JP2004031405A - Semiconductor light emitting device and its substrate - Google Patents

Semiconductor light emitting device and its substrate Download PDF

Info

Publication number
JP2004031405A
JP2004031405A JP2002181259A JP2002181259A JP2004031405A JP 2004031405 A JP2004031405 A JP 2004031405A JP 2002181259 A JP2002181259 A JP 2002181259A JP 2002181259 A JP2002181259 A JP 2002181259A JP 2004031405 A JP2004031405 A JP 2004031405A
Authority
JP
Japan
Prior art keywords
substrate
light
emitting device
semiconductor
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181259A
Other languages
Japanese (ja)
Inventor
Kenichi Ishizuka
石塚 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2002181259A priority Critical patent/JP2004031405A/en
Publication of JP2004031405A publication Critical patent/JP2004031405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To validly improve the light extracting efficiency of a semiconductor light emitting element. <P>SOLUTION: The surface of a substrate 10 on which a semiconductor layer is grown in a semiconductor light emitting element is provided with a plurality of pyramidal fine protrusions 100 having flat bevels inclined to a reference face S so that those fine protrusions can be arrayed with uniform density. All lights from a semiconductor layer 11 side are successively reflected on the flat bevels of the fine protrusions 100 and the reference face S, and then reflected to a light extraction face side on the flat bevels of the other fine protrusions. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は半導体発光素子、特に発光ダイオード(LED)および半導体発光素子用の基板に関する。
【0002】
【従来の技術】
発光ダイオードは一般に、基板上に半導体層を成長させてなり、半導体層中に含まれる活性層で発生する光を、基板とは反対側の面である「光取出し面」から取出すようになっている。活性層で生ずる光は、活性層の両面に向って放射されるので、単純に「光取出し面に向う光」だけを取出したのでは、光の取出し効率は、活性層において発生する光の50%を越えず、光の取出し効率が低い。
【0003】
このような光の取出し効率を向上させるための工夫が従来から種々なされてきている。
【0004】
【発明が解決しようとする課題】
この発明は、光取出し効率を有効に向上させ得る新規な半導体発光素子およびその基板の実現を課題とする。
【0005】
【課題を解決するための手段】
この発明の半導体発光素子用の基板は「半導体発光素子における半導体層を成長させる基板」であって、以下の点を特徴とする。
即ち、基板における「半導体層を成長させる側の表面」が、基準面に対して傾斜した平斜面を持つ角錐状の微小突起を、一様な密度で多数配列して有する。
【0006】
「微小突起の平斜面の傾斜角」は、基準面に直交的に入射する光を全反射する角に設定され、半導体層側からの光(活性層から基板側へ放射される光)が、微小突起の平斜面と基準面とで順次反射された後、上記微小突起に隣接する他の微小突起の平斜面で、光取出し面側へ反射されるようになっている。
【0007】
微小突起の配列は一様な密度であるので、上記反射を基板全体として均一に行うことができる。
【0008】
上記「基準面」は、半導体層の成長する方向に平行な法線を持つ面である。
【0009】
請求項1記載の基板は、微小突起の配列を「規則的な配列」とし、微小突起の高さ:h、互いに平斜面を対向させて隣接する2個の微小突起の、対向する平斜面間の間隔:d、平斜面の傾き:θ(度)に対して、
=h・tan(180−2θ)−h/tanθ
で定義される「距離:d」に対し、間隔:dが、条件
0.5d≦d≦1.5d
を満足することが好ましい。
【0010】
微小突起の形状は、一般に「角錐状」であることが好適であるが、中でも「4角錐形状」は好適である(請求項3)。他に好適な形状として、たとえば、6角錐形状や8角錐形状を挙げることができる。
【0011】
請求項3記載の基板のように、微小突起の形状を4角錐形状とする場合、微小突起の好適な配置として「格子状」もしくは「千鳥格子状」を挙げることができる(請求項4、5)。
【0012】
請求項4または5記載の基板における「好適な形態」として、材質をサファイアとし、基板上に直接成長される半導体の屈折率が波長:380nmに対して2.28であり、4角錐状の微小突起の1辺が1.67μm、平斜面の傾きが51.7度であるものを挙げることができる(請求項6)。
【0013】
この発明の半導体発光素子は、基板上に半導体層を成長させてなり、基板と反対側の光取出し面から光を取出す半導体発光素子において、半導体層を成長させる基板として、請求項1〜6の任意の1に記載の半導体発光素子用の基板を用いたことを特徴とする(請求項7)。
【0014】
上記の如く、この発明の半導体発光素子においては、活性層において基板側へ放射される光を「微小突起の平斜面と基準面とで順次反射させたのち、上記微小突起に隣接する他の微小突起の平斜面で光取出し面側へ反射する」ことにより、光取出し効率を有効に高めることができる。
【0015】
なお、上記の如き微小突起を持つ基盤は「フォトリソグラフィにより微小突起の配列に応じたレジストパターンを形成し、この形態をエッチングにより基板に転写することにより」により容易に製造できる。
【0016】
【発明の実施の形態】
以下、発明の実施の形態を説明する。
【0017】
図1(a)は、半導体発光素子の実施の1形態としての発光ダイオード(LED)を示している。このLEDは基板10の上に半導体層を成長させ、図の如く基板10上にN層11と活性層12とP層13とを積層した構造となっている。
【0018】
図1(b)は、図1(a)において符号Aで示す「破線で囲った部分」を、模式的に示している。図1(b)に示すように、基板10は、半導体層を成長させる側の表面が、基準面Sに対して傾斜した平斜面を持つ角錐状の微小突起100を、一様な密度で多数配列して有している。各微小突起100の形態は実質的に同一である。
【0019】
図2は、基板10上に形成されている多数の微小突起のうち、互いに隣接する2個の微小突起1001、1002を示している。
【0020】
図2に示すように、微小突起1001、1002の平斜面PS1、PS2の基準面Sに対する傾斜角をθとする。基板10の表面から成長させられたN層の屈折率をn1とし、基盤10の屈折率をn2とする。一般に、n1>n2である。
【0021】
基板10に形成された微小突起の役割は、図2に示すように、半導体層側(図2において上方)からの光Lを、微小突起1001の平斜面PS1と基準面Sとで順次反射させた後、微小突起1001に隣接する他の微小突起1002の平斜面PS2で光取出し面側(図2の上方)へ反射させることであるが、平斜面PS1、PS2等の傾斜角:θは、半導体層側から基準面に直交するように入射する光Lを全反射する角に設定されている。
【0022】
即ち、図1に示す実施の形態において、基板10は、半導体発光素子における半導体層11、12、13を成長させる基板であって、半導体層を成長させる側の表面が、基準面Sに対して傾斜した平斜面を持つ角錐状の微小突起100を、一様な密度で多数配列して有し、微小突起100の平斜面の傾斜角が、基準面Sに直交するように入射する光を全反射する角に設定され、半導体層側からの光Lが、微小突起の平斜面と基準面とで順次反射された後、上記微小突起に隣接する他の微小突起の平斜面で光取出し面側へ反射されるように構成したもの(請求項1)である。
【0023】
図1に符号12をもって示す「活性層」で発生する光は、活性層12に直交する方向以外の方向に進む成分を持っているが、最大の成分は活性層12に直交する方向の成分である。そこで活性層12に直交する方向へ伝播する光(図2の光L)を考え、上記の如く「半導体層側からの光Lを、微小突起の平斜面と基準面とで順次反射させた後、上記微小突起に隣接する他の微小突起の平斜面で光取出し面側へ反射させ」て取出す場合の取出し効率を高めるために、光Lが微小突起の平斜面と基準面Sとで「全反射」するようにしている。
【0024】
図2から明らかなように、光Lの、微小突起1001の平斜面PS1への入射角:θは傾斜角:θに等しく、従って、入射角:θに等しい反射角もまた傾斜角:θに等しい。周知の如く、屈折率:n1、n2の境界面で全反射が起きる条件は、入射角:θが臨界角であるψ=sin−1(n2/n1)よりも大きくなるように設定すれば良い。
【0025】
そうすると、図2から明らかなように、平斜面PS1により反射された光Lの基準面Sに対する入射角は、必ずθより大きくなるので、光Lは基準面Sでも全反射され、さらに対称性から明らかなように基準面Sで全反射された光Lは平斜面SP2でも全反射される。
【0026】
また、微小突起100の配列は規則的である。
【0027】
図2を参照して、微小突起の高さをh、互いに平斜面を対向させて隣接する2個の微小突起1001、1002の対向する平斜面SP1、SP2間の間隔を図の如くd、平斜面SP1、SP2の傾きをθとする。
【0028】
これら、h、θを用いて、距離:d
=h・tan(180−2θ)−h/tanθ
のように定義すると、距離:dは、活性層側から基準面Sに直交するように入射する光の内、微小突起1001の頂部に入射する光Lが、微小突起1002の基部(基準面Sとの境界部)に入射するときの微小突起1001、1002の間隔である。即ち、図2は「d=d」の状態を示している。
【0029】
この発明の半導体発光素子のように、活性層から基板側へ放射された光を、上記の如く微小突起と基準面とで反射させて取出す場合、光の取出し効率は、上記間隔:dと距離:dとの関係に依存する。
【0030】
図3は、これを説明するための図である。
図3(a)は、間隔:dが距離:dよりも短い場合(d<d)を示している。このような場合、微小突起1001の平斜面で全反射した光Lは、基準面Sで全反射され、微小突起1002の平斜面で全反射されて活性層側へ戻るが、光Lは、微小突起1001の平斜面で全反射されたのち「基準面Sに入射することなく直接に隣接の微小突起1002の平斜面へ入射」してしまい、その際の入射角が小さくなるので、相当部分が微小突起1002の内部へ入り込み、活性層の方へ戻らなくなる。
【0031】
図3(b)は、d=dの場合であり、この場合には、微小突起1001の平斜面で全反射された光は全て基準面Sで全反射され、さらに微小突起1002の平斜面で全反射されて活性層側へ戻る。
【0032】
図3(c)は、d>dの場合である。この場合には、光Lは微小突起1001の平斜面で全反射されたのち基準面Sで全反射されるが、そののち、微小突起1002の平斜面に入射することができない。従って、この場合も、一部の光は活性層の方へ戻らない。
【0033】
従って、半導体発光素子における光取出し効率を有効に高めるには、間隔:dが、距離:dに対して一定の関係の範囲にあることが好ましい。
即ち、dとdとは、条件
0.5d≦d≦1.5d
を満足することが好ましい(請求項2)。
【0034】
【実施例】
以下、シミュレーションによる具体的な実施例を説明する。
【0035】
4角錐形状を持つ微小突起(請求項3)を、基板表面に規則的に配列させた。配列は、図4に示すように、4角錐状の微小突起100を「格子状」に配列形成したもの(請求項4)と、これら微小突起100の格子状配列に、微小突起101による格子状配列を加えて全体を「千鳥格子状」としたもの(請求項5)との2種を設定した。微小突起100と101とは形状的には同一である。
【0036】
活性層で発生する光の波長:λ=380nmとし、基板10の材質をサファイア(波長:380nmの光に対する屈折率:1.79)とし、基板10から成長する(基板に接触する)半導体層(N層)の波長380nmの光に対する屈折率を2.28とした。なお、基板から成長する半導体層のうち、基板に近い部分は不純物の混入により活性層に近い部分とは組成が異なり、屈折率もの異なる。上記半導体層の屈折率:2.28は「基板に近い部分」での値である。
【0037】
4角錐状の微小突起100、101の寸法は、図5(a)に示すように、1辺が1.67μm、高さ:hは、図5(b)に示すように1.06μmで、平斜面の傾斜角:θは51.7度である(請求項6)。
【0038】
前述の距離:d(=h・tan(180−2θ)−h/tanθ)に対し、図5(a)に示す「隣接する2個の微小突起100の対向する平斜面間の間隔:d」を変化させ、光取出し効率の変化を調べた結果以下の如くになった。
【0039】
光取出し効率(%)
微小突起の有無 間隔:d  配列  全光  30度  10度
なし                42.8   6.9   0.7
あり      2μm   格子  51.7   8.5   1.2
あり      2μm   千鳥  56.2   9.9   1.5
あり      4μm   格子  60.6   9.8   1.4
あり      4μm   千鳥  70.2   11.0   1.9
あり      6μm   格子  51.2   9.1   1.1
あり      6μm   千鳥  56.2   10.2   1.4
上記において、「全光」とあるのは、半導体発光素子としての全取出し光の取出し効率である。また「格子」、「千鳥」とあるのは、微小突起の配列が「格子状」、「千鳥格子状」であることを示し、「30度」、「10度」とあるのは、半導体発光素子の光取出し面の法線を中心として、±15度および±5度の円錐状領域に取出される「指向性を持った光」の取出し効率である。
【0040】
因みに、dは、h・tan(180−2θ)−h/tanθにおいて、h=1.06μm、θ=51.7度であるから、d=3.6μmとなり、上記の結果と良く一致する。
【0041】
また、屈折率:n1=2.28、n2=1.79であるから、全反射のための臨界角:ψ=sin−1(n2/n1)=sin−1(0.78)=51.7であり、傾斜角:θは臨界角に設定されている。
【0042】
図3(d)〜(f)は、微小突起の平斜面に入射した光が、基準面に全反射され、かつ、隣接する微小突起の平斜面で全反射されるとき、活性層側へ戻る反射光が、平斜面への入射光に対し50%となる状態(図3(d)、(f))と100%になる状態(図3(e))を示している。
【0043】
上の実施例の場合で言えば、これは、間隔:dが距離:dに対し、
0.5d≦d≦1.5d
の範囲にある場合である。このとき、光取出し効率は「微小突起を形成しない場合」に比して1.3倍以上となる。
【0044】
図1に示す半導体発光素子において、基板10として上に実施の形態や実施例を説明したものを用いたものは、基板10上に半導体層12、13、14を成長させてなり、基板10と反対側の光取出し面から光を取出す半導体発光素子であって、半導体層を成長させる基板10として、上記請求項1〜6の任意の1に記載の半導体発光素子用の基板を用いたもの(請求項7)の実施の形態である。
【0045】
【発明の効果】
以上に説明したように、この発明によれば新規な半導体発光素子およびその基板を実現できる。この発明の半導体発光素子用の基板は、上記の如く、微小突起の平斜面と基準面とにより、活性層側からの光を光取出し面側へ有効に反射させるので光取出し効率を有効に高めることができ、かかる基板上に半導体層を成長させて得られる半導体発光素子は、高い光取出し効率を有する。
【図面の簡単な説明】
【図1】半導体発光素子の実施の1形態を説明するための図である。
【図2】半導体発光素子用の基板の作用を説明するための図である。
【図3】半導体発光素子用の基板の作用を説明するための図である。
【図4】半導体発光素子用の基板における微小突起の配列の1例を説明するための図である。
【図5】実施例を説明するための図である。
【符号の説明】
10   半導体発光素子用の基板
11   N層
12   活性層
13   P層
100  微小突起
S    基準面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device, particularly to a light emitting diode (LED) and a substrate for the semiconductor light emitting device.
[0002]
[Prior art]
In general, a light emitting diode is formed by growing a semiconductor layer on a substrate, and light generated in an active layer included in the semiconductor layer is extracted from a `` light extraction surface '' which is a surface opposite to the substrate. I have. Since the light generated in the active layer is radiated toward both surfaces of the active layer, simply extracting “light directed to the light extraction surface” will reduce the light extraction efficiency by 50% of the light generated in the active layer. % And the light extraction efficiency is low.
[0003]
Various devices have been conventionally devised for improving the light extraction efficiency.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to realize a novel semiconductor light emitting device and a substrate thereof that can effectively improve light extraction efficiency.
[0005]
[Means for Solving the Problems]
A substrate for a semiconductor light emitting device of the present invention is a "substrate for growing a semiconductor layer in a semiconductor light emitting device", and is characterized by the following points.
That is, the “surface on the side on which the semiconductor layer is grown” of the substrate has a large number of pyramid-shaped microprojections having a flat inclined surface inclined with respect to the reference plane, arranged at a uniform density.
[0006]
The “inclination angle of the flat slope of the minute projection” is set to an angle that totally reflects light that is orthogonally incident on the reference plane, and light from the semiconductor layer side (light emitted from the active layer to the substrate side) After being sequentially reflected on the flat inclined surface of the fine projection and the reference surface, the light is reflected toward the light extraction surface by the flat inclined surface of another minute projection adjacent to the fine projection.
[0007]
Since the arrangement of the microprojections has a uniform density, the reflection can be performed uniformly on the entire substrate.
[0008]
The “reference plane” is a plane having a normal line parallel to the direction in which the semiconductor layer grows.
[0009]
The substrate according to claim 1, wherein the arrangement of the fine projections is a "regular arrangement", the height of the fine projections is h, and the distance between the opposed flat slopes of two adjacent fine projections with the flat slopes facing each other. Distance: d, inclination of the flat slope: θ (degree),
d 0 = h · tan (180−2θ) −h / tan θ
In defined as "distance: d 0" to, intervals: d in that the condition 0.5d 0 ≦ d ≦ 1.5d 0
Is preferably satisfied.
[0010]
In general, it is preferable that the shape of the microprojections is “pyramidal”, and particularly “tetragonal pyramid” is preferable (claim 3). Other suitable shapes include, for example, a hexagonal pyramid shape and an octagonal pyramid shape.
[0011]
When the shape of the minute projections is a quadrangular pyramid as in the case of the substrate according to the third aspect, a suitable arrangement of the minute projections may be “lattice-like” or “houndstooth-like”. 5).
[0012]
The substrate according to claim 4 or 5, wherein the substrate is made of sapphire, and a semiconductor directly grown on the substrate has a refractive index of 2.28 for a wavelength of 380 nm, and has a pyramidal microscopic shape. One side of the projection is 1.67 μm, and the inclination of the flat slope is 51.7 degrees.
[0013]
The semiconductor light emitting device of the present invention is obtained by growing a semiconductor layer on a substrate, and extracting light from a light extraction surface opposite to the substrate. A substrate for a semiconductor light-emitting device according to any one of claims 1 to 6 is used (claim 7).
[0014]
As described above, in the semiconductor light emitting device of the present invention, the light radiated to the substrate side in the active layer is "reflected sequentially on the inclined plane and the reference surface of the minute projection, and then the other minute adjacent to the minute projection. The light is reflected to the light extraction surface side by the flat inclined surface of the projection ", so that the light extraction efficiency can be effectively increased.
[0015]
The substrate having the fine protrusions as described above can be easily manufactured by "by forming a resist pattern according to the arrangement of the fine protrusions by photolithography and transferring this form to the substrate by etching".
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the invention will be described.
[0017]
FIG. 1A shows a light emitting diode (LED) as one embodiment of a semiconductor light emitting device. This LED has a structure in which a semiconductor layer is grown on a substrate 10 and an N layer 11, an active layer 12, and a P layer 13 are stacked on the substrate 10 as shown in the figure.
[0018]
FIG. 1B schematically shows a “portion surrounded by a broken line” indicated by a symbol A in FIG. 1A. As shown in FIG. 1B, the substrate 10 has a large number of pyramid-shaped microprojections 100 having a flat inclined surface with respect to the reference surface S at a uniform density. It has it arranged. The form of each micro projection 100 is substantially the same.
[0019]
FIG. 2 shows two microprojections 1001 and 1002 adjacent to each other among a number of microprojections formed on the substrate 10.
[0020]
As shown in FIG. 2, let θ be the inclination angle of the flat slopes PS1 and PS2 of the minute projections 1001 and 1002 with respect to the reference plane S. The refractive index of the N layer grown from the surface of the substrate 10 is n1, and the refractive index of the substrate 10 is n2. Generally, n1> n2.
[0021]
The role of the fine projections formed on the substrate 10 is to reflect light L from the semiconductor layer side (upward in FIG. 2) on the flat slope PS1 and the reference plane S of the fine projections 1001 sequentially as shown in FIG. After that, the light is reflected to the light extraction surface side (upward in FIG. 2) by the flat inclined surface PS2 of the other minute protrusion 1002 adjacent to the minute protrusion 1001. The inclination angle θ of the flat inclined surfaces PS1, PS2, etc. is: The angle is set such that the light L incident from the semiconductor layer side so as to be orthogonal to the reference plane is totally reflected.
[0022]
That is, in the embodiment shown in FIG. 1, the substrate 10 is a substrate on which the semiconductor layers 11, 12, and 13 of the semiconductor light emitting element are grown. A large number of pyramid-shaped microprojections 100 having an inclined flat slope are arranged at a uniform density, and all the light incident so that the inclination angle of the flat slope of the microprojections 100 is orthogonal to the reference plane S is determined. The light L from the semiconductor layer side is set at the angle of reflection, and is sequentially reflected by the flat inclined surface of the microprojection and the reference surface. (Refer to Claim 1).
[0023]
The light generated in the “active layer” indicated by reference numeral 12 in FIG. 1 has a component that travels in a direction other than the direction orthogonal to the active layer 12, but the largest component is a component in the direction orthogonal to the active layer 12. is there. Therefore, considering light propagating in a direction perpendicular to the active layer 12 (light L in FIG. 2), as described above, "after light L from the semiconductor layer side is sequentially reflected by the flat inclined surface of the fine protrusion and the reference surface, In order to enhance the extraction efficiency in the case where the light L is reflected to the light extraction surface side by the flat inclined surface of another minute projection adjacent to the minute projection and the light is extracted, the light L is transmitted between the flat inclined surface of the minute projection and the reference surface S. To reflect.
[0024]
As is clear from FIG. 2, the incident angle θ of the light L on the flat slope PS1 of the minute projection 1001 is equal to the inclination angle θ, and therefore, the reflection angle equal to the incident angle θ is also changed to the inclination angle θ. equal. As is well known, the condition under which total reflection occurs at the boundary surface between the refractive indices: n1 and n2 may be set so that the incident angle θ is larger than the critical angle ψ = sin −1 (n2 / n1). .
[0025]
Then, as is clear from FIG. 2, the incident angle of the light L reflected by the flat inclined surface PS1 with respect to the reference surface S is always larger than θ, so that the light L is also totally reflected on the reference surface S, and furthermore, from the symmetry. As is clear, the light L totally reflected on the reference plane S is also totally reflected on the flat slope SP2.
[0026]
The arrangement of the microprojections 100 is regular.
[0027]
Referring to FIG. 2, the height of the microprojections is h, and the distance between the opposing flat slopes SP1 and SP2 of two adjacent microprojections 1001 and 1002 with their flat slopes facing each other is d and flat as shown in the figure. The inclination of the slopes SP1 and SP2 is defined as θ.
[0028]
Using these h and θ, the distance: d 0 is calculated as d 0 = h · tan (180−2θ) −h / tan θ.
When the distance d 0 is defined as follows, the light L 0 incident on the top of the microprojection 1001 out of the light incident perpendicular to the reference plane S from the active layer side is the base (reference) of the microprojection 1002. This is the distance between the minute protrusions 1001 and 1002 when the light is incident on the boundary (the boundary with the surface S). That is, FIG. 2 shows a state of “d = d 0 ”.
[0029]
When the light emitted from the active layer to the substrate side is reflected and reflected by the minute protrusions and the reference surface as in the semiconductor light emitting device of the present invention as described above, the light extraction efficiency is determined by the distance: d and the distance : depends on the relationship between the d 0.
[0030]
FIG. 3 is a diagram for explaining this.
3 (a) is intervals: d in the distance: shorter than d 0 indicates the (d <d 0). In this case, the light L totally reflected at the flat slope of the microprojections 1001 is totally reflected at the reference surface S, but is totally reflected by the flat slope of the microprojections 1002 returns to the active layer side, the light L 0 is After being totally reflected on the flat inclined surface of the minute projection 1001, it is "directly incident on the flat inclined surface of the adjacent minute projection 1002 without being incident on the reference surface S", and the incident angle at that time becomes small. Enter the inside of the minute projection 1002 and cannot return to the active layer.
[0031]
FIG. 3B shows a case where d = d 0. In this case, all the light totally reflected on the flat slope of the minute projection 1001 is totally reflected on the reference plane S, and further, the flat slope of the minute projection 1002 is shown. , And returns to the active layer side.
[0032]
Figure 3 (c) is a case of d> d 0. In this case, the light L is totally reflected on the flat slope of the minute projection 1001 and then totally reflected on the reference plane S, but thereafter cannot enter the flat slope of the minute projection 1002. Therefore, also in this case, some light does not return to the active layer.
[0033]
Therefore, the increase effectively the light extraction efficiency of the semiconductor light emitting element, intervals: d in that the distance: it is preferably in the range of a certain relationship to d 0.
That is, d and d 0 satisfy the condition 0.5d 0 ≦ d ≦ 1.5d 0
Is preferably satisfied (claim 2).
[0034]
【Example】
Hereinafter, a specific example by simulation will be described.
[0035]
Fine projections having a quadrangular pyramid shape (claim 3) were regularly arranged on the substrate surface. As shown in FIG. 4, the arrangement is such that the quadrangular pyramid-shaped microprojections 100 are arranged in a “lattice shape” (Claim 4), Two types were set, one in which the arrangement was added and the whole was in a "houndstooth check" (claim 5). The minute projections 100 and 101 are identical in shape.
[0036]
The wavelength of light generated in the active layer: λ = 380 nm, the material of the substrate 10 is sapphire (refractive index for light having a wavelength of 380 nm: 1.79), and the semiconductor layer (grows from (contacts with) the substrate 10) The refractive index of the N layer) with respect to light having a wavelength of 380 nm was set to 2.28. Note that, of the semiconductor layer grown from the substrate, a portion close to the substrate has a different composition and a different refractive index from a portion close to the active layer due to impurity contamination. The refractive index of the above-mentioned semiconductor layer: 2.28 is a value in the “portion close to the substrate”.
[0037]
As shown in FIG. 5A, the dimensions of the quadrangular pyramid-shaped microprojections 100 and 101 are 1.67 μm on one side, and the height h is 1.06 μm as shown in FIG. The inclination angle of the flat slope: θ is 51.7 degrees (claim 6).
[0038]
The distance: d 0 (= h · tan (180−2θ) −h / tan θ) is compared with the “distance between opposed flat slopes of two adjacent microprojections 100: d” shown in FIG. And the change in light extraction efficiency was examined. The results were as follows.
[0039]
Light extraction efficiency (%)
Presence / absence of minute projections Interval: d Array Total light 30 degrees 10 degrees None 42.8 6.9 0.7
Yes 2 μm grid 51.7 8.5 1.2
Yes 2 μm Staggered 56.2 9.9 1.5
Yes 4 μm lattice 60.6 9.8 1.4
Yes 4μm Staggered 70.2 11.0 1.9
Yes 6 μm lattice 51.2 9.1 1.1
Yes 6 μm Staggered 56.2 10.2 1.4
In the above description, “all light” means the extraction efficiency of all extracted light as a semiconductor light emitting device. The terms “lattice” and “staggered” indicate that the arrangement of the microprojections is “lattice-like” and “staggered-lattice”, and “30 °” and “10 °” refer to the semiconductor. This is the extraction efficiency of “directive light” extracted into ± 15 ° and ± 5 ° conical regions around the normal to the light extraction surface of the light emitting element.
[0040]
Incidentally, d 0 is h = 1.06 μm and θ = 51.7 degrees in h · tan (180−2θ) −h / tan θ, so that d 0 = 3.6 μm, which is in good agreement with the above result. I do.
[0041]
Further, since the refractive index is n1 = 2.28 and n2 = 1.79, the critical angle for total reflection: ψ = sin −1 (n2 / n1) = sin −1 (0.78) = 51. 7, and the inclination angle θ is set to the critical angle.
[0042]
FIGS. 3D to 3F show that when the light incident on the flat slope of the minute projection is totally reflected on the reference plane and totally reflected on the flat slope of the adjacent minute projection, the light returns to the active layer side. A state where the reflected light is 50% of the light incident on the inclined plane (FIGS. 3D and 3F) and a state where the reflected light is 100% (FIG. 3E) are shown.
[0043]
Speaking in the case of the above embodiment, this distance: For d 0,: d distance
0.5d 0 ≦ d ≦ 1.5d 0
It is when it is in the range of. At this time, the light extraction efficiency is 1.3 times or more as compared with “when no minute projection is formed”.
[0044]
In the semiconductor light-emitting device shown in FIG. 1, the substrate described in the above embodiment or example is used as the substrate 10, and the semiconductor layers 12, 13, and 14 are grown on the substrate 10. A semiconductor light-emitting element for extracting light from an opposite light extraction surface, wherein the substrate for growing a semiconductor layer uses the substrate for a semiconductor light-emitting element according to any one of claims 1 to 6 ( It is an embodiment of claim 7).
[0045]
【The invention's effect】
As described above, according to the present invention, a novel semiconductor light emitting device and its substrate can be realized. As described above, the substrate for a semiconductor light emitting device of the present invention effectively reflects light from the active layer side to the light extraction surface side by the flat inclined surface and the reference surface of the fine projections, thereby effectively increasing the light extraction efficiency. A semiconductor light-emitting element obtained by growing a semiconductor layer on such a substrate has high light extraction efficiency.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating one embodiment of a semiconductor light emitting device.
FIG. 2 is a diagram for explaining the function of a substrate for a semiconductor light emitting device.
FIG. 3 is a diagram for explaining the function of a substrate for a semiconductor light emitting device.
FIG. 4 is a diagram for explaining an example of an arrangement of minute projections on a substrate for a semiconductor light emitting element.
FIG. 5 is a diagram illustrating an example.
[Explanation of symbols]
Reference Signs List 10 Substrate for semiconductor light emitting element 11 N layer 12 Active layer 13 P layer 100 Microprojection S Reference plane

Claims (7)

半導体発光素子における半導体層を成長させる基板であって、
半導体層を成長させる側の表面が、基準面に対して傾斜した平斜面を持つ角錐状の微小突起を、一様な密度で多数配列して有し、
微小突起の平斜面は、その傾斜角が、基準面に直交的に入射する光を全反射する角に設定され、
上記半導体層側からの光が、上記微小突起の平斜面と上記基準面とで順次反射された後、上記微小突起に隣接する他の微小突起の平斜面で光取出し面側へ反射されるようにしたことを特徴とする半導体発光素子用の基板。
A substrate for growing a semiconductor layer in a semiconductor light emitting device,
The surface on the side on which the semiconductor layer is grown has a large number of pyramid-shaped microprojections having a flat inclined surface inclined with respect to the reference surface, arranged at a uniform density,
The inclination angle of the flat slope of the microprojection is set to an angle that totally reflects light that is orthogonally incident on the reference plane,
After the light from the semiconductor layer side is sequentially reflected by the flat slope of the fine protrusion and the reference surface, the light is reflected toward the light extraction surface by the flat slope of another fine protrusion adjacent to the fine protrusion. A substrate for a semiconductor light emitting device, characterized in that:
請求項1記載の基板において、
微小突起の配列が規則的であり、
微小突起の高さをh、互いに平斜面を対向させて隣接する2個の微小突起の、上記対向する平斜面間の間隔をd、上記平斜面の傾きをθとするとき、
=h・tan(180−2θ)−h/tanθ
で定義される距離:dに対し、上記間隔:dが、条件
0.5d≦d≦1.5d
を満足することを特徴とする半導体発光素子用の基板。
The substrate according to claim 1,
The arrangement of the microprojections is regular,
When the height of the microprojection is h, the interval between the opposing flat slopes of two adjacent microprojections with the flat slopes facing each other is d, and the inclination of the flat slope is θ,
d 0 = h · tan (180−2θ) −h / tan θ
In defined as a distance: For d 0, the intervals: d in that the condition 0.5d 0 ≦ d ≦ 1.5d 0
A substrate for a semiconductor light emitting device, characterized by satisfying the following.
請求項2記載の基板において、
微小突起が4角錐形状であることを特徴とする半導体発光素子用の基板。
The substrate according to claim 2,
A substrate for a semiconductor light emitting device, wherein the minute projections have a quadrangular pyramid shape.
請求項3記載の基板において、
微小突起の配列が、格子状であることを特徴とする半導体発光素子用の基板。
The substrate according to claim 3,
A substrate for a semiconductor light emitting device, wherein the arrangement of the fine projections is a lattice.
請求項3記載の基板において、
微小突起の配列が、千鳥格子状であることを特徴とする半導体発光素子用の基板。
The substrate according to claim 3,
A substrate for a semiconductor light-emitting element, wherein the arrangement of the fine projections is a staggered lattice.
請求項4または5記載の基板において、
材質がサファイアであり、基板上に直接成長される半導体の屈折率が波長:380nmの光に対して2.28であり、
4角錐状の微小突起の1辺が1.67μm、平斜面の傾きが51.7度であることを特徴とする半導体発光素子用の基板。
The substrate according to claim 4 or 5,
The material is sapphire, and the refractive index of a semiconductor directly grown on the substrate is 2.28 for light having a wavelength of 380 nm,
A substrate for a semiconductor light-emitting element, wherein one side of a quadrangular pyramid-shaped microprojection is 1.67 μm, and a slope of a plane slope is 51.7 degrees.
基板上に半導体層を成長させてなり、上記基板と反対側の光取出し面から光を取出す半導体発光素子において、
半導体層を成長させる基板として、請求項1〜6の任意の1に記載の半導体発光素子用の基板を用いたことを特徴とする半導体発光素子。
A semiconductor light-emitting device comprising a semiconductor layer grown on a substrate and extracting light from a light extraction surface opposite to the substrate.
A semiconductor light-emitting device comprising the substrate for a semiconductor light-emitting device according to any one of claims 1 to 6, wherein the substrate for growing a semiconductor layer is used.
JP2002181259A 2002-06-21 2002-06-21 Semiconductor light emitting device and its substrate Pending JP2004031405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181259A JP2004031405A (en) 2002-06-21 2002-06-21 Semiconductor light emitting device and its substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181259A JP2004031405A (en) 2002-06-21 2002-06-21 Semiconductor light emitting device and its substrate

Publications (1)

Publication Number Publication Date
JP2004031405A true JP2004031405A (en) 2004-01-29

Family

ID=31178141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181259A Pending JP2004031405A (en) 2002-06-21 2002-06-21 Semiconductor light emitting device and its substrate

Country Status (1)

Country Link
JP (1) JP2004031405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774214B1 (en) * 2006-08-30 2007-11-08 엘지전자 주식회사 Nitride based led and method of manufacturing the same
KR101182104B1 (en) * 2010-10-11 2012-09-12 전북대학교산학협력단 Nitride semiconductor light emitting device and method of preparing the same
JP2012238895A (en) * 2006-12-21 2012-12-06 Nichia Chem Ind Ltd Semiconductor light-emitting element substrate manufacturing method and semiconductor light-emitting element using the same
US8847263B2 (en) 2010-08-06 2014-09-30 Nichia Corporation Sapphire substrate having triangular projections with outer perimeter formed of continuous curve
US8957433B2 (en) 2012-03-28 2015-02-17 Nichia Corporation Sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774214B1 (en) * 2006-08-30 2007-11-08 엘지전자 주식회사 Nitride based led and method of manufacturing the same
JP2012238895A (en) * 2006-12-21 2012-12-06 Nichia Chem Ind Ltd Semiconductor light-emitting element substrate manufacturing method and semiconductor light-emitting element using the same
US8847263B2 (en) 2010-08-06 2014-09-30 Nichia Corporation Sapphire substrate having triangular projections with outer perimeter formed of continuous curve
US8847262B2 (en) 2010-08-06 2014-09-30 Nichia Corporation Sapphire substrate having triangular projections with bottom sides formed of outwardly curved lines
US9012936B2 (en) 2010-08-06 2015-04-21 Nichia Corporation Sapphire substrate having triangular projections with portions extending in direction of substrate crystal axis
US9070814B2 (en) 2010-08-06 2015-06-30 Nichia Corporation LED sapphire substrate with groups of three projections on the surface
US9525103B2 (en) 2010-08-06 2016-12-20 Nichia Corporation Sapphire substrate having elongated projection and semiconductor light emitting device utilizing the same
KR101182104B1 (en) * 2010-10-11 2012-09-12 전북대학교산학협력단 Nitride semiconductor light emitting device and method of preparing the same
US8957433B2 (en) 2012-03-28 2015-02-17 Nichia Corporation Sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element
US9337390B2 (en) 2012-03-28 2016-05-10 Nichia Corporation Sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element
US9711685B2 (en) 2012-03-28 2017-07-18 Nichia Corporation Sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element
EP2644756B1 (en) * 2012-03-28 2019-10-09 Nichia Corporation Patterned sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element using that sapphire substrate

Similar Documents

Publication Publication Date Title
JP5206923B2 (en) Semiconductor light emitting device
US7511307B2 (en) Light emitting device
JP5511114B2 (en) Micro light-emitting diode array with improved light extraction
US8614458B2 (en) Patterned substrate for light emitting diode and light emitting diode employing the same
KR100700993B1 (en) Enhanced light extraction in leds through the use of internal and external optical elements
KR100640497B1 (en) Vertically structured gan type led device
KR101891777B1 (en) Light emitting device having dielectric reflector and method of manufacturing the same
US8461568B2 (en) Re-emitting semiconductor construction with enhanced extraction efficiency
US9166105B2 (en) Light emitting device
JP2011029667A (en) Light-emitting device
JP2006352135A (en) Light emitting device having irregular structure and its manufacturing method
JP5646503B2 (en) Optoelectronic semiconductor chip and method of manufacturing optoelectronic semiconductor chip
US20100178616A1 (en) Method of making a rough substrate
KR20090120532A (en) Light emitting diode and manufacturing method of the same
JP2004031405A (en) Semiconductor light emitting device and its substrate
WO2012045222A1 (en) Light emitting device and manufacturing method thereof
KR101079415B1 (en) Semiconductor light-emitting device and fabrication method thereof
US8648352B2 (en) Semiconductor light emitting structure
KR20120084841A (en) Light emitting diode device and method of fabricating the same
CN114038957A (en) Light-emitting chip epitaxial structure, manufacturing method thereof and light-emitting chip
CN111066160A (en) Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
CN212161846U (en) Mini-LED chip inverted at large light-emitting angle
US20060261354A1 (en) Semiconductor light-emitting device
TW201724557A (en) Light-emitting device having patterned substrate
JP2004128120A (en) Semiconductor light emitting device