JP2004033818A - Method for manufacturing porous composite structure and porous fine particles used in the manufacture - Google Patents

Method for manufacturing porous composite structure and porous fine particles used in the manufacture Download PDF

Info

Publication number
JP2004033818A
JP2004033818A JP2002190835A JP2002190835A JP2004033818A JP 2004033818 A JP2004033818 A JP 2004033818A JP 2002190835 A JP2002190835 A JP 2002190835A JP 2002190835 A JP2002190835 A JP 2002190835A JP 2004033818 A JP2004033818 A JP 2004033818A
Authority
JP
Japan
Prior art keywords
porous
fine particles
particles
composite structure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002190835A
Other languages
Japanese (ja)
Other versions
JP4103470B2 (en
Inventor
Hironori Hatono
鳩野 広典
Masami Ando
安藤 正美
Hirotaka Ishibashi
石橋 弘孝
Hiromasa Tokutome
徳留 弘優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002190835A priority Critical patent/JP4103470B2/en
Publication of JP2004033818A publication Critical patent/JP2004033818A/en
Application granted granted Critical
Publication of JP4103470B2 publication Critical patent/JP4103470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a structure or a film having open micropores on a substrate. <P>SOLUTION: Ultrafine particles of a brittle material having an average particle diameter of <0.1 μm are fired and porous fine particles are formed by partly joining the ultrafine particles together by the firing. The porous fine particles are dispersed in gas to prepare an aerosol and the aerosol is blown on a substrate to allow the porous fine particles to colloid, whereby the porous fine particles are joined together and deposited on the substrate to form the objective porous structure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基材表面にセラミックスや半導体などの脆性材料からなる多孔質の構造物を形成した複合構造物の作製方法およびこの作製方法に使用する多孔質微粒子に関する。
本発明に係る複合構造物は、例えば太陽電池の電子伝導膜部、タンパク質やウィルスの吸着膜、触媒膜などとして利用し得る。
【0002】
【従来の技術】
セラミックスやガラスなど基材の上に多孔質の被膜を形成させる方法としては、微粒子およびバインダーを溶媒に分散させたスラリーやペーストを基材に塗布し、これを乾燥させて、まず百数十℃で脱バインダー処理を行い、次いで融点以下の数百℃の温度で加熱焼成することにより、微粒子同士の接点において物質移動によるネックを形成させて結合させ、微粒子のネットワークによりある程度強度を保有した膜として得る手法がある。焼成温度や焼成時間を制御することによりネックの強度や多孔度、細孔径を制御できる。焼成温度を高く維持すれば、連続気孔から独立気孔へ、緻密化へと形態を変化させることもできる。
【0003】
また基材表面に金属やセラミックスなどの被膜を形成する方法として、PVDやCVDなどの蒸着法、ゾルゲル法、あるいは溶射法が知られている。PVD、CVD法などは緻密な組織を作製することが得意であり、多孔質構造物を形成させることは困難である。溶液から作製するゾルゲル法も基本的には緻密質を作製する方法であり、またこれらの方法は数μm以上の厚膜を形成させることが困難であることが知られている。溶射法は粒径が数μm〜100μmの粒子を使用する場合が多く、形成される被膜はその手法の特徴として内部に独立気泡が残存することが知られているが、減圧プラズマ溶射などでは、比較的緻密質の被膜を形成させることができる。
【0004】
また、最近では新たな被膜形成方法として、エアロゾルデポジション法があり、
特許第3265481号、国際出願特許WO 01/27348 A1に開示されるものが知られている。この方法は、脆性材料の微粒子をガス中に分散させたエアロゾルを基板に向けて吹き付け、その衝突エネルギーにより微粒子を破砕・変形させることにより、粒子あるいは破砕断片同士を接合させて、基板上に構造物を形成させる方法で、焼成させることなく焼成体と同等程度の強度を持つ構造物を形成できる手法である。
【0005】
【発明が解決しようとする課題】
多孔質の膜を作製する方法として、スラリーやペーストの塗布後の焼成法では焼成温度が数百℃であるためにプラスチック材料や低融点金属などの熱に弱い基材に膜を形成させることが困難である。また数μm以上の厚膜を形成させる場合には、乾燥時や脱バインダー処理時、焼成時に収縮や基材との熱膨張率の差によって膜に大きな亀裂が生じるなどの問題があった。
【0006】
エアロゾルデポジション法は、脆性材料の厚膜を室温付近で形成させるに都合の良い方法であるが、連続気孔を持つような緻密度が低い多孔質の膜を形成させることは困難であった。特許第3265481号においては、使用する超微粒子脆性材料の調製方法として、原料超微粒子脆性材料の仮焼き温度を変えて、数十nm程度の粒径に調整された微細な超微粒子脆性材料を加熱し、粒径で50nm〜1μm程度の2次粒子に凝集させる方法が示唆されているが、これは理論密度が95%以上の緻密質の成形体を作製する方法であり、微細な粒子を接合させることにより、衝撃によりこれらの界面から割れることで粉砕が行われやすい凝集微粒子を作製することに着目されていた。すなわちエアロゾルデポジション法は緻密な膜を形成させる方法としてはこのような工夫が提案されているものの、ナノレベルの細孔径の連続気孔を有する膜を形成させる好適な手法は考案されていなかった。
【0007】
エアロゾルデポジション法は微粒子の運動エネルギーすなわち基板への衝突の際のエネルギーを構造物形成に利用しているため、微粒子が著しく小さい場合、例えば0.1μm未満の場合においては、質量が小さいために構造物形成が難しいという事実があった。また0.1μm以上の粒子を用いると構造物形成には都合が良いが、この場合にも比較的緻密質の構造物は作製しやすいものの、連続気孔を持ち、十分な強度を持つ(すなわち圧粉体でない)多孔質構造物の形成は困難であったし、たとえ多孔質構造物が形成されても細孔径は使用する微粒子の粒径に依存するため、ナノレベルの微細な孔や大きな比表面積が必要な場合にはこれらの多孔質構造物は最適とは言い難いものである。
【0008】
本件では、特にエアロゾルデポジション法の新しい手法として、従来では困難であった微細な連続気孔を持つ構造物あるいは膜を基板上に形成すること、また望ましくは常温環境下でこれを行うことで、プラスチック材料や低融点金属材料などに適用することを提案するものである。
【0009】
微細な気孔を持つ膜は、例えば前記した色素増感型太陽電池の酸化チタンなどの電子伝導膜部、ハイドロキシアパタイト多孔体を用いたタンパク質やウィルスの吸着膜、あるいは比表面積の大きい多孔体を担体としてその表面に各種触媒を形成させた触媒膜などの利用が考えられ、これを透明なプラスチックフィルム、ガラス、金属などに形成させて使用することが考えられる。ハイドロキシアパタイトなどは加熱により変性を来すことも懸念されるため、常温で膜が形成されることは好適である。
【0010】
【課題を解決するための手段】
本発明においては、連続気孔が存在する平均粒径が0.1〜50μmの多孔質微粒子を、ガス中に分散させてエアロゾルとし、このエアロゾルを基材に向けて吹き付けて多孔質微粒子を衝突させて、基材上に、多孔質微粒子同士が結合して堆積した多孔質構造物を形成させることを特徴とする、基材と多孔質の構造物からなる多孔質複合構造物の作製方法を提供する。
【0011】
前記多孔質微粒子は、平均微粒子径が0.1μm未満の脆性材料超微粒子を焼成し、これら脆性材料超微粒子同士を一部結合せしめて形成する。
【0012】
平均微粒子径については、超微粒子のSEM観察を行い、像内から任意に最低50ヶ、望ましくは200ヶ以上の微粒子を選び、像面積から円に変換したときの直径を算出し、これらを平均することによって求める。
平均粒径は、レーザー回折式粒度分布測定により測定された値を用いる。本発明においては、島津製作所製レーザー回折式粒度分布測定装置SALD−2000を用いた。
【0013】
脆性材料超微粒子が一部結合しかつ連続気孔が存在する状態の多孔質微粒子については、その気孔(細孔)の分布がシャープで密にパッキングされているほど微粒子同士の結合部分の数が多く、多孔質微粒子の強度も大きいと考えられる。本発明においては、あまりに多孔質微粒子の強度が低い場合には、衝突により容易に破砕してしまい、多孔質の構造物が得られ難くなるため、ある程度密にパッキングされている状態の多孔質微粒子が好適である。この指標として例えば、多孔質微粒子の細孔径、細孔体積を細孔分布測定装置で測定し、平均微粒子径の3倍以上の細孔径を持つ細孔の体積の、全細孔体積に占める割合が、6%以下である状態を用いる。
【0014】
また本発明における多孔質複合構造物作製方法は常温環境で行われることを特徴とする。ここで常温とは、脆性材料の融点や前述の熱処理の温度より十分低い温度のことを指し、実質的には200℃以下である。
【0015】
また本発明における多孔質複合構造物の作製方法において、基板におけるエアロゾルが衝突する面に、エアロゾルを斜めに吹き付けることを特徴とする。基板に対してエアロゾルの衝突方向が直角の場合には、圧粉体の堆積が起こりやすいため多孔質構造物の形成は困難である。斜めに吹き付けることで、エアロゾル流が衝突後基板表面に沿って逃げやすくなり、たとえ多孔質構造物形成に弊害となる圧粉体が形成されても、エアロゾルの噴射圧力でこれが吹き飛ばされるため、好適に構造物が形成が行われる。
【0016】
本発明においては多孔質微粒子を作製する方法が、脆性材料超微粒子を溶媒に、あるいは溶媒とバインダーとに、混合させて分散させ、乾燥させて脆性材料超微粒子が密に充填された状態とし、これを焼成して後、粒径を調製して多孔質微粒子を得ることを特徴とする。あるいは、脆性材料超微粒子単独で、もしくは脆性材料超微粒子にバインダーを混合させたものを、プレスして圧密させ、これを焼成して後、粒径を調製して多孔質微粒子を得ることを特徴とする。
【0017】
多孔微粒子が基板に衝突後、容易に破砕してもとの脆性材料超微粒子にもどってしまっては、たとえ構造物が形成されたとしても緻密化が進んでしまい、目的とする多孔質の構造物が得られない。脆性材料超微粒子同士がある程度強固な結合をした多孔質微粒子とするには上述のような工程を採ることが好適である。このようにして多孔質微粒子を作製することは、予めその気孔率、細孔径を所望の値に管理してこれを多孔質の構造物の気孔率、細孔径に反映させることができるため、重要な工程である。
【0018】
ここで施す焼成は、脆性材料超微粒子の材質の融点よりも低い温度で加熱することで、脆性材料超微粒子同士の接点にネックと呼ばれる結合部分を形成してお互いが結合して集合した、ある体積を持つ多孔質材料を形成させる熱処理であり、焼成によって形成された多孔質材料の大きさが50μm以上などある場合には、ミルや乳鉢による解砕を行うことや篩分け、分級を行うことで、大きさを調節し、所望の粒径の多孔質微粒子とする。
【0019】
【発明の実施の態様】
図1に多孔質微粒子をガス中に分散させたエアロゾルを、基材に向けて吹き付けて多孔質微粒子を衝突させて、基材上に多孔質の構造物を形成する工程で使用する、エアロゾルデポジション法を利用した構造物形成装置10の模式図を本発明における実施の一態様として示す。
【0020】
形成装置10は、窒素などのガスボンベ101がガス搬送管102を介して、多孔質微粒子を内蔵するエアロゾル発生器103に接続し、エアロゾル搬送管104を介して形成室105内に設置された、縦0.4mm横10mmの開口を持つノズル106に接続されている。ノズル106の先にはXYステージ107に設置された基板108が配置される。形成室105は真空ポンプ109に接続されている。
【0021】
以上の構成の作製装置10による多孔質の構造物の作製手順を次に述べる。ガスボンベ101を開栓し、ガスを搬送管102を通じてエアロゾル発生器103に導入させ、多孔質微粒子を含むエアロゾルを発生させる。エアロゾルは搬送管104を通じてノズル106へと送られ、ノズル106の開口より高速で噴出される。このとき真空ポンプ109の作動により、形成室105内は数kPaの減圧環境下に置かれている。ノズル106の開口の先に配置された基板108に多孔質微粒子が衝突し、微粒子がお互いに接合し、基板上に微粒子の材料からなる多孔質の構造物が形成される。基板108はXYステージ107により揺動されており、所望の形状・面積に誘電体の構造物が形成される。以上の操作は常温環境下で行われる。
【0022】
以下多孔質構造物の作製方法として、酸化チタン多孔体を作製する工程につき、実施例として説明する。
【0023】
(実施例1)
・ 多孔質微粒子を準備する工程
酸化チタン粉末(平均微粒子径:25nm)を水、バインダー(PEG:分子量20000)と分散剤(アセチルアセトン)を重量比でTiO:水:バインダー:分散剤=40:40:8:1で混合し、室温で乾燥固化後、650℃で30分焼成した。その後、乳鉢にて粉砕し、25μmのメッシュを通した。粉砕後の粒子をSEMで観察したところ、平均微粒子径が約25nmの一次粒子からなる多孔質微粒子であることがわかった。また、得られた多孔質微粒子の細孔径をマイクロメリティックス高速比表面積/細孔分布測定装置アサップ2000で調べたところ、細孔径の中心値は約40nmで粉砕後の多孔質微粒子の平均粒径をレーザー回折式粒度分布測定装置にて測定したところ約20μmであった。
【0024】
2.多孔質の構造物を作製する工程
上記多孔質微粒子を150℃で一晩乾燥した後、上述した構造物形成装置10に準ずる構造物形成装置を用い、ガスとしてHeを使用して多孔質微粒子をエアロゾルとし、流量を5L/minにて酸化インジウム−酸化スズ薄膜の透明導電膜付きガラス基板に向けてノズルより噴射させて衝突させ、透明導電膜上に室温で酸化チタンの多孔質の構造物を形成した。このとき基板とノズルから噴射するエアロゾルの角度を60°とした。構造物の厚みは12μmであった。形成された構造物を基板と一緒にエタノール溶液につけ、超音波洗浄機(高周波出力80W)で5分間超音波を照射したところ、特に構造物の崩壊などの変化は見られず、明らかに圧粉体ではないことがわかった。また、この膜はSEM観察から、表面にクラックが無い事、粒子径が約25nmである一次粒子からなる多孔質体であることがわかった。図2にこの多孔質構造物のSEMによる表面観察像を示す。
【0025】
(実施例2)
・ 多孔質微粒子を準備する工程
酸化チタン粉末(平均1次粒子径:25nm)を水、バインダー(PEG:分子量20000)と分散剤(アセチルアセトン)を重量比でTiO:水:バインダー:分散剤=40:40:8:1で混合し、室温で乾燥固化後、650℃で30分焼成した。その後、乳鉢にて粉砕し、25μmのメッシュを通した。粉砕後の粒子をSEMで観察したところ、平均微粒子径が約25nmの一次粒子からなる多孔質微粒子であることがわかった。また、得られた多孔質微粒子の細孔径をマイクロメリティックス高速比表面積/細孔分布測定装置アサップ2000で調べたところ、細孔径の中心値は約40nmで粉砕後の多孔質微粒子の平均粒径をレーザー回折式粒度分布測定装置にて測定したところ約20μmであった。
【0026】
2.多孔質の構造物を作製する工程
上記多孔質微粒子を150℃で1晩乾燥した後、上述した構造物形成装置10に準ずる構造物形成装置を用い、ガスとしてHeを使用して多孔質微粒子をエアロゾルとし、流量を5L/minにてフッ素をドープした酸化スズ薄膜の透明導電膜付きPETフィルムに向けてノズルより噴射させて衝突させ、透明導電膜上に室温で酸化チタンの多孔質の構造物を形成した。このとき基板とエアロゾルの衝突角度を60°とした。形成された構造物を基板と一緒にエタノール溶液につけ、超音波洗浄機(高周波出力80W)で5分間超音波を照射したところ、特に構造物の崩壊などの変化は見られず、明らかに圧粉体ではないことがわかった。また、この膜はSEM観察から、表面にクラックが無いこと、粒子径が約25nmである一次粒子からなる多孔質体であることがわかった。
【0027】
(実施例3)
・ 多孔質微粒子を準備する工程
酸化チタン粉末(平均1次粒子径:25nm)を水、バインダー(PEG:分子量20000)と分散剤(アセチルアセトン)を重量比でTiO:水:バインダー:分散剤=40:40:8:1で混合し、室温で乾燥固化後、650℃で30分焼成した。その後、乳鉢にて粉砕し、25μmのメッシュを通した。粉砕後の粒子をSEMで観察したところ、平均微粒子径が約25nmの一次粒子からなる多孔質微粒子である事がわかった。また、得られた多孔質微粒子の細孔径をマイクロメリティックス高速比表面積/細孔分布測定装置アサップ2000で調べたところ、細孔径の中心値は約40nmで粉砕後の多孔質微粒子の平均粒径をレーザー回折式粒度分布測定装置にて測定したところ約20μmであった。
【0028】
2.多孔質の構造物を作製する工程
上記多孔質微粒子を150℃で一晩乾燥した後、上述した構造物形成装置10に準ずる構造物形成装置を用い、ガスとしてHeを使用して多孔質微粒子をエアロゾルとし、流量を5L/minにて酸化インジウム−酸化スズ薄膜の透明導電膜付きPETフィルムに向けてノズルより噴射させて衝突させ、透明導電膜上に室温で酸化チタンの多孔質の構造物を形成した。このとき基板とエアロゾルの衝突角度を60°とした。形成された構造物を基板と一緒にエタノール溶液につけ、超音波洗浄機(高周波出力80W)で5分間超音波を照射したところ、特に構造物の崩壊などの変化は見られず、明らかに圧粉体ではないことがわかった。また、この膜はSEM観察から、表面にクラックが無い事、粒子径が約25nmである一次粒子からなる多孔質体であることがわかった。
【0029】
(比較例1)
酸化チタン微粒子(平均1次粒子径:25nm)を150℃で一晩乾燥した後、上述した構造物形成装置10に準ずる構造物形成装置を用い、ガスとしてHeを使用してこの微粒子をエアロゾルとし、流量を6L/minにてフッ素をドープした酸化スズ薄膜の透明導電膜付きガラス基板に向けて噴射角度を直角、60°としてノズルより噴射させて衝突させたところ、基板上に微粒子からなる圧粉体が厚く堆積するのみであった。得られた堆積物を基板と一緒にエタノール溶液につけ、超音波洗浄機(高周波出力80W)で5分間超音波を照射したところ、基板より剥がれ落ちたため、十分な強度を持つ多孔質構造物が形成されていないことがわかった。
【0030】
(実施例4)
所望の細孔径を持つ多孔質構造物を得る場合には、多孔質微粒子の作製工程が重要である。これは超微粒子同士がある程度強固な結合を持った多孔質微粒子を準備することにより構造物そのものができるか否かに影響を与えること、また多孔質微粒子の細孔径をデザインすることが多孔質構造物の細孔径へ反映されることが考えられるからである。ここでは多孔質微粒子の作製工程による多孔質微粒子の細孔径の変化について説明する。
【0031】
微粒子には前述の酸化チタン微粒子(平均一次粒子径(平均微粒子径):25nm)を用い、以下のA、B、Cの3種類の工程にて多孔質微粒子の作製を試みた。
A:酸化チタン微粒子をそのまま550℃にて加熱する工程。
B:酸化チタン微粒子にイオン交換水および分散剤(アセチルアセトン:和光純薬製)を40:40:1の重量比にて混合して分散させた後、室温で乾燥を行い、550℃にて加熱する工程。
C:酸化チタン微粒子にイオン交換水と分散剤(アセチルアセトン:和光純薬製)およびバインダー(ポリエチレングリコール 分子量20000:和光純薬製)を40:40:1:4の重量比にて混合して分散させた後、室温にて乾燥を行い、その後550℃で加熱する工程。
【0032】
何れも加熱後はある程度強度を持った凝集体あるいは多孔質の構造物となっており、これをある程度解砕してある粒度の多孔質微粒子に調製して、マイクロメリティックス高速比表面積/細孔分布測定装置アサップ2000にて細孔径とその細孔体積について測定を行った。この結果を図3に示す。図中のA、B、Cについては前述の通りであり、Dは酸化チタン微粒子を加熱する前の多孔質ではない超微粒子の粉体を示している。横軸は多孔質微粒子細孔径あるいは粉体の粒子同士の隙間の大きさを示しており、縦軸はその細孔径における細孔体積量を示している。
【0033】
この結果から、単に超微粒子を加熱したのみでは細孔分布はもともとの粉体のそれと同程度であり、超微粒子に分散処理などを施して粒子同士が密に充填した状態にしたのち加熱することにより、細孔径分布をシャープに揃えることが可能になるということがわかる。ここで酸化チタン微粒子の平均微粒子径25nmの値の3倍として多孔質微粒子の細孔径75nmという値に注目し、この多孔質微粒子の全細孔体積に占める、細孔径75nm以上の細孔体積の割合を測定したところ、Aにおいて、7.3%、Dにおいて6.7%であり、B、Cでは観測されず、無いに等しい結果となった。細孔径分布が小さくシャープであるほど多孔質微粒子そのものの強度も大きいと考えられる。B、Cの多孔質粒子が多孔質構造物の作製には好適である。
【0034】
【発明の効果】
以上に説明したように本発明によれば、エアロゾルデポジション法の材料として、連続気孔が存在し且つ平均粒径が0.1〜50μmの脆性材料多孔質微粒子を用いたので、今までのエアロゾルデポジション法では困難であった微細な連続気孔を持つ構造物あるいは膜を基板上に形成することができる。
また、本発明方法は常温環境下で実施することができるので、プラスチック材料や低融点金属材料などの表面に前記構造物を作製することができる。特に熱により変性しやすい材料を用いる場合には、それを考慮しなくてよいので利用範囲が大幅に拡大する。
【図面の簡単な説明】
【図1】エアロゾルデポジション法を利用した構造物形成装置の模式図
【図2】多孔質構造物のSEM写真
【図3】多孔質微粒子細孔径と細孔体積量との関係を示すグラフ
【符号の説明】
10…構造物形成装置、101…窒素ガスボンベ、102…ガス搬送管、103…エアロゾル発生器、104…エアロゾル搬送管、105…形成室、106…ノズル、107…XYステージ、108…基板、109…真空ポンプ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a composite structure in which a porous structure made of a brittle material such as ceramics or a semiconductor is formed on the surface of a base material, and to porous fine particles used in the production method.
The composite structure according to the present invention can be used as, for example, an electron conductive film portion of a solar cell, a protein or virus adsorption film, a catalyst film, and the like.
[0002]
[Prior art]
As a method of forming a porous film on a substrate such as ceramics or glass, a slurry or paste in which fine particles and a binder are dispersed in a solvent is applied to the substrate, and the resultant is dried, and first dried at a temperature of a few hundred degrees Celsius. By performing a binder removal process, and then heating and baking at a temperature of several hundred degrees Celsius below the melting point, a neck is formed due to mass transfer at the point of contact between the fine particles and bonded, as a film that retains some strength due to the network of fine particles There is a way to get it. The strength, porosity and pore diameter of the neck can be controlled by controlling the firing temperature and the firing time. If the firing temperature is kept high, the morphology can be changed from continuous pores to independent pores to densification.
[0003]
In addition, as a method for forming a coating such as a metal or a ceramic on the surface of a base material, an evaporation method such as PVD or CVD, a sol-gel method, or a thermal spraying method is known. PVD, CVD, and the like are good at producing a dense structure, and it is difficult to form a porous structure. The sol-gel method of producing from a solution is also basically a method of producing a dense material, and it is known that it is difficult to form a thick film of several μm or more by these methods. In many cases, the thermal spraying method uses particles having a particle size of several μm to 100 μm, and the formed film is known to have closed cells remaining therein as a feature of the technique. A relatively dense film can be formed.
[0004]
Recently, there is an aerosol deposition method as a new film formation method,
What is disclosed in patent No. 3265481 and international application patent WO 01/27348 A1 is known. In this method, an aerosol in which fine particles of a brittle material are dispersed in a gas is sprayed toward a substrate, and the particles or crushed fragments are joined together by crushing and deforming the fine particles by the collision energy, thereby forming a structure on the substrate. In this method, a structure having a strength equivalent to that of a fired body can be formed without firing.
[0005]
[Problems to be solved by the invention]
As a method of producing a porous film, in the firing method after applying a slurry or paste, the firing temperature is several hundred degrees Celsius, so that the film can be formed on a heat-sensitive substrate such as a plastic material or a low melting point metal. Have difficulty. Further, when a thick film having a thickness of several μm or more is formed, there has been a problem that a large crack is generated in the film due to shrinkage or difference in coefficient of thermal expansion with the substrate during drying, binder removal processing, and firing.
[0006]
The aerosol deposition method is a convenient method for forming a thick film of a brittle material near room temperature, but it has been difficult to form a porous film having low density with continuous pores. In Japanese Patent No. 3265481, as a method for preparing an ultrafine brittle material to be used, the calcining temperature of the raw ultrafine brittle material is changed to heat a fine ultrafine brittle material adjusted to a particle size of about several tens of nanometers. However, a method of agglomerating into secondary particles having a particle size of about 50 nm to 1 μm has been suggested, but this is a method of producing a dense compact having a theoretical density of 95% or more, and joining fine particles. By doing so, attention has been focused on producing aggregated fine particles that are easily broken by being broken from these interfaces by impact. That is, the aerosol deposition method has been proposed as a method for forming a dense film, but a suitable method for forming a film having continuous pores having a nano-level pore diameter has not been devised.
[0007]
In the aerosol deposition method, the kinetic energy of the fine particles, that is, the energy at the time of collision with the substrate is used for forming the structure. Therefore, when the fine particles are extremely small, for example, when the fine particles are less than 0.1 μm, the mass is small. There was the fact that it was difficult to form structures. Although the use of particles having a size of 0.1 μm or more is convenient for forming a structure, in this case, a relatively dense structure is easy to produce, but has continuous pores and sufficient strength (ie, pressure It is difficult to form a porous structure (not a powder), and even if a porous structure is formed, the pore size depends on the particle size of the fine particles used. These porous structures are less than optimal when surface area is required.
[0008]
In this case, in particular, as a new method of the aerosol deposition method, by forming a structure or a film having fine continuous pores on a substrate, which has been difficult in the past, and desirably under a normal temperature environment, It is proposed to be applied to plastic materials and low melting point metal materials.
[0009]
The film having fine pores is, for example, an electron conductive film portion such as titanium oxide of the above-described dye-sensitized solar cell, a protein or virus adsorption film using a hydroxyapatite porous material, or a porous material having a large specific surface area. For example, it is conceivable to use a catalyst film having various catalysts formed on the surface thereof, and to form and use this on a transparent plastic film, glass, metal or the like. Since it is feared that hydroxyapatite and the like may be denatured by heating, it is preferable that a film be formed at room temperature.
[0010]
[Means for Solving the Problems]
In the present invention, porous fine particles having an average diameter of 0.1 to 50 μm in which continuous pores are present are dispersed in a gas to form an aerosol, and the aerosol is sprayed toward a base material to collide the porous fine particles. Providing a method for producing a porous composite structure comprising a substrate and a porous structure, comprising forming a porous structure in which porous fine particles are combined and deposited on a substrate. I do.
[0011]
The porous fine particles are formed by sintering brittle material ultrafine particles having an average fine particle diameter of less than 0.1 μm and partially bonding these brittle material ultrafine particles.
[0012]
Regarding the average particle diameter, SEM observation of ultrafine particles is performed, and at least 50, preferably 200 or more particles are arbitrarily selected from the image, and the diameter when the image area is converted into a circle is calculated. Ask by doing.
As the average particle size, a value measured by a laser diffraction type particle size distribution measurement is used. In the present invention, a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation was used.
[0013]
For porous fine particles in which ultrafine particles of brittle material are partially bonded and continuous pores exist, the sharper and denser the distribution of pores (pores), the greater the number of bonding portions between the fine particles. It is considered that the strength of the porous fine particles is also high. In the present invention, if the strength of the porous fine particles is too low, the particles are easily crushed by collision, and it is difficult to obtain a porous structure. Is preferred. As this index, for example, the pore diameter and the pore volume of the porous fine particles are measured with a pore distribution measuring device, and the ratio of the volume of the pores having a pore diameter of three times or more of the average fine particle diameter to the total pore volume is measured. Is 6% or less.
[0014]
Further, the method for producing a porous composite structure according to the present invention is characterized in that the method is performed in a normal temperature environment. Here, the normal temperature refers to a temperature sufficiently lower than the melting point of the brittle material or the temperature of the above-described heat treatment, and is substantially 200 ° C. or less.
[0015]
Further, in the method for manufacturing a porous composite structure according to the present invention, the aerosol is obliquely sprayed onto a surface of the substrate on which the aerosol collides. When the collision direction of the aerosol is perpendicular to the substrate, it is difficult to form a porous structure because the compact is likely to be deposited. By spraying obliquely, it becomes easier for the aerosol flow to escape along the substrate surface after the collision, and even if a compact that is detrimental to the formation of the porous structure is formed, it is blown off by the injection pressure of the aerosol. A structure is formed at the beginning.
[0016]
In the present invention, a method for producing porous fine particles, the brittle material ultrafine particles in a solvent, or a solvent and a binder, mixed and dispersed, dried to a state in which the brittle material ultrafine particles are densely packed, After calcination, the particle size is adjusted to obtain porous fine particles. Alternatively, the brittle material ultrafine particles alone or a mixture of the brittle material ultrafine particles and a binder are pressed and consolidated, fired, and then the particle size is adjusted to obtain porous fine particles. And
[0017]
After the porous fine particles collide with the substrate, they are easily crushed and return to the original brittle material ultrafine particles, even if a structure is formed, the densification proceeds, and the target porous structure I can't get anything. In order to form porous fine particles in which the brittle material ultrafine particles are strongly bonded to each other, it is preferable to adopt the above-described steps. Producing porous fine particles in this manner is important because the porosity and pore size can be controlled in advance to desired values and reflected in the porosity and pore size of the porous structure. Process.
[0018]
The baking performed here is performed by heating at a temperature lower than the melting point of the material of the brittle material ultrafine particles, thereby forming a bonding portion called a neck at a contact point between the brittle material ultrafine particles and bonding and gathering together. This is a heat treatment to form a porous material having a large volume. If the size of the porous material formed by firing is 50 μm or more, crushing with a mill or mortar, sieving, and classification Then, the size is adjusted to obtain porous fine particles having a desired particle size.
[0019]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows an aerosol obtained by spraying an aerosol in which porous fine particles are dispersed in a gas toward a base material to collide the porous fine particles to form a porous structure on the base material. A schematic diagram of the structure forming apparatus 10 using the position method is shown as one embodiment of the present invention.
[0020]
In the forming apparatus 10, a gas cylinder 101 of nitrogen or the like is connected to an aerosol generator 103 containing porous fine particles through a gas transfer pipe 102, and is installed in a formation chamber 105 through an aerosol transfer pipe 104. It is connected to a nozzle 106 having an opening of 0.4 mm wide and 10 mm wide. A substrate 108 mounted on an XY stage 107 is disposed beyond the nozzle 106. The forming chamber 105 is connected to a vacuum pump 109.
[0021]
Next, a procedure for manufacturing a porous structure by the manufacturing apparatus 10 having the above configuration will be described. The gas cylinder 101 is opened, and gas is introduced into the aerosol generator 103 through the transport pipe 102 to generate an aerosol containing porous fine particles. The aerosol is sent to the nozzle 106 through the transport pipe 104, and is ejected at a high speed from the opening of the nozzle 106. At this time, the inside of the forming chamber 105 is placed under a reduced pressure environment of several kPa by the operation of the vacuum pump 109. Porous fine particles collide with the substrate 108 disposed at the tip of the opening of the nozzle 106, and the fine particles are bonded to each other, so that a porous structure made of the fine particle material is formed on the substrate. The substrate 108 is oscillated by the XY stage 107, and a dielectric structure is formed in a desired shape and area. The above operation is performed in a normal temperature environment.
[0022]
Hereinafter, as a method of manufacturing a porous structure, a step of manufacturing a porous titanium oxide body will be described as an example.
[0023]
(Example 1)
Step of Preparing Porous Fine Particles Titanium oxide powder (average fine particle diameter: 25 nm) is water, and a binder (PEG: molecular weight 20,000) and a dispersant (acetylacetone) are TiO 2 : water: binder: dispersant = 40: The mixture was mixed at a ratio of 40: 8: 1, dried and solidified at room temperature, and baked at 650 ° C. for 30 minutes. Thereafter, the mixture was pulverized in a mortar and passed through a 25 μm mesh. Observation of the pulverized particles by SEM revealed that they were porous fine particles composed of primary particles having an average fine particle diameter of about 25 nm. When the pore size of the obtained porous fine particles was examined using a micromeritics high-speed specific surface area / pore distribution measuring device ASAP 2000, the center value of the pore size was about 40 nm, and the average particle size of the porous fine particles after pulverization was about 40 nm. The diameter was measured by a laser diffraction type particle size distribution analyzer to be about 20 μm.
[0024]
2. Step of Producing Porous Structure After drying the porous fine particles at 150 ° C. overnight, the porous fine particles are formed by using He as a gas by using a structure forming apparatus similar to the above-described structure forming apparatus 10. An aerosol was sprayed from a nozzle at a flow rate of 5 L / min toward a glass substrate with a transparent conductive film of an indium oxide-tin oxide thin film and collided, and a porous structure of titanium oxide was formed on the transparent conductive film at room temperature. Formed. At this time, the angle of the aerosol sprayed from the substrate and the nozzle was set to 60 °. The thickness of the structure was 12 μm. The formed structure was immersed in an ethanol solution together with the substrate, and irradiated with ultrasonic waves for 5 minutes by an ultrasonic cleaner (high-frequency output: 80 W). I knew it was not my body. Further, this film was found by SEM observation to be free of cracks on the surface and to be a porous body composed of primary particles having a particle diameter of about 25 nm. FIG. 2 shows an SEM surface observation image of the porous structure.
[0025]
(Example 2)
Step of Preparing Porous Fine Particles Titanium oxide powder (average primary particle diameter: 25 nm) is water, and a binder (PEG: molecular weight 20,000) and a dispersant (acetylacetone) are TiO 2 : water: binder: dispersant = The mixture was mixed at a ratio of 40: 40: 8: 1, dried and solidified at room temperature, and baked at 650 ° C. for 30 minutes. Thereafter, the mixture was pulverized in a mortar and passed through a 25 μm mesh. Observation of the pulverized particles by SEM revealed that they were porous fine particles composed of primary particles having an average fine particle diameter of about 25 nm. When the pore size of the obtained porous fine particles was examined using a micromeritics high-speed specific surface area / pore distribution measuring device ASAP 2000, the center value of the pore size was about 40 nm, and the average particle size of the porous fine particles after pulverization was about 40 nm. The diameter was measured by a laser diffraction type particle size distribution analyzer to be about 20 μm.
[0026]
2. Step of Producing Porous Structure After drying the above porous fine particles at 150 ° C. overnight, the porous fine particles are formed using He as a gas by using a structure forming apparatus similar to the above structure forming apparatus 10. An aerosol is sprayed at a flow rate of 5 L / min from a nozzle toward a fluorine-doped tin oxide thin film with a transparent conductive film, which is made of titanium oxide, and collided with the transparent conductive film at room temperature to form a porous structure of titanium oxide. Was formed. At this time, the collision angle between the substrate and the aerosol was set to 60 °. The formed structure was immersed in an ethanol solution together with the substrate, and irradiated with ultrasonic waves for 5 minutes by an ultrasonic cleaner (high-frequency output: 80 W). I knew it was not my body. Also, this film was found by SEM observation to be free of cracks on the surface and to be a porous body composed of primary particles having a particle diameter of about 25 nm.
[0027]
(Example 3)
Step of Preparing Porous Fine Particles Titanium oxide powder (average primary particle diameter: 25 nm) is water, and a binder (PEG: molecular weight 20,000) and a dispersant (acetylacetone) are TiO 2 : water: binder: dispersant = The mixture was mixed at a ratio of 40: 40: 8: 1, dried and solidified at room temperature, and baked at 650 ° C. for 30 minutes. Thereafter, the mixture was pulverized in a mortar and passed through a 25 μm mesh. Observation of the pulverized particles by SEM revealed that the particles were porous fine particles composed of primary particles having an average particle diameter of about 25 nm. When the pore size of the obtained porous fine particles was examined using a micromeritics high-speed specific surface area / pore distribution measuring device ASAP 2000, the center value of the pore size was about 40 nm, and the average particle size of the porous fine particles after pulverization was about 40 nm. The diameter was measured by a laser diffraction type particle size distribution analyzer to be about 20 μm.
[0028]
2. Step of Producing Porous Structure After drying the porous fine particles at 150 ° C. overnight, the porous fine particles are formed by using He as a gas by using a structure forming apparatus similar to the above-described structure forming apparatus 10. An aerosol was sprayed from a nozzle toward a PET film with a transparent conductive film of an indium oxide-tin oxide thin film at a flow rate of 5 L / min to collide with the film, and a porous structure of titanium oxide was formed on the transparent conductive film at room temperature. Formed. At this time, the collision angle between the substrate and the aerosol was set to 60 °. The formed structure was immersed in an ethanol solution together with the substrate, and irradiated with ultrasonic waves for 5 minutes by an ultrasonic cleaner (high-frequency output: 80 W). I knew it was not my body. Further, this film was found by SEM observation to be free of cracks on the surface and to be a porous body composed of primary particles having a particle diameter of about 25 nm.
[0029]
(Comparative Example 1)
After drying the titanium oxide fine particles (average primary particle diameter: 25 nm) at 150 ° C. overnight, using a structure forming apparatus similar to the above-described structure forming apparatus 10, using He as a gas and converting the fine particles into an aerosol. At a flow rate of 6 L / min, a jet angle was set to a right angle of 60 ° toward a glass substrate with a transparent conductive film of a tin oxide thin film doped with fluorine at a flow rate of 6 L / min. The powder only accumulated thickly. The obtained deposits were immersed in an ethanol solution together with the substrate, and irradiated with ultrasonic waves for 5 minutes by an ultrasonic cleaning machine (high-frequency output: 80 W), and peeled off from the substrate, thereby forming a porous structure having sufficient strength. Turned out not to be.
[0030]
(Example 4)
In order to obtain a porous structure having a desired pore diameter, a process for producing porous fine particles is important. This is because the preparation of porous fine particles with a certain degree of strong bonding between ultrafine particles has an effect on whether or not the structure itself can be formed, and the design of the pore size of the porous fine particles is important for the porous structure. This is because it is considered that it is reflected on the pore diameter of the product. Here, the change in the pore diameter of the porous fine particles due to the process of producing the porous fine particles will be described.
[0031]
As the fine particles, the above-mentioned titanium oxide fine particles (average primary particle diameter (average fine particle diameter): 25 nm) were used, and the production of porous fine particles was attempted in the following three steps A, B, and C.
A: Step of heating titanium oxide fine particles at 550 ° C. as it is.
B: After mixing and dispersing ion-exchanged water and a dispersant (acetylacetone: manufactured by Wako Pure Chemical Industries) at a weight ratio of 40: 40: 1, the titanium oxide fine particles were dried at room temperature and heated at 550 ° C. Process.
C: Ion exchange water, a dispersant (acetylacetone: manufactured by Wako Pure Chemical Industries) and a binder (polyethylene glycol molecular weight: 20,000: manufactured by Wako Pure Chemical Industries) are mixed and dispersed in titanium oxide fine particles at a weight ratio of 40: 40: 1: 4. Drying at room temperature, and then heating at 550 ° C.
[0032]
After heating, each of them becomes an aggregate or a porous structure having a certain level of strength. This is crushed to a certain degree to prepare porous fine particles of a certain size, and the micromeritics high-speed specific surface area / fine The pore size and the pore volume were measured with a pore distribution measuring device ASAP 2000. The result is shown in FIG. A, B, and C in the figure are as described above, and D indicates a non-porous ultrafine powder before heating the titanium oxide fine particles. The horizontal axis indicates the pore diameter of the porous fine particles or the size of the gap between the particles of the powder, and the vertical axis indicates the pore volume at the pore diameter.
[0033]
From this result, the pore distribution is comparable to that of the original powder only by heating the ultrafine particles, and it is necessary to subject the ultrafine particles to a dispersion treatment or the like so that the particles are densely packed and then heated. Thus, it can be seen that the pore size distribution can be made sharper. Here, paying attention to the value of the fine pore diameter of the porous fine particles of 75 nm as three times the value of the average fine particle diameter of 25 nm of the titanium oxide fine particles, the pore volume of the fine pore diameter of 75 nm or more occupies the total fine pore volume of the porous fine particles. When the ratio was measured, it was 7.3% in A and 6.7% in D, was not observed in B and C, and the result was equal to none. It is considered that the smaller and sharper the pore size distribution, the greater the strength of the porous fine particles themselves. The porous particles B and C are suitable for producing a porous structure.
[0034]
【The invention's effect】
As described above, according to the present invention, as the material for the aerosol deposition method, brittle material porous fine particles having continuous pores and an average particle diameter of 0.1 to 50 μm are used. A structure or a film having fine continuous pores, which has been difficult by the deposition method, can be formed on a substrate.
Further, since the method of the present invention can be carried out in a normal temperature environment, the structure can be formed on a surface of a plastic material, a low melting point metal material, or the like. In particular, when a material that is easily denatured by heat is used, it is not necessary to consider the material, so that the range of use is greatly expanded.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a structure forming apparatus using an aerosol deposition method. FIG. 2 is an SEM photograph of a porous structure. FIG. 3 is a graph showing a relationship between a pore diameter and a pore volume of a porous fine particle. Explanation of code]
DESCRIPTION OF SYMBOLS 10 ... Structure forming apparatus, 101 ... Nitrogen gas cylinder, 102 ... Gas transport pipe, 103 ... Aerosol generator, 104 ... Aerosol transport pipe, 105 ... Formation chamber, 106 ... Nozzle, 107 ... XY stage, 108 ... Substrate, 109 ... Vacuum pump.

Claims (7)

脆性材料超微粒子同士が一部結合しかつ連続気孔が存在する平均粒径が0.1〜50μmの多孔質微粒子を、ガス中に分散させてエアロゾルとし、このエアロゾルを基材に向けて吹き付けて前記多孔質微粒子を衝突させて、前記基材上に前記多孔質微粒子同士が結合して堆積した多孔質構造物を形成させることを特徴とする基材と多孔質構造物からなる多孔質複合構造物の作製方法。The brittle material ultrafine particles are partially bonded to each other, and porous fine particles having an average particle diameter of 0.1 to 50 μm in which continuous pores are present are dispersed in a gas to form an aerosol. A porous composite structure comprising a base material and a porous structure, wherein the porous fine particles collide with each other to form a porous structure in which the porous fine particles are bonded and deposited on the base material. How to make things. 請求項1に記載の多孔質複合構造物の作製方法において、前記脆性材料多孔質微粒子は、平均微粒子径が0.1μm未満の脆性材料超微粒子を焼成して形成したことを特徴とする多孔質複合構造物の作製方法。2. The method for producing a porous composite structure according to claim 1, wherein the brittle material porous fine particles are formed by firing brittle material ultrafine particles having an average fine particle diameter of less than 0.1 μm. A method for producing a composite structure. 請求項1または2に記載の多孔質複合構造物の作製方法において、前記多孔質構造物の形成が常温環境で行われることを特徴とする多孔質複合構造物の作製方法。The method for producing a porous composite structure according to claim 1 or 2, wherein the formation of the porous structure is performed in a normal temperature environment. 請求項1乃至3に記載の多孔質複合構造物の作製方法において、前記基板における前記エアロゾルが衝突する面に、前記エアロゾルを斜めに吹き付けることを特徴とする多孔質複合構造物の作製方法。4. The method for producing a porous composite structure according to claim 1, wherein the aerosol is obliquely sprayed on a surface of the substrate on which the aerosol collides. 5. 請求項1乃至4に記載の多孔質微粒子を作製する方法が、前記脆性材料超微粒子を溶媒に、あるいは溶媒とバインダーとに、混合させて分散させ、乾燥させて前記脆性材料超微粒子が密に充填された状態とし、これを焼成して後、粒径を調製して多孔質微粒子を得ることを特徴とする多孔質複合構造物の作製方法。The method for producing porous fine particles according to claim 1, wherein the brittle material ultrafine particles are mixed and dispersed in a solvent or a solvent and a binder, and dried to dry the brittle material ultrafine particles. A method for producing a porous composite structure, wherein a porous composite structure is obtained by obtaining a porous fine particle by adjusting the particle size after firing in a filled state. 請求項1乃至4に記載の記多孔質微粒子を作製する方法が、前記脆性材料超微粒子を、あるいは前記脆性材料超微粒子にバインダーを混合させたものを、プレスして圧密させ、これを焼成して後、粒径を調製して多孔質微粒子を得ることを特徴とする多孔質複合構造物の作製方法。The method for producing the porous fine particles according to claim 1, wherein the brittle material ultrafine particles or a mixture of the brittle material ultrafine particles and a binder is pressed and consolidated, followed by firing. And then adjusting the particle diameter to obtain porous fine particles. 微粒子を基材に向けて吹き付けて衝突させ基材と多孔質の構造物からなる多孔質複合構造物を形成する方法において使用される原材料微粒子であって、その平均微粒子径が0.1μm未満の脆性材料超微粒子が集合してその接点で結合した、平均粒径が0.1〜50μmで、内部に連続気孔を有する多孔質微粒子。Raw material fine particles used in a method of forming a porous composite structure composed of a base material and a porous structure by spraying and colliding fine particles toward a base material, the average particle size of which is less than 0.1 μm Porous fine particles having an average particle diameter of 0.1 to 50 μm and having continuous pores therein, in which ultrafine particles of a brittle material are gathered and bonded at their contact points.
JP2002190835A 2002-06-28 2002-06-28 Method for producing porous composite structure Expired - Lifetime JP4103470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190835A JP4103470B2 (en) 2002-06-28 2002-06-28 Method for producing porous composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190835A JP4103470B2 (en) 2002-06-28 2002-06-28 Method for producing porous composite structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007296462A Division JP4626829B2 (en) 2007-11-15 2007-11-15 Method for producing porous composite structure and porous fine particles used for the production

Publications (2)

Publication Number Publication Date
JP2004033818A true JP2004033818A (en) 2004-02-05
JP4103470B2 JP4103470B2 (en) 2008-06-18

Family

ID=31700643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190835A Expired - Lifetime JP4103470B2 (en) 2002-06-28 2002-06-28 Method for producing porous composite structure

Country Status (1)

Country Link
JP (1) JP4103470B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534183A (en) * 2006-04-26 2009-09-24 コミツサリア タ レネルジー アトミーク Process for the preparation of nanoporous layers of nanoparticles and the layers thus obtained
JP2018123378A (en) * 2017-02-01 2018-08-09 富士通株式会社 Photochemical electrode, production method of photochemical electrode, and photolysis device of water
JP2020152592A (en) * 2019-03-18 2020-09-24 積水化学工業株式会社 Powder for forming porous layer for aerosol deposition method, method for producing brittle material article, method for producing photoelectrode, and method for producing dye-sensitized solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626829B2 (en) * 2007-11-15 2011-02-09 Toto株式会社 Method for producing porous composite structure and porous fine particles used for the production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001240982A (en) * 2000-02-29 2001-09-04 Kiyoshi Yatsui Method for making porous film using superfine particle
WO2002034966A1 (en) * 2000-10-23 2002-05-02 National Institute Of Advanced Industrial Science And Technology Composite structure and method and apparatus for manufacture thereof
WO2002036855A1 (en) * 2000-10-23 2002-05-10 National Institute Of Advanced Industrial Science And Technology Composite structure and method for manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001240982A (en) * 2000-02-29 2001-09-04 Kiyoshi Yatsui Method for making porous film using superfine particle
WO2002034966A1 (en) * 2000-10-23 2002-05-02 National Institute Of Advanced Industrial Science And Technology Composite structure and method and apparatus for manufacture thereof
WO2002036855A1 (en) * 2000-10-23 2002-05-10 National Institute Of Advanced Industrial Science And Technology Composite structure and method for manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534183A (en) * 2006-04-26 2009-09-24 コミツサリア タ レネルジー アトミーク Process for the preparation of nanoporous layers of nanoparticles and the layers thus obtained
JP2018123378A (en) * 2017-02-01 2018-08-09 富士通株式会社 Photochemical electrode, production method of photochemical electrode, and photolysis device of water
JP2020152592A (en) * 2019-03-18 2020-09-24 積水化学工業株式会社 Powder for forming porous layer for aerosol deposition method, method for producing brittle material article, method for producing photoelectrode, and method for producing dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4103470B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP6101634B2 (en) Method for forming coating layer using brittle material granule for room temperature vacuum granule injection process
US6531187B2 (en) Method of forming a shaped body of brittle ultra fine particles with mechanical impact force and without heating
TWI606933B (en) Plasma resistant component
Pakseresht et al. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder
Loghman-Estarki et al. Preparation of nanostructured YSZ granules by the spray drying method
JP7043774B2 (en) Aerosol film forming equipment and aerosol film forming method
CN107406331A (en) Ceramic Composite pearl and the method for manufacturing it
WO2011048149A1 (en) Method of producing porous metal oxide films using template assisted electrostatic spray deposition
CN108660403A (en) A method of plasma physical vapor deposit thermal barrier coatings powder is prepared using oxide raw material
CN105777173A (en) Low-heat-conduction anti-sintering bi-model structure thermal barrier coating layer and preparation process thereof
JP4626829B2 (en) Method for producing porous composite structure and porous fine particles used for the production
CN113224380A (en) Solid electrolyte material, preparation method thereof and battery
WO2015079906A1 (en) Thermal-spray material and thermal-spray coating film
JP4103470B2 (en) Method for producing porous composite structure
CN108675824A (en) A kind of plasma physical vapor deposit thermal barrier coatings porous rare earth zirconic acid salt powder and preparation method thereof
Aymonier et al. Supercritical fluid technology of nanoparticle coating for new ceramic materials
CN108017388A (en) A kind of air plasma spraying zirconic acid lanthanum base ceramic prilling powder and preparation method thereof
US20080260952A1 (en) Ceramic Coating
EP1745161A1 (en) Ceramic coating
KR20170125800A (en) Method for producing semiconductor film, and dye-sensitized solar cell
Ravanbakhsh et al. Cold Spraying of Ceramic Coatings—A Feasibility Study
KR102084524B1 (en) Apparatus for a oxide powder
JP2003313607A (en) Metal powder, its manufacturing process and conductive paste containing the same
JP2005089826A (en) Composite structure production device
JP2005076104A (en) Manufacturing device of composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6