JP2004034122A - Winding temperature controller - Google Patents

Winding temperature controller Download PDF

Info

Publication number
JP2004034122A
JP2004034122A JP2002197737A JP2002197737A JP2004034122A JP 2004034122 A JP2004034122 A JP 2004034122A JP 2002197737 A JP2002197737 A JP 2002197737A JP 2002197737 A JP2002197737 A JP 2002197737A JP 2004034122 A JP2004034122 A JP 2004034122A
Authority
JP
Japan
Prior art keywords
temperature
cooling
rolling mill
rolled material
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002197737A
Other languages
Japanese (ja)
Other versions
JP4208505B2 (en
Inventor
Yousuke Tonami
渡 並 洋 介
Kunio Sekiguchi
関 口 邦 男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2002197737A priority Critical patent/JP4208505B2/en
Publication of JP2004034122A publication Critical patent/JP2004034122A/en
Application granted granted Critical
Publication of JP4208505B2 publication Critical patent/JP4208505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a winding temperature controller with which the pattern of the quantity of cooling water for a rolled stock is prevented from being affected by disturbance, by on-line deciding the quantity of cooling water in consideration of a variation in speed of the rolling stock and a variation in temperature on the inlet side of a cooling system. <P>SOLUTION: In the winding temperature controller for controlling the temperature of the rolling stock before a winding reel to the target value by cooling the rolling stock rolled with a hot-rolling mill with a plurality of cooling banks installed on the outlet side of the hot-rolling mill, a means for respectively calculating initial cooling length for every cooling unit of a material on the basis of a temperature model and a setting calculation information of the hot-rolling mill by taking a cut-length sheet virtually dividing the rolling stock in the advancing direction of the rolling stock as a material cooling unit and a means for correcting the initial cooling length by relating it to the deviation of a detected temperature to the temperature by the setting calculation of the rolling stock on the outlet side of the hot-rolling mill and the deviation of detected average speed to the average speed by the setting calculation of the rolling mill are provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料の熱間圧延において、圧延後に金属材料を冷却して所望の巻取温度にするための巻取温度制御装置に関する。
【0002】
【従来の技術】
熱間圧延機の品質制御には、製品の寸法制御と圧延材の温度制御とがある。このうち、製品の寸法制御として、圧延材の幅方向中央部の板厚を制御する板厚制御、板幅制御、幅方向板厚分布を制御する板クラウン制御、圧延材の幅方向の伸びを制御する平坦度制御等がある。温度制御として仕上圧延機の出側の温度を制御する仕上圧延機の出側温度制御、巻取機前の温度を制御する巻取温度制御がある。
【0003】
熱間圧延機では、一般に、加熱炉、粗圧延機、仕上圧延機、冷却装置を備えた搬送テーブル(ROT:Run Out Table)及び巻取機が順に配置されている。代表的な圧延材の温度は、加熱炉出側で1200〜1250℃、粗圧延機出側で1100〜1150℃、仕上圧延機入側で1050〜1100℃、仕上圧延機出側で850〜900℃であり、巻取温度は500〜800℃である。材料の強度、靭性等の性質は殆どの場合、圧延材が仕上圧延機を出てから巻取機に到達するまでの冷却によって決定される。このため、巻取温度制御は材質の決定に非常に重要である。
【0004】
図7は従来の巻取温度制御装置の構成を適用対象と併せて示したブロック図である。同図において、圧延材1は、熱間圧延機としての仕上圧延機2で圧延された後、それぞれ図示を省略した搬送テーブルによって搬送され、ピンチロールで下流に案内されつつ巻取機で巻き取られる。仕上圧延機2の出側には仕上出側温度計(Finisher Delivery Thermometer:以下、FDTと略記する)5が設置され、ピンチロールの上流側に巻取温度計(Coiling Thermometer:以下、CTと略記する)6が設置されている。搬送テーブル上にはn個の冷却バンク(冷却装置単位)でなる冷却装置4が設置され、冷却バンクがそれぞれ冷却水を噴射して圧延材1を冷却する。なお、搬送テーブルは多数のロールを並べて回転させ、圧延材1を搬送する構成になっている。
【0005】
また、冷却バンクに設置されている冷却水を制御するバルブは開閉バルブであったり、流量制御バルブであったりするが、CT6に最も近い2〜3個の冷却バンクには、後述するフィードバック制御等をきめ細かく行うため、流量制御可能なバルブを設置したり、小容量の開閉バルブを多数個並べたりしている。
【0006】
冷却バンクの各バルブの開閉又は冷却水量を操作して巻取温度を制御するために巻取温度制御装置が設けられている。この巻取温度制御装置には、FDT5及びCT6の各温度検出値、仕上圧延機2の駆動電動機3に結合された図示省略の回転速度検出器の検出値、巻取機に結合された図示省略の回転速度検出器の検出値が取り込まれると共に、仕上圧延機設定計算手段からの仕上圧延機における仕上圧延機設定計算情報Sが取り込まれるようになっている。
【0007】
巻取温度制御装置は、主に、FDT5の真下の材料の温度に基づいて、目標巻取温度になるように上流の冷却バンクのバルブの開閉又は冷却水量を決める第1の系統と、目標巻取温度とCT6で検出された実績巻取温度との誤差を補正するようにCT6に近い冷却バンクのバルブの開閉又は冷却水量を決める第2の系統とで構成されている。
【0008】
このうち、第1の系統は温度モデル学習手段11、巻取温度設定計算手段12及びトラッキング手段13を備え、第2の系統はフィードバック制御手段14を備えている。
【0009】
以下、図7に示した巻取温度制御装置の動作について説明する。従来からの巻取温度制御方法では、圧延材1を仮想的に分割した切り板(以下、材料冷却単位と略記する)が仕上圧延機2の特定の圧延スタンド、例えば、第(m−j)スタンド(ここで、m:全スタンド数、j:冷却バンクの制御装置のバルブの開閉あるいは流量変更のむだ時間や応答遅れ等を補償するためのスタンド数)を通過する時点で、FDT5の真下にある材料の温度測定値及び仕上圧延機設定計算情報Sに基づいて、目標巻取温度になるように冷却に使用する冷却バンクを決めている。そのために、トラッキング手段13は回転速度検出器によって、圧延材1が巻取機に到達する以前、圧延材1の巻取中、圧延材1の尾端が仕上圧延機2を抜けた以降のいずれの状態においても、搬送テーブル上にある圧延材1の位置を検出している。
【0010】
温度モデル学習手段11はFDT5で検出された材料温度検出値及びCT6で検出された実績巻取温度に基づいて圧延材1の熱の出入りを表す温度モデルを学習し、材料温度の予測に必要な情報を巻取温度設定計算手段12に提供する。
【0011】
巻取温度設定計算手段12は、圧延材の先端からk番目の材料冷却単位が仕上圧延機2の第(m−j)スタンドに到達したタイミングで、このk番目の材料冷却単位に対して冷却バンクで冷却水を掛けたときの材料温度を予測し、予測された温度が目標巻取温度を達成するか否かを判定し、達成しないと判定すれば下流側のバンクをも使用するものとする。そして、再び材料温度を予測する。以上の動作を目標巻取温度を達成するまで繰り返す。
【0012】
なお、これらの計算を材料冷却単位が仕上圧延機2の第(m−j)スタンドに到達したタイミングで行う理由は、前述した如く、冷却バンクの制御装置にバルブの開閉あるいは流量変更にむだ時間や応答遅れがあり、また、演算時間が多くかかるからであり、これらの遅れを補償するためである。従って、これらの時間を短縮できれば第(m−j)スタンドより下流のスタンドを基準にしても良い。
【0013】
これにより、各材料冷却単位に加えるべき冷却流量が決まり、材料分割単位が第iバンクに到達したときに第iバンクに加えるべき冷却流量が供給されるように、トラッキング手段13でその材料冷却単位を追跡して、第iバンクのむだ時間分上流に到達したときに第iバンクの制御装置を操作する。
【0014】
次に、フィードバック制御手段14は巻取温度設定計算手段12から目標巻取温度情報を受け取り、目標巻取温度と実績巻取温度との差を求め、この差を零にするように、例えば、n−1番目の冷却バンク及びn番目の冷却バンクの流量を調整する。
【0015】
【発明が解決しようとする課題】
一般に、圧延材1の先端が仕上圧延機2を抜けてから巻取機にて巻き取りを開始し、巻き取りを終了するまでの速度パターンは、図8に示すように、速度Vthにて通板され、巻取機にて巻き取りを開始してから所定の時間Δtaccを経過してから加速度αaccで加速され、一定の巻取速度Vrunにて巻き取りを継続し、残余の巻取長が所定値になった段階で、減速度αdecで減速し、巻取終了速度Vtailで所定時間Δtdec巻き取って巻取り工程を終了する。
【0016】
上述した従来の巻取温度制御装置では、材料冷却単位が搬送テーブルに進入する前に、この材料冷却単位に対する冷却水をいつどれだけ注水するかを決めていた。その後、冷却装置4の入側温度である仕上圧延機2の出側の温度が変化したり、仕上圧延機2の速度が変更されたり、あるいは、大きな外乱があったりすると、制御性能が少なからず劣化する。このような巻取温度の制御性能の劣化の対策として、例えば、特開平8−90036号公報に記載された「熱間圧延機巻取温度制御方法」や、特開平10−5845号公報に記載された「熱延鋼板の温度制御方法」が提案されている。
【0017】
このうち、前者は仕上圧延機の出側の圧延材の温度変化と、速度変更による巻取温度の変化とを分離して制御しようとするものであり、後者は圧延材の速度が変更された場合、予め決められている速度パターンと変更後の速度パターンとの平均値を求め、冷却流量を再計算するものである。このように、従来の巻取温度制御方法では、予期せぬ圧延材の速度変化や冷却装置の入側温度の変化に大変に弱く、その制御性能の劣化を克服することが困難であった。
【0018】
一方、温度モデル学習において、材料冷却単位をトラッキングして、各冷却バンク直下の実績冷却流量から実績温度に基づいて学習するが、冷却装置の故障や経年変化に対応した正確な流量とむだ時間を測定することができないため、温度モデルを正確に学習することは難しかった。
【0019】
また、正確なむだ時間を測定することができないため、第iバンクに加えるべき冷却流量を正確に供給することが難しかった。
【0020】
本発明は上記の課題を解決するためになされたもので、圧延材に対する冷却水量パターンを、材料冷却単位が搬送テーブルに進入する前の一時機に決めるだけでなく、圧延材の速度変化や冷却装置の入側温度変化を取り込んでオンラインで冷却水量を決め、これに応じてバルブの操作を行うことによって、外乱の影響を低減することのできる巻取温度制御装置を提供することを目的とする。
【0021】
【課題を解決するための手段】
請求項1に係る発明は、
熱間圧延機で圧延された圧延材を、熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を目標値に制御する巻取温度制御装置において、
熱間圧延機の速度検出値、熱間圧延機の出側における圧延材の温度検出値及び巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、温度モデル及び熱間圧延機の設定計算情報に基づいて、材料冷却単位毎にそれぞれ初期冷却長を演算する手段と、
熱間圧延機の出側の圧延材の設定計算による温度に対する検出温度の偏差と圧延機の設定計算による平均速度に対する検出平均速度の偏差とに関連付けて初期冷却長を補正する手段と、
を備えたことを特徴とする。
【0022】
請求項2に係る発明は、
熱間圧延機で圧延された圧延材を、熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を目標値に制御する巻取温度制御装置において、
熱間圧延機の速度検出値、熱間圧延機の出側における圧延材の温度検出値及び巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、温度モデル及び熱間圧延機の設定計算情報に基づいて、材料冷却単位毎にそれぞれ初期冷却長を演算すると共に、熱間圧延機の出側の圧延材の設定計算温度に対する検出温度の偏差と圧延機の設定計算による平均速度に対する検出平均速度の偏差とに関連付けて初期冷却長を補正する補正値を補正テーブルとして出力する巻取温度設定計算手段と、
圧延材の設定計算平均速度に対する検出平均速度の偏差を予測する速度偏差演算手段と、
材料冷却単位毎に、熱間圧延機の出側の圧延材の設定計算温度に対する検出温度の偏差を予測し、その位置を追跡するトラッキング手段と、
巻取温度設定計算手段から出力された補正テーブルを用いて、それぞれ予測された平均速度の偏差及び温度の偏差に対応する補正値によって、初期冷却長を補正する冷却長補正手段と、
を備えたことを特徴とする。
【0023】
請求項3に係る発明は、
熱間圧延機で圧延された圧延材を、熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を温度目標値に制御する巻取温度制御装置において、
熱間圧延機の速度検出値、熱間圧延機の出側における圧延材の温度検出値及び巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、温度モデル及び熱間圧延機の設定計算情報に基づいて、材料冷却単位毎にそれぞれ冷却に使用する冷却バンクの冷却水量を設定すると共に、各冷却バンクにおける入側温度偏差に対する出側温度偏差の影響係数及び各冷却バンクの通過時間偏差に対する出側温度偏差の影響係数を演算する巻取温度設定計算手段と、
材料冷却単位毎にその位置を追跡するトラッキング手段と、
トラッキング手段によって追跡される材料冷却単位に対して、熱間圧延機の出側の圧延材の設定計算温度に対する検出温度の偏差及び巻取温度設定計算手段で演算された各影響係数に基づいて所定の冷却バンクが配置された位置の温度偏差を予測する温度偏差予測手段と、
予測された巻取機の入側温度偏差をゼロにするように、冷却水量を補正するフィードフォワード制御手段と、
を備えたことを特徴とする。
【0024】
請求項4に係る発明は、請求項3に記載の巻取温度制御装置において、所定の冷却バンクはフィードフォワード制御用の冷却バンクであり、温度偏差予測手段は、フィードフォワード制御用の冷却バンクの応答遅れ時間分だけ上流に位置する冷却バンクの配置位置における温度偏差を予測することを特徴とする。
【0025】
請求項5に係る発明は、
熱間圧延機で圧延された圧延材を、熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を温度目標値に制御する巻取温度制御装置において、
熱間圧延機の速度検出値、熱間圧延機の出側における圧延材の温度検出値及び巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、温度モデル及び熱間圧延機の設定計算情報に基づいて、材料冷却単位毎にそれぞれ冷却に使用する冷却バンクの冷却水量を設定すると共に、巻取機前の圧延材の温度情報に基づいて、冷却バンクの冷却水量を再設定する巻取温度設定計算手段と、
熱間圧延機の速度検出値、熱間圧延機の出側における圧延材の温度検出値及び巻取温度設定計算手段で設定された冷却バンクの冷却水量に基づいて巻取機前における材料冷却単位の温度を予測し、巻取機前の温度情報として巻取温度設定計算手段に加えるトラッキング手段と、
を備えたことを特徴とする。
【0026】
請求項6に係る発明は、請求項2乃至5のいずれか1項に記載の巻取温度制御装置において、冷却バンク毎、又は、ひとまとまりの冷却バンク毎に流量計を設け、温度モデル学習手段は、冷却流量の操作量と流量計の検出値から冷却バンクの実績流量及び応答時間を計算して温度モデルを学習することを特徴とする。
【0027】
請求項7に係る発明は、請求項2乃至5のいずれか1項に記載の巻取温度制御装置において、冷却バンク毎、又は、ひとまとまりの冷却バンク毎に流量計を設け、巻取温度設定計算手段は、冷却流量の操作量と流量計の検出値から冷却バンクの実績流量及び応答時間を計算して冷却長又は流量操作のタイミングを変えることを特徴とする。
【0028】
【発明の実施の形態】
以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。図1は本発明に係る巻取温度制御装置の第1の実施形態の構成を適用対象と併せて示したブロック図であり、図中、図7に示した従来装置と同一の要素には同一の符号を付してその説明を省略する。ここで、巻取温度設定計算手段12Aは、温度モデル学習手段11で学習した温度モデル及び仕上圧延機設定計算情報Sに基づいて、従来装置と同様に材料冷却単位毎にそれぞれ冷却に使用する冷却バンクの個数、すなわち、冷却長を決定する初期冷却長計算手段と、仕上圧延機2の出側の圧延材1の設定計算温度に対する検出温度の偏差と、各仕上圧延機2の設定計算平均速度に対する検出された速度から計算して得られる検出平均速度の偏差とに関連付けて冷却バンクを使用する個数の補正値を補正テーブルとして出力する冷却長補正量テーブル計算手段とを備える。速度偏差演算手段21は圧延材1の設定計算平均速度に対する検出平均速度の偏差を予測するものであり、トラッキング手段13Aは材料冷却単位毎に、仕上圧延機2の出側の圧延材の設定計算温度に対する検出温度の偏差を予測し、その位置を追跡するものであり、冷却長補正手段22は巻取温度設定計算手段12Aから出力された補正テーブルを用いて、速度偏差演算手段21で予測された平均速度の偏差、トラッキング手段13Aで予測された温度偏差に対応する冷却バンクの補正値によって初期冷却長を補正するものである。これら以外は図7と同一に構成されている。
【0029】
上記のように構成された巻取温度制御装置の第1の実施形態の動作について以下に説明する。温度モデル学習手段11が学習すべき圧延材の熱の出入りを表す温度モデルは、例えば、次式によって表すことができる。
【0030】
【数1】

Figure 2004034122
ただし、
 :大気温度(K)
α :等価空冷熱伝達係数(kJ/m・s・K)
 :冷却水温(K)
α :等価水冷熱伝達係数(kJ/m・s・K)
 :テーブル温度(K)
α :等価テーブル熱伝達係数(kJ/m・s・K)
h :板厚(m)
φ :比熱(kJ/kg・K)
ρ :密度(kg/m
σ :ステファンボルツマン定数
ε :放射率(−)
 :変態発熱量(kJ/m・s)
T :圧延材温度(K)
t :時間(s)
である。
【0031】
上記(1)式の右辺第1項から第4項までは圧延材から熱が奪われることを示しており、このうち、第1項は圧延材の熱放射、第2項は大気への熱伝達、第3項は冷却水への熱伝達、第4項はテーブルロールへの熱伝達によるものである。右辺第5項は圧延材内部での変態発熱によるものである。なお、等価水冷熱伝達係数αは冷却流量の関数で表される。
【0032】
第iバンクの出側温度は、第iバンクの入側温度(第i−1バンクの出側温度)と、第iバンクの通過時間から次式のように計算する。
【0033】
【数2】
Figure 2004034122
ここで、時間積分の項は、例えば、ルンゲクッタ法などで近似計算する。
【0034】
上記(2)式中のtは次の関係式から求める。
【0035】
【数3】
Figure 2004034122
ただし、
Bi:iバンク出側温度(K)
 :iバンク通過時間(s)
 :iバンク長(m)
v :材料速度(m/s)
である。
【0036】
巻取温度設定計算手段12Aは上記の温度モデルを用いて仕上圧延機2の出側温度(搬送テーブルの入側温度)から、順に巻取機の入側温度を計算する。すなわち、巻取温度設定計算手段12Aを構成する初期冷却長計算手段では、圧延材1の先端の材料冷却単位に対して、温度モデル学習手段11で学習された温度モデルを用いて目標巻取温度を達成するような冷却パターンを演算して初期冷却長として出力する。冷却パターンの簡単なものとして、搬送テーブル上を冷却する部分と冷却しない部分とに分けたパターンがある。例えば、搬送テーブルの入側から冷却を開始するパターンが前段冷却と呼ばれ、搬送テーブルの途中から冷却を開始して搬送テーブルの出側まで冷却するパターンが後段冷却と呼ばれている。この場合、冷却する部分の長さ、すなわち、冷却長を操作することによって巻取温度を制御することになる。
【0037】
本実施形態では前段冷却を採用しており、材料冷却単位がFDT5の設置位置からCT6の設置位置まで移動するまでの冷却パターンは図2に示したようになる。図中、TFD SETは仕上圧延機2の出側の設定計算温度、T SETは巻取設定計算温度である。目標巻取温度を達成する冷却長の計算は、例えば、初めにある冷却長を仮定して、搬送テーブルの入側、すなわち、仕上圧延機2の出側から搬送テーブルの出側、すなわち、巻取機の入側までを、仕上圧延機設定計算情報Sの仕上圧延機出側温度及び圧延パターンから温度モデルを用いて巻取温度を予測する。この予測巻取温度が目標巻取温度よりも高い場合、冷却長を単位冷却長分長くし、反対に目標巻取温度よりも低い場合、冷却長を単位冷却長分短くして、巻取温度を再予測し、目標巻取温度に近くなるまで繰り返す。
【0038】
一方、巻取温度設定計算手段12Aを構成する冷却長補正量テーブル計算手段は、上記の温度モデルを用いて搬送テーブル入側の温度偏差ΔTBi−j及び平均速度偏差ΔVAVに対して目標巻取温度を達成するために必要な冷却長補正テーブルを演算する。この冷却長補正テーブルは、例えば、図3に示すように、目標巻取温度を達成するのに必要な単位冷却長の整数倍のテーブルとする。
【0039】
トラッキング手段13Aは圧延材1が搬送テーブルに進入する以前に材料冷却単位毎に入側温度偏差を予測し、CT6を通過するまでトラッキングする。速度偏差演算手段21は、仕上圧延機設定計算情報Sとして与えられる圧延材1の平均速度VAV SETと圧延機駆動電動機3に結合された図示省略の回転速度検出器の速度検出値VACTに基づく平均速度との偏差ΔVAVを次式に従って演算する。
【0040】
ΔAAV=VACT−VAV SET               (4)
ここで、
【数4】
Figure 2004034122
ただし、
ΔVAV:平均速度偏差(m/s)
L :全バンク長
SETA:搬送後での1〜iバンク長間の搬送時間
SETB:進入時点のi+1〜nバンク長間の搬送時間
ACT:測定値
である。
【0041】
冷却長補正手段22では、現在の冷却長から冷却装置4のむだ時間相当分の距離だけ前方の位置で、冷却長補正テーブルからトラッキング温度偏差ΔTBi−jと平均速度偏差ΔVAVに対する冷却長補正量(単位冷却長の整数倍)を求め、冷却長を補正する。
【0042】
フィードバック制御手段14は、CT6で測定した実績巻取温度と目標巻取温度との偏差を計算し、PI(比例積分)制御要素あるいはPID(比例積分微分)制御要素で構成されている。冷却水量を設定するのは、先ず、CT6に近いバンクをnとし、そのバンクの流量で不足すれば、バンクn−1、n−2へ遡る。また操作バンクからCT6までの圧延材1の移送によるむだ時間を補償するために、フィードバック制御手段14中にスミス法などのむだ時間補償機能を付加する場合もある。フィードバック制御の操作バンクでは、操作量として、冷却流量を増やす方向と、減らす方向の両方にしてあるため、初期設定時(圧延材先端部)は、フィードバック操作バルブの半分を操作するのが一般的である。
【0043】
温度モデル学習手段11では、実際に測定した仕上圧延機2の出側温度、回転速度、及び、冷却長から予測した巻取温度と、実際に測定した巻取温度との差を評価して、予測温度を実測温度に近付けるように補正する、例えば、等価水冷熱伝達係数α等の温度モデル学習項を演算する。
【0044】
かくして、本発明の第1の実施形態によれば、圧延材の平均速度偏差及び仕上圧延機の出側の温度により、冷却長を補正するようにしたので、圧延材の速度に手動介入があった場合でも、制御精度の良好な巻取温度制御装置を提供することができる。
【0045】
図4は本発明に係る巻取温度制御装置の第2の実施形態の構成を適用対象と併せて示したブロック図であり、図中、図7に示した従来装置と同一の要素には同一の符号を付してその説明を省略する。ここでは、図7に示した巻取温度設定計算手段12の代わりに、材料冷却単位毎にそれぞれ冷却水量を演算する冷却水量計算手段と、各冷却バンクにおける入側温度偏差に対する出側温度偏差の影響係数及び各冷却バンクの通過時間偏差に対する出側温度偏差の影響係数を演算する制御パラメータ計算手段とを備える巻取温度設定計算手段12Bを設け、さらに、トラッキング手段13によって追跡される材料冷却単位に対して、仕上圧延機2の出側の圧延材の設定計算温度に対する検出温度の偏差及び巻取温度設定計算手段12Bで演算された各影響係数に基づいて所定の冷却バンクが配置された位置の温度偏差を予測する温度偏差予測手段23と、この温度偏差予測手段23で予測された巻取機の入側温度偏差をゼロにするように、冷却水量を補正するフィードフォワード制御手段24とを新たに付加した構成になっている。
【0046】
上記のように構成された巻取温度制御装置の第2の実施形態の動作について以下に説明する。巻取温度設定計算手段12Bにおける冷却水量計算手段では、材料冷却単位に対して、温度モデルを用いて目標巻取温度を達成するような冷却水量(冷却パターン)を計算する。ここで、温度モデルf(例えば(2)式)を以下のように表す。
【0047】
【数5】
Figure 2004034122
一方、制御パラメータ計算手段では、各バンクでの入側温度偏差に対する出側温度偏差の影響係数、及び、バンクの通過時間に対する出側温度偏差の影響係数をそれぞれ次式のように演算する。
【0048】
【数6】
Figure 2004034122
温度偏差予測手段23では、材料温度偏差を仕上圧延機2の出側、すなわち、搬送テーブルの入口から、順に巻取機の入側まで予測する。具体的には、第iバンクの出側温度は、第iバンクの入側温度(i−1バンクの出側温度)と、第iバンクの通過時間とから次式のように予測する。
【0049】
【数7】
Figure 2004034122
ここで、各バンク通過時間は回転速度検出器で検出された回転速度から次式によって計算する。
【0050】
【数8】
Figure 2004034122
ただし、
ACT:iバンクでの実績速度
である。
【0051】
なお、第1バンク入側温度偏差は、FDT5によって測定された仕上圧延機2の出側の圧延材温度と仕上圧延機設定計算情報Sからの仕上圧延機2の出側設定温度との偏差と、FDT5から第1バンク入側までの通過時間とに基づいて予測する。
【0052】
トラッキング手段13では、フィードフォワード用のバンクから冷却装置4のむだ時間相当分の距離だけ上流の位置にくるのをトラッキングし、その時点の温度偏差を計算する。この位置以降の温度偏差の計算に必要な各バンクの通過時間は次式に従って計算する。
【0053】
【数9】
Figure 2004034122
ただし、
ACT:速度偏差予測時の実速度
である。
【0054】
フィードフォワード制御手段24は、フィードフォワード用のバンクから冷却装置4のむだ時間相当分の距離だけ上流の位置での、温度偏差予測手段23によって予測された材料冷却単位の温度偏差を用いて、フィードフォワード制御、すなわち、冷却水流量を補正する。
【0055】
かくして、本発明の第2の実施形態によれば、オンラインにて材料温度偏差を予測し、予測材料温度偏差によりフィードフォワード制御するようにしたので、圧延材の速度に手動介入があった場合でも、制御精度の良好な巻取温度制御装置を提供することができる。
【0056】
なお、搬送テーブル上に中間温度計を備える場合、その中間位置の前後で、搬送テーブルの上流(FDT5から中間温度計)と、下流(中間温度計からCT6)とに、それぞれ第2の実施形態と同様な2つの巻取温度制御装置を設けることによって制御精度をより一層高めることができる。
【0057】
図5は本発明に係る巻取温度制御装置の第3の実施形態の構成を適用対象と併せて示したブロック図であり、図中、図7に示した従来装置と同一の要素には同一の符号を付してその説明を省略する。ここでは、図7に示した巻取温度設定計算手段12の機能に加えて、巻取機前の圧延材の温度情報に基づいて、冷却長を再設定する機能を有する巻取温度設定計算手段12Bと、圧延材1の速度検出値、FDT5の温度検出値及び巻取温度設定計算手段12Bで最初に計算された冷却長に基づいて巻取機前における材料冷却単位の温度を予測し、巻取機前の温度情報として再度巻取温度設定計算手段12Bに加えて冷却長の再計算に供するトラッキング手段13Bとを備えている。これ以外は図7と同一に構成されている。
【0058】
上記のように構成された巻取温度制御装置の第3の実施形態の動作について以下に説明する。圧延材1が搬送テーブルに進入する以前に、圧延材1を仮想的に適当な長さの材料冷却単位に区分し、トラッキング手段13Bは、それぞれFDT5によって測定された搬送テーブル入側の材料冷却単位の温度が各バンクを通過してCT6を通過するまでの温度をトラッキングする。巻取温度設定計算手段12Bでは、現在の冷却長から冷却装置4のむだ時間相当分の距離だけ上流の位置で、材料冷却単位に対して、実績データと温度モデルとを用いて目標巻取温度を達成するような冷却パターン(冷却水量)を再計算する。
【0059】
かくして、本発明の第3の実施形態によれば、オンラインにて冷却水流量を再計算するようにしたので、圧延材の速度に手動介入があった場合でも、制御精度の良好な巻取温度制御装置を提供することができる。
【0060】
なお、第3の実施形態では、材料冷却単位が搬送テーブルの入側に到達してから温度モデル学習手段11が冷却水量を再計算したが、材料冷却単位が搬送テーブルに進入する以前に、冷却水量を計算し、現在の冷却長から冷却装置のむだ時間相当分の距離だけ前方の位置で再計算しても良い。
【0061】
なおまた、搬送テーブル上に中間温度計を備える場合、その中間位置の前後で、搬送テーブルの上流(FDT5から中間温度計)と、下流(中間温度計からCT6)とに、それぞれ第3の実施形態と同様な2つの巻取温度制御装置を設けることによって制御精度をより一層高めることができる。この場合、中間温度に対する目標温度が設定される。この目標温度計算のタイミングを、流量計算のタイミングのようにしても良い。
【0062】
図6は本発明に係る巻取温度制御装置の第4の実施形態の構成を適用対象と併せて示したブロック図であり、図中、図7に示した従来装置と同一の要素には同一の符号を付してその説明を省略する。ここでは、冷却バンク毎、又は、ひとまとまりの冷却バンク毎に流量計9を設け、実際の流量値を温度モデル学習手段11Aに加えるようにした点が図7と構成を異にしている。この場合、流量計9は小型で安価な超音波流量計等でなり、実際の流量をオンラインで測定する。温度モデル学習手段11Aでは、測定した仕上圧延機2の出側温度と、測定した回転速度と、測定した冷却流量とから予測した巻取温度と測定した巻取温度との差を評価して、予測温度を実測温度に近づけるように補正する温度モデル学習項を補正する。
【0063】
かくして、本発明の第4の実施形態によれば、流量計の実流量を用いて温度モデルを学習するので、冷却装置に故障や経年変化があった場合でも、制御精度の良好な巻取温度制御装置を提供することができる。
【0064】
なお、第4の実施形態において、設定流量と実績流量との時間差を測定し、オンラインで巻取温度制御に使用する冷却装置の応答遅れのパラメータを調整しても良い。
【0065】
【発明の効果】
以上の説明によって明らかなように、本発明によれば、材料冷却単位が搬送テーブルに進入する前の一時機に決めるだけでなく、圧延材の速度変化や冷却装置の入側温度変化を取り込んでオンラインで冷却水量を決め、これに応じてバルブの操作を行うことによって、外乱の影響を低減することのできる巻取温度制御装置が提供される。
【図面の簡単な説明】
【図1】本発明に係る巻取温度制御装置の第1の実施形態の構成を適用対象と併せて示したブロック図。
【図2】図1に示した第1の実施形態の動作を説明するために、圧延材の位置と設定温度との関係を示した線図。
【図3】図1に示した第1の実施形態の動作を説明するための冷却長補正テーブルの説明図。
【図4】本発明に係る巻取温度制御装置の第2の実施形態の構成を適用対象と併せて示したブロック図。
【図5】本発明に係る巻取温度制御装置の第3の実施形態の構成を適用対象と併せて示したブロック図。
【図6】本発明に係る巻取温度制御装置の第4の実施形態の構成を適用対象と併せて示したブロック図。
【図7】従来の巻取温度制御装置の第4の実施形態の構成を適用対象と併せて示したブロック図。
【図8】一般的な巻取速度パターンを示す図。
【符号の説明】
1 圧延材
2 仕上圧延機
3 圧延機駆動電動機
4 冷却装置
5 仕上出側温度計(FDT)
6 巻取温度計(CT)
7 流量計
11,11A 温度モデル学習手段
12,12A,12B 巻取温度設定計算手段
13,13A,13B トラッキング手段
14 フィードバック制御手段
21 速度偏差演算手段
22 冷却長補正手段
23 温度偏差予測手段
24 フィードフォワード制御手段
S 仕上圧延機設定計算情報[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a winding temperature control device for cooling a metal material to a desired winding temperature after rolling in hot rolling of the metal material.
[0002]
[Prior art]
Quality control of a hot rolling mill includes dimensional control of a product and temperature control of a rolled material. Among these, as the dimensional control of the product, thickness control to control the thickness of the central part in the width direction of the rolled material, sheet width control, sheet crown control to control the thickness distribution in the width direction, and elongation in the width direction of the rolled material. There is flatness control to control. As the temperature control, there are an exit-side temperature control of the finishing mill for controlling the exit-side temperature of the finishing mill, and a winding temperature control for controlling the temperature before the winding machine.
[0003]
Generally, in a hot rolling mill, a heating furnace, a rough rolling mill, a finishing rolling mill, a transport table (ROT: Run \ Out \ Table) equipped with a cooling device, and a winding machine are sequentially arranged. The typical temperature of the rolled material is 1200 to 1250 ° C. on the exit side of the heating furnace, 1100 to 1150 ° C. on the exit side of the rough rolling mill, 1050 to 1100 ° C. on the entrance side of the finishing mill, and 850 to 900 on the exit side of the finishing mill. ° C, and the winding temperature is 500 to 800 ° C. The properties of the material, such as strength and toughness, are almost always determined by the cooling of the rolled material from exiting the finishing mill to reaching the winder. For this reason, winding temperature control is very important in determining the material.
[0004]
FIG. 7 is a block diagram showing a configuration of a conventional winding temperature control device together with an application target. In FIG. 1, a rolled material 1 is rolled by a finishing mill 2 as a hot rolling mill, and then conveyed by a conveying table (not shown), and is wound by a winder while being guided downstream by a pinch roll. Can be At the output side of the finishing mill 2, a finishing output thermometer (hereinafter referred to as FDT) 5 is provided, and a winding thermometer (hereinafter referred to as CT) is provided upstream of the pinch roll. 6) is installed. A cooling device 4 composed of n cooling banks (cooling device units) is installed on the transfer table, and the cooling banks inject cooling water to cool the rolled material 1. The transport table is configured to transport a rolled material 1 by rotating a number of rolls side by side.
[0005]
The valves for controlling the cooling water installed in the cooling banks may be open / close valves or flow control valves. The two or three cooling banks closest to the CT 6 have feedback control and the like described later. In order to carry out the process finely, a valve that can control the flow rate is installed, and a number of small-capacity on-off valves are arranged.
[0006]
A take-up temperature control device is provided to control the take-up temperature by opening / closing each valve of the cooling bank or controlling the amount of cooling water. The winding temperature control device includes temperature detection values of FDT 5 and CT 6, detection values of a rotation speed detector (not shown) coupled to the driving motor 3 of the finishing mill 2, and illustration not shown coupled to the winding machine. In addition to the value detected by the rotation speed detector, the finishing rolling mill setting calculation information S in the finishing rolling mill from the finishing rolling mill setting calculating means is loaded.
[0007]
The winding temperature control device mainly includes a first system that determines the opening / closing of a valve of an upstream cooling bank or the amount of cooling water so as to reach a target winding temperature, based on a temperature of a material directly below the FDT 5, and a target winding. A second system for opening / closing a valve of a cooling bank close to CT6 or determining a cooling water amount so as to correct an error between the intake temperature and the actual winding temperature detected by CT6.
[0008]
The first system includes a temperature model learning unit 11, a winding temperature setting calculation unit 12, and a tracking unit 13, and the second system includes a feedback control unit 14.
[0009]
Hereinafter, the operation of the winding temperature control device shown in FIG. 7 will be described. In the conventional winding temperature control method, a cut plate (hereinafter, abbreviated as a material cooling unit) obtained by virtually dividing the rolled material 1 is used as a specific rolling stand of the finishing mill 2, for example, (m-j). When passing through the stands (here, m: the number of all stands, j: the number of stands for compensating for the dead time and response delay of opening / closing the valve of the control device of the cooling bank or changing the flow rate), immediately below the FDT 5 A cooling bank to be used for cooling is determined so as to reach a target winding temperature based on a temperature measurement value of a certain material and finish rolling mill setting calculation information S. For this purpose, the tracking means 13 uses the rotation speed detector to detect whether the tail end of the rolled material 1 has passed through the finishing mill 2 before the rolled material 1 reaches the winder or during the winding of the rolled material 1. In the state described above, the position of the rolled material 1 on the transfer table is detected.
[0010]
The temperature model learning means 11 learns a temperature model representing the entrance and exit of heat of the rolled material 1 based on the detected material temperature detected by the FDT 5 and the actual winding temperature detected by the CT 6, and is necessary for predicting the material temperature. The information is provided to the winding temperature setting calculating means 12.
[0011]
At the timing when the k-th material cooling unit from the leading end of the rolled material reaches the (m−j) -th stand of the finishing mill 2, the winding temperature setting calculation means 12 cools the k-th material cooling unit. Predict the material temperature when cooling water is applied in the bank, determine whether or not the predicted temperature reaches the target winding temperature, and if it is determined that it does not achieve, use the downstream bank as well I do. Then, the material temperature is predicted again. The above operation is repeated until the target winding temperature is achieved.
[0012]
The reason why these calculations are performed at the timing when the material cooling unit reaches the (m-j) th stand of the finishing mill 2 is that, as described above, the control unit of the cooling bank requires the opening and closing of the valve or the time delay for changing the flow rate. And a response delay, and a long calculation time is required to compensate for these delays. Therefore, if these times can be reduced, the stand downstream of the (mj) th stand may be used as a reference.
[0013]
Thus, the cooling flow rate to be added to each material cooling unit is determined, and the tracking unit 13 supplies the cooling flow rate to be added to the i-th bank when the material dividing unit reaches the i-th bank. And the control device of the i-th bank is operated when it reaches the upstream of the i-th bank by the dead time.
[0014]
Next, the feedback control unit 14 receives the target winding temperature information from the winding temperature setting calculation unit 12, obtains the difference between the target winding temperature and the actual winding temperature, and sets the difference to zero, for example, The flow rates of the (n-1) th cooling bank and the nth cooling bank are adjusted.
[0015]
[Problems to be solved by the invention]
In general, the speed pattern from the end of the rolled material 1 passing through the finishing mill 2 to the start of winding by the winding machine and the completion of winding is represented by the speed V as shown in FIG.thA predetermined time Δt from the start of winding by the winderaccAfter the acceleration αaccAt a constant winding speed VrunAt the stage where the remaining winding length has reached the predetermined value, the deceleration αdecAnd the winding end speed VtailFor a predetermined time ΔtdecAfter winding, the winding process is completed.
[0016]
In the above-described conventional winding temperature control device, before the material cooling unit enters the transfer table, it is determined when and how much cooling water is to be injected into the material cooling unit. Thereafter, when the temperature at the outlet of the finishing mill 2 which is the inlet temperature of the cooling device 4 changes, the speed of the finishing mill 2 is changed, or there is a large disturbance, the control performance is not small. to degrade. As a countermeasure against such deterioration of the control performance of the winding temperature, for example, a method of controlling a hot rolling mill winding temperature described in JP-A-8-90036 and a method described in JP-A-10-5845 are described. The proposed "temperature control method of hot-rolled steel sheet" has been proposed.
[0017]
Among them, the former intends to separate and control the temperature change of the rolled material on the exit side of the finishing mill and the change in the winding temperature due to the speed change, and the latter has the speed of the rolled material changed. In this case, the average value of the predetermined speed pattern and the changed speed pattern is obtained, and the cooling flow rate is recalculated. As described above, the conventional winding temperature control method is very weak against unexpected changes in the speed of the rolled material and changes in the inlet temperature of the cooling device, and it has been difficult to overcome the deterioration of the control performance.
[0018]
On the other hand, in the temperature model learning, the material cooling unit is tracked, and learning is performed based on the actual cooling flow from the actual cooling flow rate immediately below each cooling bank. It was difficult to learn the temperature model accurately because it could not be measured.
[0019]
In addition, since it is impossible to accurately measure the dead time, it has been difficult to accurately supply the cooling flow rate to be added to the i-th bank.
[0020]
The present invention has been made in order to solve the above-described problems, and not only determines a cooling water amount pattern for a rolled material to a temporary machine before a material cooling unit enters a transport table, but also changes a speed of a rolled material and cooling. It is an object of the present invention to provide a winding temperature control device capable of reducing the influence of disturbance by determining a cooling water amount online by taking in the inlet temperature change of the device and operating a valve in accordance with the cooling water amount. .
[0021]
[Means for Solving the Problems]
The invention according to claim 1 is
Winding temperature control that cools the rolled material rolled by the hot rolling mill in a plurality of cooling banks provided on the exit side of the hot rolling mill, and controls the temperature of the rolled material before the winding machine to a target value. In the device,
Learn the temperature model representing the heat flow in and out of the rolled material based on the detected speed value of the hot rolling mill, the detected temperature value of the rolled material at the exit side of the hot rolling mill, and the detected temperature value of the rolled material before the winding machine. Temperature model learning means,
Means for calculating the initial cooling length for each material cooling unit based on the temperature model and the setting calculation information of the hot rolling mill, using a cut plate virtually divided in the traveling direction of the rolled material as a material cooling unit; ,
Means for correcting the initial cooling length in association with the deviation of the detected temperature with respect to the temperature by the setting calculation of the rolled material on the exit side of the hot rolling mill and the deviation of the detected average speed with respect to the average speed by the setting calculation of the rolling mill,
It is characterized by having.
[0022]
The invention according to claim 2 is
Winding temperature control that cools the rolled material rolled by the hot rolling mill in a plurality of cooling banks provided on the exit side of the hot rolling mill, and controls the temperature of the rolled material before the winding machine to a target value. In the device,
Learn the temperature model representing the heat flow in and out of the rolled material based on the detected speed value of the hot rolling mill, the detected temperature value of the rolled material at the exit side of the hot rolling mill, and the detected temperature value of the rolled material before the winding machine. Temperature model learning means,
Rolled material, a cut plate virtually divided in the traveling direction as a material cooling unit, based on the temperature model and the setting calculation information of the hot rolling mill, and calculate the initial cooling length for each material cooling unit, The correction value for correcting the initial cooling length in relation to the deviation of the detected temperature from the set calculation temperature of the rolled material on the exit side of the hot rolling mill and the deviation of the detected average speed from the average speed by the setting calculation of the rolling mill as a correction table Winding temperature setting calculating means to output;
Speed deviation calculating means for predicting the deviation of the detected average speed from the set calculation average speed of the rolled material,
For each material cooling unit, a tracking means for predicting the deviation of the detected temperature from the set calculation temperature of the rolled material on the exit side of the hot rolling mill, and tracking its position,
Using a correction table output from the winding temperature setting calculation means, a cooling length correction means for correcting the initial cooling length by a correction value corresponding to the deviation of the predicted average speed and the deviation of the temperature, respectively,
It is characterized by having.
[0023]
The invention according to claim 3 is:
The rolled material rolled by the hot rolling mill is cooled by a plurality of cooling banks installed on the outlet side of the hot rolling mill, and the winding temperature for controlling the temperature of the rolled material before the winding machine to a target temperature value. In the control device,
Learn the temperature model representing the heat flow in and out of the rolled material based on the detected speed value of the hot rolling mill, the detected temperature value of the rolled material at the exit side of the hot rolling mill, and the detected temperature value of the rolled material before the winding machine. Temperature model learning means,
Based on the temperature model and the setting calculation information of the hot rolling mill, cooling the cooling banks used for cooling each material cooling unit based on the temperature model and the setting calculation information of the hot rolling mill. Winding temperature setting calculating means for setting the amount of water and calculating the influence coefficient of the outlet temperature deviation on the inlet temperature deviation in each cooling bank and the influence coefficient of the outlet temperature deviation on the passage time deviation of each cooling bank,
Tracking means for tracking the position of each material cooling unit,
For the material cooling unit tracked by the tracking means, a predetermined value is determined based on the deviation of the detected temperature with respect to the set calculation temperature of the rolled material on the exit side of the hot rolling mill and the respective influence coefficients calculated by the winding temperature setting calculation means. Temperature deviation prediction means for predicting the temperature deviation of the position where the cooling bank of the
Feedforward control means for correcting the amount of cooling water so that the predicted inlet-side temperature deviation of the winding machine becomes zero,
It is characterized by having.
[0024]
According to a fourth aspect of the present invention, in the winding temperature control device according to the third aspect, the predetermined cooling bank is a cooling bank for feedforward control, and the temperature deviation estimating means is a cooling bank for feedforward control. The method is characterized in that a temperature deviation at the arrangement position of the cooling bank located upstream by the response delay time is predicted.
[0025]
The invention according to claim 5 is
The rolled material rolled by the hot rolling mill is cooled by a plurality of cooling banks installed on the outlet side of the hot rolling mill, and the winding temperature for controlling the temperature of the rolled material before the winding machine to a target temperature value. In the control device,
Learn the temperature model representing the heat flow in and out of the rolled material based on the detected speed value of the hot rolling mill, the detected temperature value of the rolled material at the exit side of the hot rolling mill, and the detected temperature value of the rolled material before the winding machine. Temperature model learning means,
Based on the temperature model and the setting calculation information of the hot rolling mill, cooling the cooling banks used for cooling each material cooling unit based on the temperature model and the setting calculation information of the hot rolling mill. Winding temperature setting calculating means for resetting the cooling water amount of the cooling bank, based on the temperature information of the rolled material before the winding machine, while setting the water amount,
Based on the speed detection value of the hot rolling mill, the detected temperature value of the rolled material at the exit side of the hot rolling mill, and the cooling water amount of the cooling bank set by the winding temperature setting calculation means, the material cooling unit before the winding machine Tracking means for predicting the temperature of the winder and adding it to the winding temperature setting calculating means as temperature information before the winding machine;
It is characterized by having.
[0026]
According to a sixth aspect of the present invention, in the winding temperature control device according to any one of the second to fifth aspects, a flow meter is provided for each cooling bank or each group of cooling banks, and a temperature model learning unit is provided. Is characterized in that a temperature model is learned by calculating an actual flow rate and a response time of a cooling bank from an operation amount of a cooling flow rate and a detection value of a flow meter.
[0027]
According to a seventh aspect of the present invention, in the winding temperature control device according to any one of the second to fifth aspects, a flow meter is provided for each cooling bank or for each group of cooling banks, and the winding temperature setting is performed. The calculation means calculates the actual flow rate and the response time of the cooling bank from the operation amount of the cooling flow rate and the detection value of the flow meter to change the cooling length or the timing of the flow rate operation.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a block diagram showing the configuration of a first embodiment of a winding temperature control device according to the present invention, together with an application object. In the drawing, the same elements as those of the conventional device shown in FIG. And the description thereof is omitted. Here, based on the temperature model learned by the temperature model learning means 11 and the finishing rolling mill setting calculation information S, the winding temperature setting calculating means 12A performs cooling to be used for cooling for each material cooling unit as in the conventional apparatus. Initial cooling length calculation means for determining the number of banks, that is, the cooling length, deviation of the detected temperature from the set calculation temperature of the rolled material 1 on the exit side of the finishing mill 2, and the set calculation average speed of each finishing mill 2 And a cooling length correction amount table calculating means for outputting, as a correction table, correction values of the number of cooling banks to be used in association with a deviation of the detected average speed obtained by calculating from the detected speed with respect to. The speed deviation calculating means 21 predicts the deviation of the detected average speed from the set calculation average speed of the rolled material 1. The tracking means 13A calculates the setting of the rolled material on the exit side of the finishing mill 2 for each material cooling unit. The cooling length correction means 22 predicts the deviation of the detected temperature with respect to the temperature and tracks the position thereof. The cooling length correction means 22 predicts the deviation by the speed deviation calculation means 21 using the correction table output from the winding temperature setting calculation means 12A. The initial cooling length is corrected by the correction value of the cooling bank corresponding to the average speed deviation and the temperature deviation predicted by the tracking means 13A. Except these, the configuration is the same as that of FIG.
[0029]
The operation of the first embodiment of the winding temperature control device configured as described above will be described below. The temperature model representing the flow of heat of the rolled material to be learned by the temperature model learning means 11 can be represented by, for example, the following equation.
[0030]
(Equation 1)
Figure 2004034122
However,
TA: Atmospheric temperature (K)
αA: Equivalent air cooling heat transfer coefficient (kJ / m2・ S ・ K)
TW: Cooling water temperature (K)
αW: Equivalent water cooling heat transfer coefficient (kJ / m2・ S ・ K)
TH: Table temperature (K)
αH: Equivalent table heat transfer coefficient (kJ / m2・ S ・ K)
h: Plate thickness (m)
φ: Specific heat (kJ / kg · K)
ρ: Density (kg / m3)
σ: Stefan-Boltzmann constant
ε: emissivity (-)
QT: Transformation calorific value (kJ / m3・ S)
T: Rolled material temperature (K)
t: time (s)
It is.
[0031]
The first to fourth terms on the right side of the above equation (1) indicate that heat is taken from the rolled material, of which the first term is heat radiation of the rolled material, and the second term is heat to the atmosphere. The third term relates to heat transfer to the cooling water, and the fourth term relates to heat transfer to the table roll. The fifth term on the right side is due to transformation heat generation inside the rolled material. Note that the equivalent water cooling heat transfer coefficient αWIs expressed as a function of the cooling flow rate.
[0032]
The outlet temperature of the i-th bank is calculated from the inlet temperature of the i-th bank (outlet temperature of the (i-1) -th bank) and the passage time of the i-th bank as follows.
[0033]
(Equation 2)
Figure 2004034122
Here, the term of the time integral is approximately calculated by, for example, the Runge-Kutta method.
[0034]
T in the above equation (2)iIs obtained from the following relational expression.
[0035]
(Equation 3)
Figure 2004034122
However,
TBi: I-bank outlet temperature (K)
ti: I-bank transit time (s)
Li: I-bank length (m)
v: Material speed (m / s)
It is.
[0036]
Using the above temperature model, the winding temperature setting calculation means 12A sequentially calculates the inlet temperature of the winding machine from the outlet temperature of the finishing mill 2 (the inlet temperature of the transfer table). That is, the initial cooling length calculation means constituting the winding temperature setting calculation means 12A uses the temperature model learned by the temperature model learning means 11 for the material cooling unit at the leading end of the rolled material 1 and uses the target winding temperature. Is calculated and output as the initial cooling length. As a simple cooling pattern, there is a pattern divided into a part for cooling the transfer table and a part for not cooling. For example, a pattern in which cooling is started from the entrance side of the transfer table is called pre-stage cooling, and a pattern in which cooling is started in the middle of the transfer table and cooled to the exit side of the transfer table is called post-stage cooling. In this case, the winding temperature is controlled by manipulating the length of the portion to be cooled, that is, the cooling length.
[0037]
In the present embodiment, pre-stage cooling is adopted, and the cooling pattern until the material cooling unit moves from the installation position of the FDT 5 to the installation position of the CT 6 is as shown in FIG. In the figure, TFD SETIs the calculated temperature set on the outlet side of the finishing mill 2, TC SETIs a winding setting calculation temperature. The calculation of the cooling length that achieves the target winding temperature is performed, for example, assuming a certain cooling length at the beginning, from the inlet side of the transfer table, that is, the outlet side of the finishing mill 2 to the outlet side of the transfer table, that is, winding. The winding temperature is predicted up to the entrance side of the take-up machine from the finish-rolling machine exit side temperature and the rolling pattern of the finish-rolling machine setting calculation information S using a temperature model. If the predicted winding temperature is higher than the target winding temperature, the cooling length is extended by the unit cooling length. Conversely, if the predicted winding temperature is lower than the target winding temperature, the cooling length is shortened by the unit cooling length, and the winding temperature is reduced. Is repeated, and is repeated until the target winding temperature is approached.
[0038]
On the other hand, the cooling length correction amount table calculating means constituting the winding temperature setting calculating means 12A uses the above temperature model to calculate the temperature deviation ΔTBi-jAnd average speed deviation ΔVAV, A cooling length correction table required to achieve the target winding temperature is calculated. The cooling length correction table is, for example, a table of an integral multiple of the unit cooling length required to achieve the target winding temperature, as shown in FIG.
[0039]
The tracking means 13A predicts the entrance temperature deviation for each material cooling unit before the rolled material 1 enters the transport table, and performs tracking until the rolled material 1 passes through the CT6. The speed deviation calculating means 21 calculates the average speed V of the rolled material 1 given as the finish rolling mill setting calculation information S.AV SETAnd a speed detection value V of a rotation speed detector (not shown) coupled to the rolling mill drive motor 3.ACTDeviation from average speed based onAVIs calculated according to the following equation.
[0040]
ΔAAV= VACT-VAV SET(4)
here,
(Equation 4)
Figure 2004034122
However,
ΔVAV: Average speed deviation (m / s)
L: Total bank length
tSETA: Transfer time between 1 and i bank length after transfer
tSETB: Transport time between i + 1 to n bank lengths at entry
ACT: measured value
It is.
[0041]
The cooling length correction means 22 calculates the tracking temperature deviation ΔT from the cooling length correction table at a position in front of the current cooling length by a distance equivalent to the dead time of the cooling device 4.Bi-jAnd average speed deviation ΔVAV, A cooling length correction amount (an integral multiple of the unit cooling length) is obtained, and the cooling length is corrected.
[0042]
The feedback control means 14 calculates a deviation between the actual winding temperature measured at CT6 and the target winding temperature, and is constituted by a PI (proportional integral) control element or a PID (proportional integral derivative) control element. To set the cooling water amount, first, the bank near CT6 is set to n, and if the flow rate of the bank is insufficient, the process goes back to banks n-1 and n-2. In addition, a dead time compensation function such as the Smith method may be added to the feedback control means 14 in order to compensate for the dead time due to the transfer of the rolled material 1 from the operation bank to the CT 6. In the operation bank of the feedback control, the operation amount is set to both the direction in which the cooling flow rate is increased and the direction in which the cooling flow is decreased. It is.
[0043]
The temperature model learning means 11 evaluates the difference between the actually measured winding temperature and the winding temperature predicted from the actually measured outlet temperature, rotation speed, and cooling length of the finishing mill 2, Correct the predicted temperature to be closer to the measured temperature, for example, the equivalent water-cooled heat transfer coefficient αWCalculate a temperature model learning term such as
[0044]
Thus, according to the first embodiment of the present invention, the cooling length is corrected by the average speed deviation of the rolled material and the temperature at the exit side of the finishing mill, so that there is no manual intervention in the speed of the rolled material. Even in this case, it is possible to provide a winding temperature control device with good control accuracy.
[0045]
FIG. 4 is a block diagram showing a configuration of a second embodiment of a winding temperature control device according to the present invention together with an application object. In the drawing, the same elements as those of the conventional device shown in FIG. And description thereof is omitted. Here, instead of the winding temperature setting calculating means 12 shown in FIG. 7, a cooling water amount calculating means for calculating a cooling water amount for each material cooling unit, and an outlet temperature deviation with respect to an inlet temperature deviation in each cooling bank. And a control parameter calculating means for calculating an influence coefficient and an influence coefficient of the output side temperature deviation with respect to the passage time deviation of each cooling bank. The material cooling unit tracked by the tracking means 13 is further provided. On the other hand, based on the deviation of the detected temperature from the set calculation temperature of the rolled material on the exit side of the finishing mill 2 and the influence coefficient calculated by the winding temperature setting calculation means 12B, the position where the predetermined cooling bank is arranged Temperature deviation predicting means 23 for predicting the temperature deviation of the winder, and cooling so as to make the inlet-side temperature deviation of the winding machine predicted by the temperature deviation predicting means 23 zero. And a feed-forward control means 24 for correcting the amount has become newly added to the configuration.
[0046]
The operation of the second embodiment of the winding temperature control device configured as described above will be described below. The cooling water amount calculating means in the winding temperature setting calculating means 12B calculates a cooling water amount (cooling pattern) that achieves the target winding temperature by using a temperature model for each material cooling unit. Here, the temperature model f (for example, equation (2)) is expressed as follows.
[0047]
(Equation 5)
Figure 2004034122
On the other hand, the control parameter calculation means calculates the influence coefficient of the exit temperature deviation on the entrance temperature deviation in each bank and the influence coefficient of the exit temperature deviation on the passage time of the bank as in the following equations.
[0048]
(Equation 6)
Figure 2004034122
The temperature deviation prediction means 23 predicts the material temperature deviation from the exit side of the finishing mill 2, that is, from the entrance of the transport table to the entrance side of the winding machine in order. Specifically, the outlet temperature of the i-th bank is predicted from the inlet temperature of the i-th bank (outlet temperature of the (i-1) -th bank) and the passage time of the i-th bank as follows.
[0049]
(Equation 7)
Figure 2004034122
Here, each bank passage time is calculated from the rotation speed detected by the rotation speed detector by the following equation.
[0050]
(Equation 8)
Figure 2004034122
However,
Vi ACT: Actual speed at iBank
It is.
[0051]
The first bank entrance temperature deviation is the deviation between the exit rolled material temperature of the finishing mill 2 measured by the FDT 5 and the exit setting temperature of the finishing mill 2 from the finishing mill setting calculation information S. , FDT5 to the first bank entrance side.
[0052]
The tracking means 13 tracks the arrival of the cooling device 4 upstream from the feedforward bank by a distance corresponding to the dead time, and calculates the temperature deviation at that time. The transit time of each bank required for calculating the temperature deviation after this position is calculated according to the following equation.
[0053]
(Equation 9)
Figure 2004034122
However,
VACT: Actual speed at speed deviation prediction
It is.
[0054]
The feedforward control unit 24 uses the temperature deviation of the material cooling unit predicted by the temperature deviation prediction unit 23 at a position upstream from the feedforward bank by a distance equivalent to the dead time of the cooling device 4, and Forward control, that is, correction of the cooling water flow rate.
[0055]
Thus, according to the second embodiment of the present invention, the material temperature deviation is predicted online, and the feedforward control is performed based on the predicted material temperature deviation. Therefore, even when there is manual intervention in the speed of the rolled material, Thus, it is possible to provide a winding temperature control device having good control accuracy.
[0056]
When an intermediate thermometer is provided on the transfer table, the second embodiment is provided upstream and downstream of the transfer table (from the FDT 5 to the intermediate thermometer) and downstream (from the intermediate thermometer to CT6) before and after the intermediate position. By providing two winding temperature control devices similar to the above, control accuracy can be further improved.
[0057]
FIG. 5 is a block diagram showing a configuration of a third embodiment of a winding temperature control device according to the present invention together with an application object. In the drawing, the same elements as those of the conventional device shown in FIG. And description thereof is omitted. Here, in addition to the function of the winding temperature setting calculating means 12 shown in FIG. 7, a winding temperature setting calculating means having a function of resetting the cooling length based on the temperature information of the rolled material before the winding machine. 12B, the temperature of the material cooling unit before the winding machine is predicted based on the speed detection value of the rolled material 1, the temperature detection value of the FDT 5, and the cooling length initially calculated by the winding temperature setting calculation means 12B. A tracking means 13B for recalculating the cooling length is provided in addition to the winding temperature setting calculating means 12B again as temperature information before the take-up. Otherwise, the configuration is the same as that of FIG.
[0058]
The operation of the third embodiment of the winding temperature control device configured as described above will be described below. Before the rolled material 1 enters the transport table, the rolled material 1 is virtually divided into material cooling units of an appropriate length, and the tracking means 13B performs the material cooling unit on the transport table entry side measured by the FDT 5 respectively. Is tracked until the temperature of each cell passes through each bank and passes through CT6. The winding temperature setting calculating means 12B uses the actual data and the temperature model to calculate the target winding temperature for the material cooling unit at a position upstream from the current cooling length by a distance equivalent to the dead time of the cooling device 4. Is recalculated to achieve the cooling pattern (cooling water amount).
[0059]
Thus, according to the third embodiment of the present invention, the cooling water flow rate is recalculated on-line, so that even if there is manual intervention in the speed of the rolled material, the winding temperature with good control accuracy can be obtained. A control device can be provided.
[0060]
In the third embodiment, the temperature model learning unit 11 recalculates the cooling water amount after the material cooling unit reaches the entry side of the transfer table. The amount of water may be calculated and recalculated at a position ahead of the current cooling length by a distance equivalent to the dead time of the cooling device.
[0061]
In addition, when an intermediate thermometer is provided on the transfer table, before and after the intermediate position, the third operation is performed upstream (from the FDT 5 to the intermediate thermometer) and downstream (from the intermediate thermometer to CT6) of the transfer table. By providing two winding temperature control devices similar to the embodiment, the control accuracy can be further improved. In this case, a target temperature for the intermediate temperature is set. The timing of the target temperature calculation may be the same as the timing of the flow rate calculation.
[0062]
FIG. 6 is a block diagram showing a configuration of a fourth embodiment of a winding temperature control device according to the present invention, together with an application object, in which the same elements as those of the conventional device shown in FIG. And description thereof is omitted. Here, the configuration differs from that of FIG. 7 in that a flow meter 9 is provided for each cooling bank or for each group of cooling banks and an actual flow value is added to the temperature model learning means 11A. In this case, the flow meter 9 is a small and inexpensive ultrasonic flow meter or the like, and measures the actual flow rate online. The temperature model learning means 11A evaluates the difference between the measured winding temperature predicted from the measured outlet temperature of the finishing mill 2, the measured rotation speed, and the measured cooling flow rate, and the measured winding temperature. A temperature model learning term for correcting the predicted temperature to be closer to the actually measured temperature is corrected.
[0063]
Thus, according to the fourth embodiment of the present invention, since the temperature model is learned using the actual flow rate of the flow meter, even if the cooling device has a failure or aging, the winding temperature with good control accuracy can be obtained. A control device can be provided.
[0064]
In the fourth embodiment, the time difference between the set flow rate and the actual flow rate may be measured, and the response delay parameter of the cooling device used for controlling the winding temperature online may be adjusted.
[0065]
【The invention's effect】
As is apparent from the above description, according to the present invention, not only is the material cooling unit determined to be the temporary machine before entering the transport table, but also the speed change of the rolled material and the change in the inlet temperature of the cooling device are taken in. A winding temperature control device capable of reducing the influence of disturbance by determining a cooling water amount online and operating a valve according to the cooling water amount is provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a winding temperature control device according to a first embodiment of the present invention, together with an application target;
FIG. 2 is a diagram showing a relationship between a position of a rolled material and a set temperature for explaining an operation of the first embodiment shown in FIG. 1;
FIG. 3 is an explanatory diagram of a cooling length correction table for explaining the operation of the first embodiment shown in FIG. 1;
FIG. 4 is a block diagram showing a configuration of a winding temperature control device according to a second embodiment of the present invention, together with an application target;
FIG. 5 is a block diagram showing a configuration of a third embodiment of a winding temperature control device according to the present invention, together with an application target;
FIG. 6 is a block diagram showing a configuration of a fourth embodiment of a winding temperature control device according to the present invention, together with an application target;
FIG. 7 is a block diagram showing a configuration of a fourth embodiment of a conventional winding temperature control device together with an application target;
FIG. 8 is a view showing a general winding speed pattern.
[Explanation of symbols]
1 rolled material
2 Finishing mill
3 mm rolling mill drive motor
4 cooling device
5 Finish side thermometer (FDT)
6 winding thermometer (CT)
7 flow meter
11,11A temperature model learning means
12,12A, 12B Winding temperature setting calculating means
13,13A, 13B tracking means
14. Feedback control means
21 ° speed deviation calculation means
22 ° Cooling length correction means
23 ° temperature deviation prediction means
24 feedforward control means
S Finishing mill setting calculation information

Claims (7)

熱間圧延機で圧延された圧延材を、前記熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を目標値に制御する巻取温度制御装置において、
前記熱間圧延機の速度検出値、前記熱間圧延機の出側における圧延材の温度検出値及び前記巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、温度モデル及び熱間圧延機の設定計算情報に基づいて、前記材料冷却単位毎にそれぞれ初期冷却長を演算する手段と、
前記熱間圧延機の出側の圧延材の設定計算による温度に対する検出温度の偏差と前記圧延機の設定計算による平均速度に対する検出平均速度の偏差とに関連付けて前記初期冷却長を補正する手段と、
を備えたことを特徴とする巻取温度制御装置。
The rolled material rolled by the hot rolling mill is cooled by a plurality of cooling banks provided on the outlet side of the hot rolling mill, and a winding temperature for controlling the temperature of the rolled material before the winding machine to a target value. In the control device,
A temperature representing the flow of heat in and out of the rolled material based on the speed detection value of the hot rolling mill, the temperature detection value of the rolled material at the outlet side of the hot rolling mill, and the temperature detection value of the rolled material before the winding machine. Temperature model learning means for learning a model,
Means for calculating the initial cooling length for each of the material cooling units based on the temperature model and the setting calculation information of the hot rolling mill, using a cut plate virtually divided in the traveling direction of the rolled material as a material cooling unit. When,
Means for correcting the initial cooling length in association with the deviation of the detected temperature with respect to the temperature by the setting calculation of the rolled material on the exit side of the hot rolling mill and the deviation of the detected average speed with respect to the average speed by the setting calculation of the rolling mill. ,
A winding temperature control device comprising:
熱間圧延機で圧延された圧延材を、前記熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を目標値に制御する巻取温度制御装置において、
前記熱間圧延機の速度検出値、前記熱間圧延機の出側における圧延材の温度検出値及び前記巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、前記温度モデル及び前記熱間圧延機の設定計算情報に基づいて、前記材料冷却単位毎にそれぞれ初期冷却長を演算すると共に、前記熱間圧延機の出側の圧延材の設定計算温度に対する検出温度の偏差と前記圧延機の設定計算による平均速度に対する検出平均速度の偏差とに関連付けて前記初期冷却長を補正する補正値を補正テーブルとして出力する巻取温度設定計算手段と、
前記圧延材の設定計算平均速度に対する検出平均速度の偏差を予測する速度偏差演算手段と、
前記材料冷却単位毎に、前記熱間圧延機の出側の圧延材の設定計算温度に対する検出温度の偏差を予測し、その位置を追跡するトラッキング手段と、
前記巻取温度設定計算手段から出力された補正テーブルを用いて、それぞれ予測された平均速度の偏差及び温度の偏差に対応する補正値によって、前記初期冷却長を補正する冷却長補正手段と、
を備えたことを特徴とする巻取温度制御装置。
The rolled material rolled by the hot rolling mill is cooled by a plurality of cooling banks provided on the outlet side of the hot rolling mill, and a winding temperature for controlling the temperature of the rolled material before the winding machine to a target value. In the control device,
A temperature representing the flow of heat in and out of the rolled material based on the speed detection value of the hot rolling mill, the temperature detection value of the rolled material at the outlet side of the hot rolling mill, and the temperature detection value of the rolled material before the winding machine. Temperature model learning means for learning a model,
A cut plate obtained by virtually dividing the rolled material in the traveling direction is used as a material cooling unit, and an initial cooling length is calculated for each material cooling unit based on the temperature model and the setting calculation information of the hot rolling mill. And correcting the initial cooling length in association with the deviation of the detected temperature with respect to the set calculation temperature of the rolled material on the exit side of the hot rolling mill and the deviation of the detected average speed with respect to the average speed by the setting calculation of the rolling mill. Winding temperature setting calculating means for outputting a correction value as a correction table;
Speed deviation calculating means for predicting the deviation of the detected average speed with respect to the set calculation average speed of the rolled material,
For each material cooling unit, predicting a deviation of the detected temperature with respect to the set calculation temperature of the rolled material on the exit side of the hot rolling mill, tracking means for tracking the position,
Using a correction table output from the winding temperature setting calculation means, a cooling length correction means for correcting the initial cooling length by a correction value corresponding to the deviation of the predicted average speed and the deviation of the temperature, respectively,
A winding temperature control device comprising:
熱間圧延機で圧延された圧延材を、前記熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を温度目標値に制御する巻取温度制御装置において、
前記熱間圧延機の速度検出値、前記熱間圧延機の出側における圧延材の温度検出値及び前記巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、前記温度モデル及び前記熱間圧延機の設定計算情報に基づいて、前記材料冷却単位毎にそれぞれ冷却に使用する前記冷却バンクの冷却水量を設定すると共に、前記各冷却バンクにおける入側温度偏差に対する出側温度偏差の影響係数及び前記各冷却バンクの通過時間偏差に対する出側温度偏差の影響係数を演算する巻取温度設定計算手段と、
前記材料冷却単位毎にその位置を追跡するトラッキング手段と、
前記トラッキング手段によって追跡される前記材料冷却単位に対して、前記熱間圧延機の出側の圧延材の設定計算温度に対する検出温度の偏差及び前記巻取温度設定計算手段で演算された各影響係数に基づいて所定の冷却バンクが配置された位置の温度偏差を予測する温度偏差予測手段と、
予測された前記巻取機の入側温度偏差をゼロにするように、冷却水量を補正するフィードフォワード制御手段と、
を備えたことを特徴とする巻取温度制御装置。
The rolled material rolled by the hot rolling mill is cooled by a plurality of cooling banks provided on the outlet side of the hot rolling mill, and the temperature of the rolled material before the winder is controlled to a target temperature. In the temperature control device,
A temperature representing the flow of heat in and out of the rolled material based on the speed detection value of the hot rolling mill, the temperature detection value of the rolled material at the outlet side of the hot rolling mill, and the temperature detection value of the rolled material before the winding machine. Temperature model learning means for learning a model,
Rolled material, a cut plate virtually divided in the traveling direction as a material cooling unit, based on the temperature model and the setting calculation information of the hot rolling mill, each used for cooling for each material cooling unit, A winding temperature for setting a cooling water amount of the cooling bank and calculating an influence coefficient of an outlet temperature deviation with respect to an inlet temperature deviation in each of the cooling banks and an influence coefficient of an outlet temperature deviation with respect to a passage time deviation of each of the cooling banks. Setting calculation means;
Tracking means for tracking the position of each material cooling unit,
For the material cooling unit tracked by the tracking means, the deviation of the detected temperature with respect to the set calculation temperature of the rolled material on the exit side of the hot rolling mill and each of the influence coefficients calculated by the winding temperature setting calculation means. Temperature deviation prediction means for predicting the temperature deviation of the position where the predetermined cooling bank is arranged based on
Feedforward control means for correcting the amount of cooling water so that the predicted inlet-side temperature deviation of the winder becomes zero,
A winding temperature control device comprising:
前記所定の冷却バンクはフィードフォワード制御用の冷却バンクであり、前記温度偏差予測手段は、前記フィードフォワード制御用の冷却バンクの応答遅れ時間分だけ上流に位置する前記冷却バンクの配置位置における温度偏差を予測することを特徴とする請求項3に記載の巻取温度制御装置。The predetermined cooling bank is a cooling bank for feedforward control, and the temperature deviation predicting means includes a temperature deviation at an arrangement position of the cooling bank located upstream by a response delay time of the cooling bank for feedforward control. The winding temperature control device according to claim 3, wherein 熱間圧延機で圧延された圧延材を、前記熱間圧延機の出側に複数個設置された冷却バンクで冷却し、巻取機前の圧延材の温度を温度目標値に制御する巻取温度制御装置において、
前記熱間圧延機の速度検出値、前記熱間圧延機の出側における圧延材の温度検出値及び前記巻取機前の圧延材の温度検出値に基づいて圧延材の熱の出入りを表す温度モデルを学習する温度モデル学習手段と、
圧延材を、その進行方向に仮想的に分割した切り板を材料冷却単位とし、前記温度モデル及び前記熱間圧延機の設定計算情報に基づいて、前記材料冷却単位毎にそれぞれ冷却に使用する前記冷却バンクの冷却水量を設定すると共に、巻取機前の圧延材の温度情報に基づいて、前記冷却バンクの冷却水量を再設定する巻取温度設定計算手段と、
前記熱間圧延機の速度検出値、前記熱間圧延機の出側における圧延材の温度検出値及び前記巻取温度設定計算手段で設定された前記冷却バンクの冷却水量に基づいて前記巻取機前における前記材料冷却単位の温度を予測し、前記巻取機前の温度情報として前記巻取温度設定計算手段に加えるトラッキング手段と、
を備えたことを特徴とする巻取温度制御装置。
The rolled material rolled by the hot rolling mill is cooled by a plurality of cooling banks provided on the outlet side of the hot rolling mill, and the temperature of the rolled material before the winder is controlled to a target temperature. In the temperature control device,
A temperature representing the flow of heat in and out of the rolled material based on the speed detection value of the hot rolling mill, the temperature detection value of the rolled material at the outlet side of the hot rolling mill, and the temperature detection value of the rolled material before the winding machine. Temperature model learning means for learning a model,
Rolled material, a cut plate virtually divided in the traveling direction as a material cooling unit, based on the temperature model and the setting calculation information of the hot rolling mill, each used for cooling for each material cooling unit, Winding temperature setting calculating means for setting the cooling water amount of the cooling bank and resetting the cooling water amount of the cooling bank based on temperature information of the rolled material before the winding machine,
The winding machine based on the speed detection value of the hot rolling mill, the temperature detection value of the rolled material at the exit side of the hot rolling mill, and the cooling water amount of the cooling bank set by the winding temperature setting calculation means. Tracking means for predicting the temperature of the material cooling unit before, and adding to the winding temperature setting calculation means as temperature information before the winding machine,
A winding temperature control device comprising:
前記冷却バンク毎、又は、ひとまとまりの前記冷却バンク毎に流量計を設け、前記温度モデル学習手段は、冷却流量の操作量と前記流量計の検出値から前記冷却バンクの実績流量及び応答時間を計算して温度モデルを学習することを特徴とする請求項2乃至5のいずれか1項に記載の巻取温度制御装置。A flow meter is provided for each cooling bank, or for each group of cooling banks, and the temperature model learning means calculates the actual flow rate and response time of the cooling bank from the operation amount of the cooling flow rate and the detection value of the flow meter. The winding temperature control device according to any one of claims 2 to 5, wherein the temperature model is learned by calculation. 前記冷却バンク毎、又は、ひとまとまりの前記冷却バンク毎に流量計を設け、前記巻取温度設定計算手段は、冷却流量の操作量と前記流量計の検出値から前記冷却バンクの実績流量及び応答時間を計算して冷却長又は流量操作のタイミングを変えることを特徴とする請求項2乃至5のいずれか1項に記載の巻取温度制御装置。A flow meter is provided for each cooling bank, or for each group of the cooling banks, and the winding temperature setting calculation means calculates the actual flow rate and response of the cooling bank from the operation amount of the cooling flow rate and the detection value of the flow meter. The winding temperature control device according to any one of claims 2 to 5, wherein a time is calculated to change a cooling length or a flow operation timing.
JP2002197737A 2002-07-05 2002-07-05 Winding temperature controller Expired - Lifetime JP4208505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197737A JP4208505B2 (en) 2002-07-05 2002-07-05 Winding temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197737A JP4208505B2 (en) 2002-07-05 2002-07-05 Winding temperature controller

Publications (2)

Publication Number Publication Date
JP2004034122A true JP2004034122A (en) 2004-02-05
JP4208505B2 JP4208505B2 (en) 2009-01-14

Family

ID=31705425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197737A Expired - Lifetime JP4208505B2 (en) 2002-07-05 2002-07-05 Winding temperature controller

Country Status (1)

Country Link
JP (1) JP4208505B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297015A (en) * 2004-04-13 2005-10-27 Toshiba Mitsubishi-Electric Industrial System Corp Winding temperature controller
KR100944314B1 (en) 2006-12-19 2010-02-24 가부시키가이샤 히타치세이사쿠쇼 Device and method for controlling coiling temperature
CN101930214A (en) * 2009-06-24 2010-12-29 株式会社日立制作所 Control device, controlling models adjusting gear and controlling models method of adjustment
JP2012040593A (en) * 2010-08-20 2012-03-01 Jfe Steel Corp Device for controlling finishing temperature in hot rolling
CN102821885A (en) * 2010-04-09 2012-12-12 东芝三菱电机产业***株式会社 Rolled material cooling control device, rolled material cooling control method, and rolled material cooling control program
KR101443081B1 (en) * 2013-06-27 2014-09-24 현대제철 주식회사 Apparatus for controlling water valve of cooling apparatus and method thereof
JP2015066587A (en) * 2013-09-30 2015-04-13 株式会社日立製作所 Rolled-material rolling-up-temperature control device and rolled-material rolling-up-temperature control method
US9180505B2 (en) 2010-01-29 2015-11-10 Toshiba Mitsubishi-Electric Industral Systems Corporation Water injection controller, water injection control method, and water injection control program for rolling lines
JP2017051969A (en) * 2015-09-08 2017-03-16 株式会社日立製作所 Winding temperature control device and winding temperature controlling method
EP3071343B1 (en) 2013-11-18 2017-09-06 Primetals Technologies Germany GmbH Operating method for a cooling section and cooling section
CN113814278A (en) * 2021-09-18 2021-12-21 北京北科麦思科自动化工程技术有限公司 Strip steel hot continuous rolling temperature control method and device
KR20230022217A (en) 2021-06-15 2023-02-14 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Cooling unit control unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297015A (en) * 2004-04-13 2005-10-27 Toshiba Mitsubishi-Electric Industrial System Corp Winding temperature controller
KR100944314B1 (en) 2006-12-19 2010-02-24 가부시키가이샤 히타치세이사쿠쇼 Device and method for controlling coiling temperature
CN101930214A (en) * 2009-06-24 2010-12-29 株式会社日立制作所 Control device, controlling models adjusting gear and controlling models method of adjustment
JP2011008437A (en) * 2009-06-24 2011-01-13 Hitachi Ltd Controller, control model adjustment device and control model adjustment method
US9180505B2 (en) 2010-01-29 2015-11-10 Toshiba Mitsubishi-Electric Industral Systems Corporation Water injection controller, water injection control method, and water injection control program for rolling lines
CN102821885A (en) * 2010-04-09 2012-12-12 东芝三菱电机产业***株式会社 Rolled material cooling control device, rolled material cooling control method, and rolled material cooling control program
US9056342B2 (en) 2010-04-09 2015-06-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Rolled material cooling control apparatus, rolled material cooling control method, and rolled material cooling control program
JP2012040593A (en) * 2010-08-20 2012-03-01 Jfe Steel Corp Device for controlling finishing temperature in hot rolling
KR101443081B1 (en) * 2013-06-27 2014-09-24 현대제철 주식회사 Apparatus for controlling water valve of cooling apparatus and method thereof
JP2015066587A (en) * 2013-09-30 2015-04-13 株式会社日立製作所 Rolled-material rolling-up-temperature control device and rolled-material rolling-up-temperature control method
EP3071343B1 (en) 2013-11-18 2017-09-06 Primetals Technologies Germany GmbH Operating method for a cooling section and cooling section
JP2017051969A (en) * 2015-09-08 2017-03-16 株式会社日立製作所 Winding temperature control device and winding temperature controlling method
KR20230022217A (en) 2021-06-15 2023-02-14 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Cooling unit control unit
CN113814278A (en) * 2021-09-18 2021-12-21 北京北科麦思科自动化工程技术有限公司 Strip steel hot continuous rolling temperature control method and device

Also Published As

Publication number Publication date
JP4208505B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US6225609B1 (en) Coiling temperature control method and system
JP4208505B2 (en) Winding temperature controller
JPH0732024A (en) Method for controlling temperature of hot rolled steel products
JP4402502B2 (en) Winding temperature controller
JP2006281300A (en) Cooling control method, device, and computer program
JP3423500B2 (en) Hot rolled steel sheet winding temperature control apparatus and method
JP2007301603A (en) Method for controlling coiling temperature of rolled stock and rolling equipment
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
JPH11267730A (en) Device for controlling temperature of hot rolled sheet and its method
JP2001300628A (en) Method for cooling joined steel sheet
JPH01162508A (en) Cooling control method for steel material
KR100711387B1 (en) Method for controlling longitudinal direction temperature of hot-rolled steel plate
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP2744399B2 (en) Rolled material cooling control device
JP2007283346A (en) Method for controlling cooling of rolled stock and rolling equipment
JP3450108B2 (en) Hot rolled sheet cooling control device
JP4701677B2 (en) Metal plate cooling control device and cooling control method
JP2744415B2 (en) Hot rolled steel coiling temperature control device
JPH05277535A (en) Method for controlling cooling of steel strip
JP3194447B2 (en) Rolled material cooling control method
JPH03287720A (en) Method for controlling hot finish rolling temperature of strip
JP3403330B2 (en) Strip width control method in hot rolling
JP3518504B2 (en) How to set cooling conditions for steel sheets
JPS626713A (en) Temperature control method for rolling stock in outlet side of hot rolling mill
JPH0636929B2 (en) Method for controlling strip width of rolled material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term