoothness of the coating film. In consideration of the surface smoothness of the obtained magnetic recording medium, the BET specific surface area value is 95 to 275 m2/ G is more preferable, and still more preferably 100 to 250 m2/ G.
[0030]
The liquid absorption of cyclohexanone in the hematite particle powder for a non-magnetic underlayer according to the present invention is preferably 0.6 ml / g or more, more preferably 0.65 to 1.5 ml / g. If it is less than 0.6 ml / g, it is estimated that the spindle-shaped hematite particles have a closed particle end, and the filling property in the non-magnetic underlayer decreases.
[0031]
The hematite particle powder for a non-magnetic underlayer according to the present invention preferably has a coating film shrinkage of 8.0 to 20% measured by a measurement method described later. If the shrinkage of the coating film is less than 8.0%, a sufficient surface smoothing effect by the calendering treatment cannot be obtained. On the other hand, if it exceeds 20%, the thickness of the coating film fluctuates greatly, making it difficult to design a magnetic recording medium. It is more preferably 8.5 to 19%, more preferably 9.0 to 18%.
[0032]
The hematite particle powder for a non-magnetic underlayer according to the present invention, if necessary, has a surface of the hematite particle powder of at least one selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. May be coated with a surface coating composed of Hematite particle powder whose surface is coated with a surface coating has good compatibility with a binder resin when dispersed in a vehicle, and a desired degree of dispersion is easily obtained.
[0033]
The amount of the surface coating is such that aluminum hydroxide or aluminum oxide is converted to Al with respect to the hematite particle powder, and silicon hydroxide or silicon oxide is SiO.2In conversion, each is preferably 0.01 to 50% by weight. If the amount is less than 0.01% by weight, the effect of improving the dispersibility by the coating is almost negligible. Considering the effect of improving dispersibility in the vehicle and industrial productivity, 0.05 to 20% by weight is more preferable.
[0034]
When an aluminum compound and a silicon compound are used in combination, the equivalent amount of Al and SiO2It is preferably 0.01 to 50% by weight in total with the reduced amount.
[0035]
The hematite particle powder coated with the surface coating according to the present invention has substantially the same particle size and BET specific surface area value as the hematite particle powder according to the present invention not coated with the surface coating.
[0036]
The hematite particle powder for a non-magnetic underlayer according to the present invention may contain aluminum inside the particles. By using hematite particles containing aluminum inside the particles, the durability of the obtained magnetic recording medium is improved. The amount of aluminum contained in the particles is preferably 0.05 to 50% by weight, more preferably 0.05 to 40% by weight in terms of Al.
[0037]
In particular, in consideration of the corrosion resistance of the magnetic recording medium, highly purified hematite particle powder in which the content of soluble sodium salts, soluble sulfates, and the like in the hematite particle powder is reduced is preferable.
[0038]
In the highly purified hematite particle powder, the content of the soluble sodium salt is preferably 300 ppm or less in terms of Na, more preferably 200 ppm. The soluble sulfate content is SO4The conversion is preferably 150 ppm or less, more preferably 100 ppm or less. The pH value of the powder is preferably 8.0 or more.
[0039]
Next, a method for producing the hematite particle powder for a nonmagnetic underlayer according to the present invention will be described.
[0040]
The hematite particle powder for a nonmagnetic underlayer according to the present invention can be obtained by subjecting spindle-shaped goethite particles to a grinding treatment and then heating and dehydrating at a temperature in the range of 200 to 540 ° C.
[0041]
Spindle-shaped goethite particle powder in the present invention can be obtained by a usual method, for example, obtained by reacting with an aqueous solution of ferrous salt and an aqueous solution of an alkali carbonate or an alkali hydroxide or an alkali carbonate. The suspension containing the iron-containing precipitate can be obtained by passing an oxygen-containing gas such as air through the suspension.
[0042]
The spindle-shaped goethite particles preferably have an average major axis diameter of 0.007 to 0.80 μm, an average minor axis diameter of 0.001 to 0.35 μm, and an axial ratio of 2 to 20.
[0043]
If necessary, the surface of the spindle-shaped goethite particles may be coated with a sintering inhibitor such as P, Si, B, Zr, or Sb.
[0044]
The grinding treatment of the spindle-shaped goethite particles is performed by filtering the suspension containing the spindle-shaped goethite particles obtained by the formation reaction of the spindle-shaped goethite particles, filtering the water-washed wet cake, and dispersing the suspension in water again. Or a suspension containing spindle-shaped goethite particles obtained by the above-described spindle-shaped goethite particle formation reaction is filtered, washed with water, dried, taken out as spindle-shaped goethite particles powder, and then re-watered. An aqueous suspension containing spindle-shaped goethite particles dispersed in water may be used. It is preferable to use a suspension containing spindle-shaped goethite particles in which a wet cake of spindle-shaped goethite particles is dispersed again in water.
[0045]
The grinding treatment of the spindle-shaped goethite particles is performed by adjusting the concentration of the slurry containing the spindle-shaped goethite particles to 30 to 500 g / l, preferably 40 to 250 g / l, more preferably 50 to 200 g / l, and then rotating the slurry. The grinding is performed by applying a shearing force of several thousand to 9000 rpm, preferably 1200 to 5000 rpm.
[0046]
As a device for grinding the slurry containing spindle-shaped goethite particles, a device capable of applying a shearing force to the slurry is preferable.For example, a wet grinding machine such as a grinding and atomizing machine and an ultrafine grinding machine may be used. Can be.
[0047]
Specific examples of the wet mill include a supermass colloider, a serendipita (manufactured by Masuyuki Sangyo Co., Ltd.) and T.I. K. Myco Loader M type (Special Kika Kogyo Co., Ltd.) and the like.
[0048]
Next, the spindle-shaped goethite particle powder after the grinding treatment is heat-treated in a temperature range of 200 to 540 ° C. to obtain hematite particle powder. If the heating temperature is lower than 200 ° C., a long time is required for the dehydration reaction, which is not preferable. If the temperature exceeds 540 ° C., a dehydration reaction occurs rapidly, and the shape of the particles is likely to collapse, or sintering between the particles is caused, which is not preferable. The temperature of the heat treatment is preferably from 250 to 500C, more preferably from 280 to 450C. Further, the heat treatment time is preferably 30 minutes to 3 hours.
[0049]
The highly purified hematite particle powder can be obtained by subjecting the heat-treated hematite particle powder to a heat treatment in an aqueous alkali solution, a filtration treatment, and a water wash after the grinding treatment.
[0050]
The pH value of the alkaline aqueous solution is preferably 13.0 or more. The temperature of the heat treatment is preferably 80 ° C. or higher, more preferably 90 ° C. or higher.
[0051]
The hematite particle powder coated with the surface coating according to the present invention, after grinding, a water suspension obtained by dispersing the hematite particle powder obtained by heat treatment, aluminum compound, silicon compound or both. By adding the compound and mixing and stirring, or if necessary, adjusting the pH value after mixing and stirring, the particle surface of the hematite particle powder is changed to aluminum hydroxide, aluminum oxide, silicon water. It is coated with one or two or more compounds selected from oxides and oxides of silicon, and then filtered, washed with water, dried and pulverized. If necessary, a deaeration / consolidation treatment may be performed.
[0052]
As the aluminum compound, aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride, and aluminum nitrate, and alkali aluminates such as sodium aluminate can be used. As the silicon compound, No. 3 water glass, sodium orthosilicate, sodium metasilicate and the like can be used.
[0053]
Next, the magnetic recording medium according to the present invention will be described.
[0054]
The magnetic recording medium according to the present invention includes a nonmagnetic support, a nonmagnetic underlayer formed on the nonmagnetic support, and a magnetic recording layer formed on the nonmagnetic underlayer.
[0055]
As the non-magnetic support, synthetic resin films such as polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide imide, and polyimide, which are currently widely used for magnetic recording media, aluminum, and metal foils such as stainless steel Wood and board and various types of paper can be used. The thickness varies depending on the material, but is usually preferably from 1.0 to 300 μm, more preferably from 2.0 to 200 μm.
[0056]
In the case of a magnetic disk, polyethylene terephthalate is generally used, and its thickness is usually 50 to 300 μm, preferably 60 to 200 μm. In the case of a magnetic tape, polyethylene terephthalate, polyethylene naphthalate, polyamide and the like are used, and the thickness of polyethylene terephthalate is usually 3 to 100 μm, preferably 4 to 20 μm, and the thickness of polyethylene naphthalate is usually 3 to 50 μm, preferably Is 4 to 20 μm, and the thickness of the polyamide is usually 2 to 10 μm, preferably 3 to 7 μm.
[0057]
The nonmagnetic underlayer according to the present invention comprises the nonmagnetic underlayer hematite particle powder according to the present invention or the nonmagnetic underlayer hematite particle powder coated with the surface coating according to the present invention, and a binder resin.
[0058]
As binder resins, vinyl chloride-vinyl acetate copolymers, urethane resins, vinyl chloride-vinyl acetate-maleic acid copolymers, urethane elastomers, butadiene-acrylonitrile copolymers, which are currently widely used in the production of magnetic recording media, are used. For example, coalescing, cellulose derivatives such as polyvinyl butyral and nitrocellulose, polyester resins, synthetic rubber resins such as polybutadiene, epoxy resins, polyamide resins, polyisocyanates, electron beam curable acrylic urethane resins, and the like, and mixtures thereof can be used. Also, each binder resin has -OH, -COOH, -SO3M, -OPO2M2, -NH2(Wherein M is H, Na, or K). Considering the dispersibility of the hematite particle powder and the magnetic particle powder in the vehicle, the polar groups -COOH, -SO3Binder resins containing M are preferred.
[0059]
The mixing ratio of the hematite particle powder and the binder resin in the present invention is 5 to 2000 parts by weight, preferably 100 to 1000 parts by weight, of the hematite particle powder with respect to 100 parts by weight of the binder resin.
[0060]
When the amount of the hematite particle powder is less than 5 parts by weight, since the amount of the hematite particle powder in the nonmagnetic paint is too small, a layer in which the hematite particle powder is continuously dispersed cannot be obtained when the coating film is formed, and The smoothness and the strength of the coating film become insufficient. If the amount exceeds 2,000 parts by weight, the hematite particle powder is too large relative to the amount of the binder resin, so that the hematite particle powder is not sufficiently dispersed in the non-magnetic paint. As a result, when a coating film is formed, It is difficult to obtain a coating film having sufficient surface smoothness. Further, since the hematite particle powder is not sufficiently bound by the binder resin, the obtained coating film tends to be brittle.
[0061]
The coating thickness of the non-magnetic underlayer formed on the non-magnetic support is preferably from 0.2 to 10 μm. If it is less than 0.2 μm, it becomes difficult to improve the surface roughness of the nonmagnetic support, and the strength tends to be insufficient. In consideration of the thickness of the magnetic recording medium and the strength of the coating film, the thickness of the coating film is more preferably 0.5 to 5 μm.
[0062]
Note that a lubricant, an abrasive, an antistatic agent, and the like, which are generally used for manufacturing a magnetic recording medium, may be added to the nonmagnetic underlayer.
[0063]
The nonmagnetic underlayer using the hematite particle powders of the present inventions 1 to 3 has a glossiness of the coating film of 182 to 300%, preferably 187 to 300%, and a coating film surface roughness Ra of 0.5 to 300%. 7.5 nm, preferably 0.5 to 7.3 nm, and the strength of the coating film is such that the Young's modulus (relative value) is 126 to 160, preferably 128 to 160, and the shrinkage ratio of the coating film is 8. 0-20%, preferably 8.5-19%, more preferably 9.0-18%.
[0064]
The nonmagnetic underlayer using the hematite particle powder of the fourth invention has a coating film having a glossiness of 187 to 300%, preferably 192 to 300%, and a coating film surface roughness Ra of 0.5 to 7.0. 3 nm, preferably 0.5 to 7.0 nm, and the strength of the coating film is such that the Young's modulus (relative value) is 128 to 160, preferably 130 to 160, and the shrinkage ratio of the coating film is 8.5 to 8.5. 20%, preferably 9.0 to 19%, more preferably 10.5 to 18%.
[0065]
The magnetic recording layer according to the present invention comprises magnetic particle powder and a binder resin.
[0066]
As the magnetic particle powder, maghemite particle powder (γ-Fe2O3) And magnetite particle powder (FeO x・ Fe2O3, 0 <x ≦ 1), etc., Co-coated magnetic iron oxide particles obtained by coating Co or Co and Fe on magnetic iron oxide particles such as 0 <x ≦ 1), and Co other than Fe on the Co-coated magnetic iron oxide particles. , Al, Ni, P, Zn, Si, B, Co-coated magnetic iron oxide particles containing different elements such as rare earth metals, acicular metal magnetic particles containing iron as a main component, Co other than iron , Al, Ni, P, Zn, Si, B, acicular iron alloy magnetic particle powder containing rare earth metal, etc., Ba, Sr, or magnetoplumbite type plate-like ferrite particle powder containing Ba-Sr and the like. A plate containing one or more coercive force reducing agents selected from divalent and tetravalent metals such as Co, Ni, Zn, Mn, Mg, Ti, Sn, Zr, Nb, Cu, and Mo Magnet plumbite type ferrite particles It can be used.
[0067]
In consideration of recent short-wavelength recording and high-density recording, acicular metal magnetic particles containing iron as a main component, Co, Al, Ni, P, Zn, Si, B, and rare earth metals other than iron are used. Acicular iron alloy magnetic particle powder or the like is preferable.
[0068]
The magnetic particle powder has an average major axis diameter (in the case of plate-like particles, an average plate surface diameter) of 0.01 to 0.5 μm, preferably 0.03 to 0.3 μm. The particle shape of the magnetic particle powder is preferably acicular or plate-like. Here, the term "needle-shaped" means a needle-like shape, a spindle shape, a rice grain shape, and the like.
[0069]
When the particle shape of the magnetic particle powder is acicular, the axial ratio is 3 or more, preferably 5 or more, and in consideration of dispersibility in a vehicle, the upper limit is 15 and preferably 10. . Further, considering the filling ratio of the magnetic particle powder in the magnetic recording layer, the axial ratio is preferably 7.0 or less.
[0070]
When the particle shape of the magnetic particle powder is plate-like, the plate-like ratio (the ratio between the average plate surface diameter and the average thickness) (hereinafter, referred to as “plate-like ratio”) is 2 or more, preferably 3 or more, and is in the vehicle. In consideration of the dispersibility in the above, the upper limit is 50, and preferably 45.
[0071]
The magnetic properties of the magnetic particles are such that the coercive force value is 39.8 to 318.3 kA / m (500 to 4000 Oe), preferably 43.8 to 318.3 kA / m (550 to 4000 Oe), and the saturation magnetization is Is 50 to 170 Am2/ Kg (50-170 emu / g), preferably 60-170 Am2/ Kg (60-170 emu / g).
[0072]
In consideration of high-density recording and the like, the coercive force value of the magnetic particle powder having a coercive force value of 63.7 in the case of using acicular metal magnetic particle powder or acicular iron alloy magnetic particle powder mainly containing iron as the magnetic particle powder. 2278.5 kA / m (800 to 3500 Oe), preferably 71.6 to 278.5 kA / m (900 to 3500 Oe), and a saturation magnetization value of 90 to 170 Am2/ Kg (90-170 emu / g), preferably 100-170 Am2/ Kg (100-170 emu / g).
[0073]
As the binder resin, the binder resin used for forming the nonmagnetic underlayer can be used.
[0074]
The coating thickness of the magnetic recording layer provided on the nonmagnetic underlayer is in the range of 0.01 to 5 μm. When the thickness is less than 0.01 μm, uniform application is difficult and phenomena such as uneven coating are likely to occur, which is not preferable. If it exceeds 5 μm, it becomes difficult to obtain desired electromagnetic conversion characteristics due to the influence of a demagnetizing field. Preferably, it is in the range of 0.05 to 1 μm.
[0075]
The mixing ratio of the magnetic particle powder and the binder resin is such that the magnetic particle powder is 200 to 2,000 parts by weight, preferably 300 to 1500 parts by weight, based on 100 parts by weight of the binder resin.
[0076]
Normally used lubricants, abrasives, antistatic agents and the like may be added to the magnetic recording layer.
[0077]
The magnetic recording medium according to the present invention uses the magnetic particle powder as the magnetic particle powder and the hematite particle powder for a nonmagnetic underlayer according to any one of the present invention 1 to 3 as the nonmagnetic powder for a nonmagnetic underlayer. Have a coercive force value of 39.8 to 318.3 kA / m (500 to 4000 Oe), preferably 43.8 to 318.3 kA / m (550 to 4000 Oe), and a squareness ratio (residual magnetic flux density Br / saturated magnetic flux density). Bm) is 0.85 to 0.95, preferably 0.86 to 0.95, the gloss of the coating film is 172 to 300%, preferably 177 to 300%, and the coating film surface roughness Ra is 7.8 nm or less. , Preferably 2.0 to 7.3 nm, and the Young's modulus (relative value) is 128 to 160, preferably 130 to 160. The shrinkage of the coating film composed of the non-magnetic underlayer and the magnetic recording layer according to the evaluation method described below is 7.5 to 18%, preferably 8.0 to 17%, more preferably 8.5 to 16%. is there.
[0078]
The magnetic recording medium according to the present invention has a coercive force when the magnetic particle powder is used as the magnetic particle powder and the hematite particle powder for the nonmagnetic underlayer according to the present invention 4 is used as the nonmagnetic powder for the nonmagnetic underlayer. The value is 39.8 to 318.3 kA / m (500 to 4000 Oe), preferably 39.8 to 318.3 kA / m (550 to 4000 Oe), and the squareness ratio (residual magnetic flux density Br / saturation magnetic flux density Bm) is 0. 85 to 0.95, preferably 0.86 to 0.95, the glossiness of the coating film is 177 to 300%, preferably 182 to 300%, and the coating film surface roughness Ra is 7.3 nm or less, preferably 2. 0 to 7.0 nm, and the Young's modulus (relative value) is 130 to 160, preferably 132 to 160. The shrinkage of the coating film composed of the non-magnetic underlayer and the magnetic recording layer according to the evaluation method described below is 7.5 to 18%, preferably 8.0 to 17%, more preferably 8.5 to 16%. is there.
[0079]
In consideration of high-density recording and the like, the present invention uses the acicular metal magnetic particle powder or acicular iron alloy magnetic particle powder mainly composed of iron as the magnetic particle powder, and the present invention 1 to 3 as the nonmagnetic powder for the nonmagnetic underlayer. When the hematite particle powder for a non-magnetic underlayer is used, the coercive force value is 63.7 to 278.5 kA / m (800 to 3500 Oe), preferably 71.6 to 278.5 kA / m ( 900-3500 Oe), the squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) is 0.86-0.95, preferably 0.87-0.95, and the glossiness of the coating film is 202-300%, preferably The coating film surface roughness Ra is 6.8 nm or less, preferably 2.0 to 6.3 nm, and the Young's modulus (relative value) is 128 to 160, preferably 130 to 160. The shrinkage of the coating film composed of the non-magnetic underlayer and the magnetic recording layer according to the evaluation method described below is 7.5 to 18%, preferably 8.0 to 17%, more preferably 8.5 to 16%. is there.
[0080]
Non-magnetic according to the present invention, wherein the magnetic particle powder is a needle-shaped metal magnetic particle powder containing iron as a main component or a needle-shaped iron alloy magnetic particle powder, and is coated with a surface coating as a non-magnetic powder for a non-magnetic underlayer. When the hematite particle powder for the underlayer is used, the coercive force value is 63.7 to 278.5 kA / m (800 to 3500 Oe), preferably 71.6 to 278.5 kA / m (900 to 3500 Oe), and square. The ratio (residual magnetic flux density Br / saturation magnetic flux density Bm) is 0.87 to 0.95, preferably 0.88 to 0.95, and the glossiness of the coating film is 207 to 300%, preferably 212 to 300%. The film surface roughness Ra is 6.3 nm or less, preferably 2.0 to 5.8 nm, and the Young's modulus (relative value) is 130 to 160, preferably 132 to 160. The shrinkage of the coating film composed of the non-magnetic underlayer and the magnetic recording layer according to the evaluation method described below is 7.5 to 18%, preferably 8.0 to 17%, more preferably 8.5 to 16%. is there.
[0081]
Further, when the hematite particle powder for a non-magnetic underlayer according to the present invention containing aluminum inside the particles as the non-magnetic under-layer non-magnetic powder is used, the durability of the magnetic recording medium is improved, Among them, the running durability is 20 minutes or more, preferably 22 minutes or more, and the scratch property is A or B, preferably A.
[0082]
In particular, as the magnetic particle powder, a needle-like metal magnetic particle powder containing iron as a main component or a needle-like iron alloy magnetic particle powder is used. When the hematite particle powder for the formation layer is used, the corrosion rate of the coating film as a change rate (%) of the coercive force value is 10.0% or less, preferably 9.5% or less, and the change rate of the saturation magnetization value ( %) Is 10.0% or less, preferably 9.5% or less.
[0083]
Next, a method for manufacturing a magnetic recording medium according to the present invention will be described.
[0084]
The magnetic recording medium according to the present invention is formed by applying a non-magnetic paint containing a hematite particle powder, a binder resin and a solvent on a non-magnetic support by a conventional method and drying to form a non-magnetic underlayer. It can be obtained by applying a magnetic paint containing a magnetic particle powder, a binder resin, and a solvent on a base layer to form a coating film, orienting in a magnetic field, performing a calendar treatment, and then curing.
[0085]
As the solvent used for forming the nonmagnetic underlayer and the magnetic recording layer, methyl ethyl ketone, toluene, cyclohexanone, methyl isobutyl ketone, tetrahydrofuran, a mixture thereof, and the like, which are widely used for magnetic recording media, can be used.
[0086]
The amount of the solvent used is 50 to 1,000 parts by weight in total with respect to 100 parts by weight of the hematite particle powder or the magnetic particle powder. If the amount is less than 50 parts by weight, the viscosity of the coating material becomes too high, and the application becomes difficult. If the amount exceeds 1000 parts by weight, the amount of the solvent volatilized at the time of forming the coating film becomes too large, which is industrially disadvantageous.
[0087]
BEST MODE FOR CARRYING OUT THE INVENTION
A typical embodiment of the present invention is as follows.
[0088]
The average major axis diameter, average minor axis diameter or average plate surface diameter, and average thickness of the hematite particles, spindle-shaped goethite particles and magnetic particles are shown in photographs obtained by magnifying an electron micrograph four times in the longitudinal and lateral directions, respectively. The major axis diameter and the minor axis diameter were measured for about 350 particles, and the average value was shown.
[0089]
The ratio between the minor axis diameter (W) of the hematite particles and the particle width (Wb) at a point (b) 1/10 of the major axis diameter from the particle end of the hematite particles was determined in the same manner from the above electron micrograph. Then, the particle width (Wb) at a point (b) 1/10 of the major axis diameter from the particle end of the hematite particle was measured, and the minor axis diameter (W) and 1/10 of the major axis diameter from the particle end of the hematite particle were measured. The average value of the ratio (W / Wb) to the particle width (Wb) at point (b) is shown.
[0090]
The axial ratio was the ratio between the average major axis diameter and the average minor axis diameter, and the plate ratio was the ratio between the average plate surface diameter and the average thickness.
[0091]
The specific surface area was indicated by a value measured by the BET method.
[0092]
The liquid absorption of cyclohexanone in the hematite particle powder is as follows: 1.0 g of a sample is placed in a round-bottomed flask with a stopper, cyclohexanone is added dropwise little by little from a burette, and the round-bottomed flask is shaken to absorb cyclohexanone into the sample. The amount of dropped cyclohexanone at the time when the sample becomes a lump and no longer absorbs liquid is defined as the amount of absorbed liquid.
[0093]
The amount of Al, the amount of Si, and the amount of Si and P in the hematite particle powder and the magnetic particle powder present inside and on the surface of the particle are respectively “X-ray fluorescence spectrometer 3063M” (Rigaku Corporation). The measurement was carried out according to JIS K0119 “General rules for X-ray fluorescence analysis”.
[0094]
The powder pH value was determined by weighing 5 g of a sample into a 300 ml Erlenmeyer flask, adding 100 ml of boiled pure water, heating and maintaining the boiling state for about 5 minutes, closing the stopper and allowing to cool to room temperature, and reducing the weight. Was added, water was stoppered again, the mixture was shaken for 1 minute, the mixture was allowed to stand for 5 minutes, and the pH of the obtained supernatant was measured in accordance with JIS Z 8802-7, and the obtained value was measured as the powder pH value. And
[0095]
The content of the soluble sodium salt and the content of the soluble sulfate were determined using the supernatant prepared for the measurement of the pH value of the powder described above. The solution was filtered using 5C filter paper, and the Na in the filtrate was filtered.+And SO4 2-Was measured using an inductively coupled plasma emission spectrometer (manufactured by Seiko Instruments Inc.).
[0096]
The paint viscosity was determined by measuring the paint viscosity at 25 ° C. of the obtained paint using an E-type viscometer EMD-R (manufactured by Tokyo Keiki Co., Ltd.), and the shear rate D = 1.92 sec.-1The values in are shown.
[0097]
The glossiness of the coating surface of the nonmagnetic underlayer and the magnetic recording layer was determined by measuring the 45 ° glossiness of the coating film using “Gloss Meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.).
[0098]
As for the surface roughness Ra of the coating film of the non-magnetic underlayer and the magnetic recording layer, the center line average roughness of the coating film was measured using "Surfcom-575A" (manufactured by Tokyo Seimitsu Co., Ltd.).
[0099]
For the strength of the coating film of the non-magnetic underlayer and the magnetic recording layer, the Young's modulus of the coating film was measured using “Autograph” (manufactured by Shimadzu Corporation), and the commercially available video tape “AV @ T-120 (JVC) Made by the company) ". The higher the relative value, the better the strength of the coating film.
[0100]
The thickness of each of the non-magnetic support, the non-magnetic underlayer, and the magnetic recording layer constituting the magnetic recording medium was measured by the following measuring method.
[0101]
First, the thickness (A) of the nonmagnetic support is measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) (sum of the thickness of the nonmagnetic support and the thickness of the nonmagnetic underlayer) of the nonmagnetic support and the nonmagnetic underlayer formed on the nonmagnetic support is measured in the same manner. I do. Further, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the sum of the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer) ) Is measured in the same manner. The thickness of the nonmagnetic underlayer is shown by (B)-(A), and the thickness of the magnetic recording layer is shown by (C)-(B).
[0102]
The shrinkage of the coating film of the nonmagnetic underlayer was measured by the following measurement method.
[0103]
{Circle around (1)} 12 g of hematite particle powder, a binder resin solution (30% by weight of a vinyl chloride-vinyl acetate copolymer resin having a sodium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone are mixed and mixed (solid content: 72%). ) Was further kneaded with a plastmill for 30 minutes to obtain a kneaded product.
{Circle around (2)} 95 g of 1.5 mmφ glass beads, an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1) 70% by weight), cyclohexanone, The mixture was added to a 140 ml glass bottle together with methyl ethyl ketone and toluene and mixed and dispersed for 6 hours with a paint shaker to obtain a non-magnetic paint.
Hematite particle powder 100.0 parts by weight,
Having sodium sulfonate group
Vinyl chloride-vinyl acetate copolymer resin 10.0 parts by weight,
Polyurethane resin having sodium sulfonate group 10.0 parts by weight,
Cyclohexanone シ ク ロ 44.6 parts by weight,
Methyl ethyl ketone 111.4 parts by weight,
66.9 parts by weight of toluene.
{Circle around (3)} The obtained non-magnetic paint was applied to a thickness of 55 μm on a non-magnetic support using an applicator and dried to form a non-magnetic underlayer.
{Circle around (4)} The dried coating film after application is calendered four times at 85 ° C. and 200 kg / cm, and the film thickness t before calendering of the coating film is obtained.0(Μm) and thickness t after calendering1(Μm), the shrinkage (%) of the coating film of the nonmagnetic underlayer was determined according to the following equation.
Shrinkage (%) of coating film = {(t0-T1) / T0} × 100
t0: Thickness of nonmagnetic underlayer before calender (μm)
t1: Thickness of nonmagnetic underlayer after calendering (μm)
[0104]
The shrinkage of the coating film composed of the nonmagnetic underlayer and the magnetic recording layer was measured by the following measurement method.
[0105]
{Circle around (1)} 12 g of hematite particle powder, a binder resin solution (30% by weight of a vinyl chloride-vinyl acetate copolymer resin having a sodium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone are mixed and mixed (solid content: 72%). ) Was further kneaded with a plastmill for 30 minutes to obtain a kneaded product.
{Circle around (2)} 95 g of 1.5 mmφ glass beads, an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1) 70% by weight), cyclohexanone, The mixture was added to a 140 ml glass bottle together with methyl ethyl ketone and toluene and mixed and dispersed for 6 hours with a paint shaker to obtain a non-magnetic paint.
Hematite particle powder 100.0 parts by weight,
Having sodium sulfonate group
Vinyl chloride-vinyl acetate copolymer resin 10.0 parts by weight,
Polyurethane resin having sodium sulfonate group 10.0 parts by weight,
Cyclohexanone シ ク ロ 44.6 parts by weight,
Methyl ethyl ketone 111.4 parts by weight,
66.9 parts by weight of toluene.
{Circle around (3)} The obtained non-magnetic paint was applied to a thickness of 55 μm on a non-magnetic support using an applicator and dried to form a non-magnetic underlayer.
(4) 12 g of magnetic particle powder, 1.2 g of abrasive (alumina), 0.12 g of carbon black fine particle powder, binder resin solution (30% by weight of vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group and 70% of cyclohexanone) % By weight) and cyclohexanone to obtain a mixture (solid content: 78%), and the mixture was further kneaded with a plastmill for 30 minutes to obtain a kneaded product.
{Circle around (5)} The kneaded material is 1.5 gφ glass beads 95 g, additional binder resin solution (polyurethane resin having sodium sulfonate group 30% by weight, solvent (methyl ethyl ketone: toluene = 1: 1) 70% by weight), cyclohexanone, methyl ethyl ketone Then, the mixture was added to a 140 ml glass bottle together with toluene and mixed and dispersed with a paint shaker for 6 hours to obtain a magnetic paint. Thereafter, a lubricant and a curing agent were added, and the mixture was further mixed and dispersed with a paint shaker for 15 minutes.
Magnetic particle powder 100.0 parts by weight
Having sodium sulfonate group
Vinyl chloride-vinyl acetate copolymer resin 10.0 parts by weight
Polyurethane resin having sodium sulfonate group 10.0 parts by weight
Abrasive (alumina) 10.0 parts by weight
Carbon black fine particle powder 1.0 parts by weight
Lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight
Curing agent (polyisocyanate) 5.0 parts by weight
Cyclohexanone @ 65.8 parts by weight
Methyl ethyl ketone 164.5 parts by weight
Toluene 98.7 parts by weight
{Circle around (6)} The obtained magnetic paint was applied to a thickness of 15 μm on a substrate having the above-mentioned nonmagnetic underlayer using an applicator, and then oriented and dried in a magnetic field.
{Circle over (7)} The dried coating film after application is calendered four times at 85 ° C. and 200 kg / cm, and the film thickness t before calendering of the coating film is obtained.2(Μm) and thickness t after calendering3(Μm), the shrinkage (%) of the coating film is determined according to the following equation.
Shrinkage (%) of coating film = {(t2-T3) / T2} × 100
t2: Total (μm) of thickness of nonmagnetic underlayer before calender and thickness of magnetic recording layer
t3: Total (μm) of thickness of nonmagnetic underlayer after calendering and thickness of magnetic recording layer
[0106]
The magnetic properties of the magnetic particle powder and the magnetic recording medium were measured using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Kogyo Co., Ltd.) under an external magnetic field of 795.8 kA / m (10 kOe). did.
[0107]
The running durability of the magnetic recording medium was measured using a “Media Durability Tester MDT-3000” (manufactured by Steinberg Associates) at a load of 1.96 N (200 gw) and an actual operating time at a relative speed of 16 m / s between the head and the tape. evaluated. The longer the actual operating time, the better the running durability.
[0108]
The scratch characteristics were evaluated by observing the surface of the tape after running with a microscope and visually evaluating the presence or absence of scratches, and the following four grades were evaluated.
[0109]
A: No scratches
B: Some scratches
C: There is abrasion
D: Severe scratches
[0110]
The time-dependent change in the magnetic properties of the magnetic recording medium due to the corrosion of the magnetic metal particles containing iron as a main component in the magnetic recording layer was determined by leaving the magnetic recording medium in an environment at a temperature of 60 ° C. and a relative humidity of 90% for 14 days. The coercive force value and the saturation magnetic flux density value before and after leaving were measured, and the value obtained by dividing the amount of change by the value before leaving was shown as a percentage of change as a percentage.
[0111]
<Production of hematite particle powder>
Spindle-shaped goethite particle powder obtained by dispersing a wet cake of spindle-shaped goethite particles in water (average major axis diameter 0.196 μm, average minor axis diameter 0.0261 μm, axial ratio 7.5, W / wb 1.31, 1384 g of No. 3 water glass (SiO 2 with respect to the spindle-shaped goethite particles) in an aqueous suspension containing 20 kg of an internal Al content of 1.35% by weight2(Equivalent to 2.0% by weight in terms of conversion), and after mixing and stirring, filtration, washing with water and drying were performed to prevent sintering.
[0112]
Next, the concentration of the slurry containing the spindle-shaped goethite particles powder having been subjected to the sintering prevention treatment was adjusted to 100 g / l, and using an ultrafine grinding machine “Super Mass Colloider” (product name, manufactured by Masuyuki Sangyo Co., Ltd.) After passing through 5 times at a shaft rotation number of 2000 rpm to perform a grinding treatment, the mixture was filtered, washed with water, and dried.
[0113]
The obtained spindle-shaped goethite particles were heat-treated at 350 ° C. for 60 minutes to obtain spindle-shaped hematite particles.
[0114]
The average major axis diameter of the spindle-shaped hematite particles obtained here is 0.168 μm, the average minor axis diameter is 0.0280 μm, the axial ratio is 6.0, W / Wb 1.32, and the BET specific surface area value is 101.6 m.2/ G, the liquid absorption of cyclohexanone is 0.85 ml / g, the Al content is 1.48% by weight, and the sintering inhibitor is SiO.2It was 1.95% by weight in conversion.
[0115]
As a result of observing a transmission electron microscope (TEM) photograph (× 30,000), it was confirmed that the obtained spindle-shaped hematite particles were in a state where both particle ends were open.
[0116]
<Production of nonmagnetic underlayer>
12 g of the spindle-shaped hematite particles obtained here, a binder resin solution (30% by weight of a vinyl chloride-vinyl acetate copolymer resin having a sodium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone were mixed and mixed (solid content). The mixture was further kneaded with a plastmill for 30 minutes to obtain a kneaded product.
[0117]
95 g of 1.5 mmφ glass beads, additional binder resin solution (30% by weight of polyurethane resin having sodium sulfonate group, 70% by weight of solvent (methyl ethyl ketone: toluene = 1: 1)), cyclohexanone, methyl ethyl ketone and toluene Was added to a 140 ml glass bottle, and mixed and dispersed with a paint shaker for 6 hours to obtain a coating composition.
[0118]
The composition of the obtained non-magnetic paint was as follows.
[0119]
Spindle-shaped hematite particle powder 100 parts by weight,
Having sodium sulfonate group
Vinyl chloride-vinyl acetate copolymer resin 10 parts by weight,
Polyurethane resin having sodium sulfonate group 基 10 parts by weight,
Cyclohexanone シ ク ロ 44.6 parts by weight,
Methyl ethyl ketone 111.4 parts by weight,
66.9 parts by weight of toluene.
[0120]
The paint viscosity of the obtained non-magnetic paint was 2,637 cP.
[0121]
Next, the obtained non-magnetic paint was applied to a thickness of 55 μm on a polyethylene terephthalate film having a thickness of 12 μm using an applicator, and dried to form a non-magnetic underlayer.
[0122]
The coating thickness of the obtained nonmagnetic underlayer was 3.50 μm, the gloss was 216%, the surface roughness Ra was 5.5 nm, and the Young's modulus (relative value) was 135. The thickness of the nonmagnetic underlayer after the calendering treatment was 3.05 μm, and the compression ratio of the coating film of the nonmagnetic underlayer was 12.8%.
[0123]
<Manufacture of magnetic recording medium>
Needle-shaped metal magnetic powder containing iron as a main component (average major axis diameter 0.103 μm, average minor axis diameter 0.0155 μm, axial ratio 6.6, coercive force value 181.9 kA / m (2,286 Oe), saturation magnetization Value 138 Am2/ Kg (138 emu / g)), 12 g of carbon black fine particle powder, 1.2 g of alumina particle powder as an abrasive, binder resin solution (vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group, 30% by weight) And 70% by weight of cyclohexanone) and cyclohexanone, and kneaded at a solid content of 78% using a plastmill for 30 minutes to obtain a kneaded product.
[0124]
95 g of 1.5 mmφ glass beads, an additional resin binder solution (comprising 30% by weight of a polyurethane resin having a sodium sulfonate group, 35% by weight of toluene, and 35% by weight of methyl ethyl ketone) in a 140 ml glass bottle, and cyclohexanone, toluene, methyl ethyl ketone And mixed and dispersed for 6 hours with a paint shaker. Thereafter, a lubricant and a curing agent were added to the obtained coating composition, and the mixture was further mixed and dispersed with a paint shaker for 15 minutes.
[0125]
The composition of the obtained magnetic paint is as follows.
Acicular metal magnetic particles powder containing iron as a main component 主 成分 100.0 parts by weight,
Abrasive (alumina particle powder) 10.0 parts by weight,
Carbon black fine particle powder 微粒子 3.0 parts by weight,
Vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group
10.0 parts by weight,
Polyurethane resin having sodium sulfonate group 10.0 parts by weight,
lubricant
(Myristic acid: butyl stearate = 1: 2) 3.0 parts by weight,
Curing agent (polyisocyanate) 5.0 parts by weight,
65.8 parts by weight of cyclohexanone,
Methyl ethyl [email protected] parts by weight,
Toluene 98.7 parts by weight.
[0126]
The paint viscosity of the obtained magnetic paint was 8,499 cP.
[0127]
The obtained magnetic paint was applied to a thickness of 15 μm on a substrate having the nonmagnetic underlayer using an applicator, and then oriented and dried in a magnetic field. At this time, the thickness of the magnetic layer was 1.01 μm, and the total thickness of the coating layer was 4.86 μm.
[0128]
Then, after calendering at 85 ° C. and 200 kg / cm four times, a curing reaction was performed at 60 ° C. for 24 hours, and slit to a width of 1.27 cm (0.5 inch) to obtain a magnetic tape. The compression ratio of the coating film before and after the calendering treatment was 11.5%. The total thickness of the coating layer of the obtained magnetic tape was 4.30 μm, the coercive force value was 185.6 kA / m (2,332 Oe), the squareness ratio was 0.90, the gloss was 236%, and the surface roughness Ra was 5 0.6 nm, the Young's modulus (relative value) was 136, the running durability was 30 minutes or more, and the scratch characteristics were A among the durability.
[0129]
[Action]
The most important point in the present invention is that the hematite particle powder according to the present invention is excellent in dispersibility and filling property, and the magnetic recording medium having a non-magnetic underlayer using the hematite particle powder has excellent surface smoothness. Is a point.
[0130]
The present inventor considers the reason why the hematite particle powder according to the present invention is excellent in dispersibility and filling property as follows.
[0131]
In general, when the particle shape is acicular, entanglement of the particles in the vehicle is likely to occur, and it is difficult to obtain a desired dispersibility.However, the hematite particle powder for a nonmagnetic underlayer according to the present invention is By grinding the spindle-shaped goethite particles to open the ends of the spindle-shaped goethite particles, and heating to a hematite particle powder in a temperature range that does not destroy the particle form, the spindle-shaped goethite particles have a spindle-like shape. In addition, since hematite particles have open particle ends, they are easier to disperse in the vehicle than needle-like particles, and as a result, it is considered that the filling property is improved.
[0132]
Further, regarding the reason that the surface smoothness of a magnetic recording medium having a nonmagnetic underlayer using the nonmagnetic underlayer hematite particle powder according to the present invention is excellent, the present inventor has stated that the hematite particle powder according to the present invention is: It is presumed that, because of the particle form having open particle ends as described above, it is easy to apply compression by calendering, and it is easy to obtain the effect of improving the surface smoothness.
[0133]
【Example】
Next, examples and comparative examples will be described.
[0134]
Spindle-shaped goethite particles A and B and acicular goethite particles C:
Spindle-shaped goethite particle powder and acicular goethite particle powder having the characteristics shown in Table 1 were prepared as spindle-shaped goethite particle powder.
[0135]
[Table 1]
Figure 2004035312
[0136]
<Milling>
Examples 1 and 2, Comparative Examples 1 to 6, Reference Example 1:
Except that the type of goethite particles, the type and amount of sintering inhibitor in the sintering prevention treatment, the presence or absence of milling treatment, the slurry concentration and the number of revolutions in the grinding treatment, the heating temperature and the time in the heating treatment were variously changed Non-magnetic particle powder was obtained in the same manner as in the embodiment of the invention.
[0137]
The production conditions at this time are shown in Table 2, and various characteristics of the obtained spindle-shaped hematite particles are shown in Table 3.
[0138]
Comparative Example 5 is a hematite particle powder obtained by subjecting goethite particles A to a heat dehydration treatment at 340 ° C. without a grinding treatment and then a heat treatment at 650 ° C. Reference Example 1 is a hematite particle powder obtained by subjecting goethite particles A to a grinding treatment and then heating at 340 ° C.
[0139]
As a result of observing a transmission electron microscope (TEM) photograph, the hematite particle powders obtained in Examples 1 and 2 were found to have a shape with open particle ends.
[0140]
On the other hand, it was confirmed that the hematite particle powder obtained in Comparative Example 1 had a shape with closed particle ends.
[0141]
[Table 2]
Figure 2004035312
[0142]
[Table 3]
Figure 2004035312
[0143]
<Heat treatment in alkaline aqueous solution>
Example 3
600 g of the hematite particle powder obtained in Example 1 was put into 3.5 l of pure water, and peptized for 60 minutes using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
[0144]
Next, the obtained slurry of the hematite particle powder was mixed and dispersed for 3 hours at a shaft rotation number of 2000 rpm while circulating through a horizontal SGM (Dispamat SL: manufactured by SC Adichem Co., Ltd.). The sieve residue of the hematite particle powder in the obtained slurry at 325 mesh (mesh size: 44 μm) was 0%.
[0145]
After adjusting the concentration of the slurry of the obtained hematite particle powder to 100 g / l, 5 l of the slurry was taken. While stirring the slurry, a 6N NaOH aqueous solution was added to adjust the pH value of the slurry to 13.5. Next, this slurry was heated with stirring and heated to 95 ° C., and kept at that temperature for 180 minutes.
[0146]
Next, this slurry was washed with water by a decantation method to obtain a slurry having a pH value of 10.5. For the sake of accuracy, the slurry concentration at this time was confirmed to be 96 g / l.
[0147]
Next, the solution was filtered off using a Buchner funnel, washed with pure water, and washed with water until the conductivity of the filtrate became 30 μs or less. A particle powder was obtained.
[0148]
The production conditions at this time are shown in Table 4, and various properties of the obtained hematite particle powder are shown in Table 5.
[0149]
Example 4:
A highly purified hematite particle powder was obtained in the same manner as in Example 3 except that the kind of the hematite particle powder, the pH value of the aqueous alkali solution, the heating temperature and the heating time were variously changed.
[0150]
The production conditions at this time are shown in Table 4, and various properties of the obtained hematite particle powder are shown in Table 5.
[0151]
As a result of observing a transmission electron microscope (TEM) photograph of the obtained hematite particle powder, the hematite particle powder obtained in Examples 3 and 4 has a shape in which the particle ends are open even after the heat treatment in an alkaline aqueous solution. It was recognized that it was.
[0152]
[Table 4]
Figure 2004035312
[0153]
[Table 5]
Figure 2004035312
[0154]
<Surface coating treatment>
Example 5:
Using 10 kg of the hematite particle powder of Example 1 and 75 l of water, a slurry containing the hematite particle powder was obtained. After adjusting the pH value of the redispersed slurry containing the obtained hematite particle powder to 10.5 using an aqueous sodium hydroxide solution, water was added to the slurry to adjust the slurry concentration to 98 g / l. 75 l of this slurry was heated to 60 ° C., and 4083 ml of 1.0 mol / l sodium aluminate solution (corresponding to 1.5 wt% in terms of Al with respect to the hematite particle powder) was added to the slurry, and the mixture was added for 30 minutes. After holding, the pH was adjusted to 7.5 with acetic acid. After maintaining in this state for 30 minutes, the particles were filtered, washed with water, dried and pulverized to obtain hematite particle powder whose particle surfaces were covered with aluminum hydroxide.
[0155]
The production conditions at this time are shown in Table 6, and various properties of the obtained surface-treated hematite particle powder are shown in Table 7.
[0156]
Examples 6 to 8:
Non-magnetic particle powder having a particle surface coated with a coating in the same manner as in Example 5 except that the hematite particle powders of Examples 2 to 4 were used and the type and amount of the surface coating were variously changed. Got.
[0157]
The production conditions at this time are shown in Table 6, and various properties of the obtained surface-treated hematite particle powder are shown in Table 7.
[0158]
The types of coatings in Table 6 indicate that A is a hydroxide of aluminum and S is an oxide of silicon.
[0159]
As a result of observing a transmission electron microscope (TEM) photograph (× 30,000) of the obtained hematite particle powder, the end of each hematite particle powder obtained in Examples 5 to 8 was opened even after the surface coating treatment. It was found to have a shape.
[0160]
[Table 6]
Figure 2004035312
[0161]
[Table 7]
Figure 2004035312
[0162]
<Production of nonmagnetic underlayer>
Examples 9 to 16, Comparative Examples 7 to 13, Reference Example 2:
A non-magnetic underlayer was obtained in the same manner as in the embodiment of the invention except that the type of the non-magnetic particle powder was changed in various ways.
[0163]
Table 8 shows the manufacturing conditions at this time and various characteristics of the obtained nonmagnetic underlayer.
[0164]
[Table 8]
Figure 2004035312
[0165]
Magnetic particle powder (1) to (4):
Magnetic particle powders (1) to (4) having the characteristics shown in Table 9 were used as the magnetic particle powder.
[0166]
[Table 9]
Figure 2004035312
[0167]
<Manufacture of magnetic recording medium>
Examples 17 to 24, Comparative Examples 14 to 20, Reference Example 3:
A magnetic recording medium was obtained in the same manner as in the embodiment of the present invention except that the type of the nonmagnetic underlayer and the type of the magnetic particles were variously changed.
[0168]
Tables 10 and 11 show the manufacturing conditions and various characteristics of the obtained magnetic recording medium.
[0169]
[Table 10]
Figure 2004035312
[0170]
[Table 11]
Figure 2004035312
[0171]
【The invention's effect】
When the hematite particle powder for a nonmagnetic underlayer according to the present invention is used, a nonmagnetic underlayer having excellent surface smoothness can be obtained, and when the magnetic recording medium is formed using the nonmagnetic underlayer, the surface smoothness can be improved. Therefore, it is suitable as a hematite particle powder for a non-magnetic underlayer of a magnetic recording medium having a non-magnetic underlayer.
[0172]
Further, as described above, the magnetic recording medium according to the present invention has excellent surface smoothness, and thus is suitable as a high-density magnetic recording medium.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of hematite particles according to the present invention.
FIG. 2 is a conceptual diagram of a conventional spindle-shaped hematite particle.

Claims (6)

平均長軸径が0.005〜0.6μmであって平均短軸径が0.001〜0.40μmである紡錘状ヘマタイト粒子粉末であって、該ヘマタイト粒子粉末を構成する紡錘状ヘマタイト粒子の粒子端が開いていることを特徴とする磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末。A spindle-shaped hematite particle powder having an average major axis diameter of 0.005 to 0.6 μm and an average minor axis diameter of 0.001 to 0.40 μm, wherein the spindle-shaped hematite particles constituting the hematite particle powder Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium, wherein the particle ends are open. 請求項1記載の紡錘状ヘマタイト粒子粉末のBET比表面積値が100〜250m/gであることを特徴とする請求項1記載の磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末。Non-magnetic undercoat layer for hematite particles of the magnetic recording medium of claim 1, wherein the BET specific surface area of the spindle-shaped hematite particles according to claim 1, wherein it is 100 to 250 m 2 / g. 請求項1記載の紡錘状ヘマタイト粒子粉末のシクロヘキサノンの吸液量が0.6ml/g以上であることを特徴とする磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末。2. The hematite particle powder for a non-magnetic underlayer of a magnetic recording medium, wherein the spindle-shaped hematite particle powder according to claim 1 has a liquid absorption of cyclohexanone of 0.6 ml / g or more. 粒子の表面が、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれる少なくとも一種からなる表面被覆物によって被覆されていることを特徴とする請求項1乃至請求項3のいずれかに記載の磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末。The surface of the particles is coated with a surface coating made of at least one selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. A hematite particle powder for a non-magnetic underlayer of the magnetic recording medium according to claim 3. 非磁性支持体、該非磁性支持体上に形成される非磁性粉末及び結合剤樹脂を含む非磁性下地層及び該非磁性下地層の上に形成される磁性粒子粉末及び結合剤樹脂を含む磁気記録層からなる磁気記録媒体において、前記非磁性粉末が請求項1乃至請求項4のいずれかに記載の非磁性下地層用ヘマタイト粒子粉末であることを特徴とする磁気記録媒体。Nonmagnetic support, nonmagnetic underlayer containing nonmagnetic powder and binder resin formed on the nonmagnetic support, and magnetic recording layer containing magnetic particle powder and binder resin formed on the nonmagnetic underlayer 5. The magnetic recording medium according to claim 1, wherein the nonmagnetic powder is the hematite particle powder for a nonmagnetic underlayer according to claim 1. 請求項5記載の磁気記録媒体において、磁性粒子粉末として、軸比が7.0以下の鉄を主成分とする紡錘状金属磁性粒子粉末を用いることを特徴とする磁気記録媒体。6. The magnetic recording medium according to claim 5, wherein a spindle-shaped metal magnetic particle powder whose main component is iron having an axial ratio of 7.0 or less is used as the magnetic particle powder.
JP2002193543A 2002-07-02 2002-07-02 Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium Expired - Fee Related JP3952171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193543A JP3952171B2 (en) 2002-07-02 2002-07-02 Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193543A JP3952171B2 (en) 2002-07-02 2002-07-02 Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006099989A Division JP4352270B2 (en) 2006-03-31 2006-03-31 Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2004035312A true JP2004035312A (en) 2004-02-05
JP3952171B2 JP3952171B2 (en) 2007-08-01

Family

ID=31702485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193543A Expired - Fee Related JP3952171B2 (en) 2002-07-02 2002-07-02 Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3952171B2 (en)

Also Published As

Publication number Publication date
JP3952171B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP2000123354A (en) Particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium
JP4305589B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3427883B2 (en) Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP3832539B2 (en) Magnetic recording medium
JP4352270B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP4732556B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3952171B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
US6723456B2 (en) Hematite particles aggregates, non-magnetic undercoatt layer for magnetic recording medium using the same, and magnetic recording medium having the non-magnetic undercoat layer
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP3512056B2 (en) Hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
EP0941966B1 (en) Acicular hematite particles and magnetic recording medium
JP3661734B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder
JP4732555B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JPH07192248A (en) Undercoat layer for magnetic recording medium
JP3661733B2 (en) Magnetic recording medium
JP3656700B2 (en) Magnetic recording medium
JP3661735B2 (en) Magnetic recording medium
JP3763333B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661730B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP3965660B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder
JPH10241148A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050811

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Ref document number: 3952171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees