JP2004028945A - Apparatus for measuring concentration of suspended particulate matter - Google Patents

Apparatus for measuring concentration of suspended particulate matter Download PDF

Info

Publication number
JP2004028945A
JP2004028945A JP2002189201A JP2002189201A JP2004028945A JP 2004028945 A JP2004028945 A JP 2004028945A JP 2002189201 A JP2002189201 A JP 2002189201A JP 2002189201 A JP2002189201 A JP 2002189201A JP 2004028945 A JP2004028945 A JP 2004028945A
Authority
JP
Japan
Prior art keywords
rays
particulate matter
detector
suspended particulate
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002189201A
Other languages
Japanese (ja)
Inventor
Masayoshi Shinohara
篠原 政良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002189201A priority Critical patent/JP2004028945A/en
Priority to US10/602,501 priority patent/US6964190B2/en
Priority to CNA2006100025682A priority patent/CN1841044A/en
Priority to CNA2006100025678A priority patent/CN1841043A/en
Priority to CN031492886A priority patent/CN1470862B/en
Priority to DE10328867A priority patent/DE10328867A1/en
Publication of JP2004028945A publication Critical patent/JP2004028945A/en
Priority to US11/119,123 priority patent/US7159446B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring the concentration of suspended particulate matter for acquiring highly accurate measurement results from which the effects of error of very small quantities of α-rays and β-rays present in the natural world are removed. <P>SOLUTION: A predetermined quantity of flow of atmosphere is continuously drawn in a sampling tube 15 by suction as a sample gas SG. The suspended particulate matter 6 in the sample gas SG is continuously collected by a collecting means 5 in a vacuum chamber 2 provided downstream from the sampling tube 15. The collected suspended particulate matter 6 is irradiated with β-rays from a β-ray source 7. Transmitted β-rays at this time are detected by a detector 8. Output of the detector 8 is used to measure the concentration of the collected suspended particulate matter by a β-ray absorption method in the apparatus for measuring the concentration of the suspended particulate matter. The quantity of α-rays detected by the detector 8 at all times is used to remove the effects of error, derived from α-rays and β-rays present in the natural world, from a β-ray detection value of the detector 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、大気中の浮遊粒子状物質を測定するための浮遊粒子状物質濃度測定装置に関する。
【0002】
【従来の技術】
大気中の浮遊粒子状物質(Suspended Particulate Matter:以下、SPMという)を測定する装置として、一定流量の大気をサンプルガスとして連続的にサンプリング管内に吸引し、このサンプリング管の下流側に設けられた真空チャンバ内において前記サンプルガス中の浮遊粒子状物質をリボンフィルタに連続的に捕集し、この捕集した浮遊粒子状物質に対してβ線源からβ線を照射し、そのときの透過β線を検出器によって検出し、この検出器の出力を用いてβ線吸収方式により、捕集した浮遊粒子状物質の濃度を測定するものがある。
【0003】
上記β線吸収方式のSPM濃度測定装置において、透過β線を検出する検出器としては、一般に比例計数管が用いられている。この比例計数管は、β線のほかにα線を検出することができる。この比例計数管は、図2における透過分布曲線A,Bからも理解されるように、α線(図中の曲線Aで示す)とβ線(図中の曲線Bで示す)の透過量のピークPA ,PB が異なるので、α線とβ線を検出する場合、大部分の波長領域で問題となることはない。しかし、図2における符号Cで示す部分は、β線とα線が重なっているため、β線にとってはα線は、前記C部分における分だけプラスの誤差要因となっている。
【0004】
また、自然界には、微量ながらもα線(ラドンガス)やβ線が存在しており、β線吸収方式により捕集した浮遊粒子状物質の濃度を測定する場合、前記測定装置内のβ線源(密封線源)以外の放射性物質は全て誤差要因となり、β線吸収方式によるSPMの測定を正確に行えないこととなる。
【0005】
ところで、近時においては、粒径が2.5μm以下の微細なSPM(以下、PM2.5という)をも高感度に測定することが要求されるようになってきているが、前記β線に対するα線による誤差影響や、自然界に存在するβ線による誤差影響が前記PM2.5を高感度に測定する場合に大きな障害となるため、これらの影響を可及的に小さくすることが望まれている。
【0006】
この発明は、上述の事柄に留意してなされたもので、その目的は、自然界に存在する微量なα線やβ線の誤差影響を除去した精度の高い測定結果を得ることができる浮遊粒子状物質濃度測定装置を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、この発明では、一定流量の大気をサンプルガスとして連続的にサンプリング管内に吸引し、このサンプリング管の下流側に設けられた真空チャンバ内において前記サンプルガス中の浮遊粒子状物質を捕集手段を用いて連続的に捕集し、この捕集した浮遊粒子状物質に対してβ線源からβ線を照射し、そのときの透過β線を検出器によって検出し、この検出器の出力を用いてβ線吸収方式により前記捕集した浮遊粒子状物質の濃度を測定するように構成された浮遊粒子状物質濃度測定装置において、前記検出器によって常時検出されるα線量を用いて、前記検出器におけるβ線検出値から、自然界に存在するα線およびβ線に由来する誤差影響を除去するようにしている。
【0008】
具体的には、検出器によって、主測定に用いるβ線のほかに、α線(ラドンガス)をも常時検出し、この検出によって得られたα線量を用いて補正係数F1 を計算によって作成し、この補正係数F1 を用いて、図2における符号Cで示す部分のα線(ラドンガス)量を算出する。また、自然界に存在するβ線については、前記検出されたα線量を用いて補正係数F2 を計算によって作成し、この補正係数F2 を用いて自然界のβ線量を算出する。そして、前記検出器によって得られるβ線量から、前記α線およびβ線にそれぞれ由来する誤差値を引き算してこれをキャンセルする。このようにすることにより、自然界に存在するα線およびβ線に由来する誤差影響が除去され、β線吸収方式のSPM濃度測定装置において、精度の高い透過β線値が得られ、この透過β線値を所定の演算式によって演算することにより、SPMを高精度に測定することができる。
【0009】
【発明の実施の形態】
以下、この発明の詳細を、図を参照しながら説明する。図1は、この発明のSPM濃度測定装置の構成の一例を概略的に示すもので、この図において、1は測定装置本体である。この測定装置本体1は、以下のように構成されている。すなわち、2は真空チャンバで、その内部には、供給リール3から繰り出され、巻き取りリール4に巻き取られる適宜幅の捕集手段としてのリボンフィルタ5が走行するとともに、このリボンフィルタ5の一方の側(下方側)には、リボンフィルタ5の一方の面(上面)に捕集されたSPM6の堆積層6aに対してβ線を照射するβ線源7が設けられ、他方の側(上方側)には、前記堆積層6aを透過したβ線を検出するための検出器8が設けられている。この検出器8は、例えば比例計数管よりなり、検出したβ線の強度に応じた信号を出力するとともに、α線を検出する機能をも備えており、検出したα線の強度に応じた信号を出力するもので、β線吸収方式によってSPM6の濃度を測定できるとともに、α線の強度をも測定することができる。なお、9a,9bは補償チャンバである。10は検出器8と補償チャンバ9bとの間に所定の直流電圧を印加する電源である。
【0010】
そして、11は前記真空チャンバ2や補償チャンバ9aを所定の真空状態に排気する排気系統で、ガス流量調整器12を介して真空ポンプ13が接続されるとともに、サンプルガスSGの流量を測定するガス流量計14が設けられている。
【0011】
また、15は真空チャンバ2に対して、一定流量の大気をサンプルガスSGとして供給するサンプリング管で、その最上流端には分粒器16が設けられている。この分粒器16は、サンプリング管15内に吸引されたサンプルガスSG中に含まれるSPM5を分級するもので、所定の粒径を超えるSPMを捕捉し、所定の粒径以下のSPMのみを真空チャンバ2側に通過させるものである。
【0012】
17は前記測定装置本体1を制御し、測定装置本体1側からの信号を処理する演算制御部で、18は各種の演算を行うCPU、19はアナログ信号をディジタル信号に変換したり、ディジタル信号をアナログ信号に変換する信号変換器、20は検出器8の出力が入力されるアンプ、21はガス流量計14や他のセンサ22からの検出出力が入力されるアナログI/O、23はディジタルI/O、24はRAM、25は電気的消去の可能なROM、26は演算結果などを表示するディスプレイ、27は入力キーである。また、28a,28bは外部接続端子としてのCOM1、COM2である。
【0013】
上記構成のSPM濃度測定装置の作動について説明すると、真空ポンプ8をオンにすると、大気が分粒器16を介してサンプリング管15内にサンプルガスSGとして吸引される。このとき、サンプリング管15内に吸引されたサンプルガスSG中に含まれるSPMのうち、所定の粒径を超えるものが除去され、所定の粒径以下のSPM(以下、分粒されたSPMという)を含んだサンプルガスSGが下流側(真空チャンバ2側)に移動する。
【0014】
その後、前記分粒されたSPMを含むサンプルガスSGは、サンプリング管15を経て真空チャンバ2内に導入され、リボンフィルタ5を通過するが、このとき、前記分粒されたSPMは、リボンフィルタ5の上面にスポット状に堆積し、堆積層6aを形成する。この堆積層6aにβ線源7からのβ線が照射されると、このβ線は分粒されたSPMおよびリボンフィルタ5による吸収を受けるが、透過したβ線は検出器8によって検出される。検出器8から出力される信号Sには、受光したβ線に比例した信号Bのほかにα線に比例した信号Aも含まれており、この信号Sはアンプ20、信号変換器19を経てCPU18に入力される。
【0015】
前記CPU22においては、まず、前記検出器からの信号Sに含まれるα線量を用いて補正係数F1 を計算によって作成し、この補正係数F1 を用いて、図2における符号Cで示す部分のα線(ラドンガス)量を算出する。そして、前記信号Sには自然界に存在するβ線に由来する透過β線量も含まれているので、前記検出されたα線量を用いて補正係数F2 を計算によって作成し、この補正係数F2 を用いて前記自然界のβ線量を算出する。
【0016】
その後、前記検出器によって得られる透過β線量から、前記α線およびβ線にそれぞれ由来する誤差値を引き算してこれをキャンセルし、補正後の透過β線量を求める。このようにすることにより、自然界に存在するα線およびβ線に由来する誤差影響が除去され、β線吸収方式のSPM濃度測定装置において、精度の高い透過β線値が得られる。この透過β線値から、リボンフィルタ5に付着したSPMの質量m〔μg〕を求めるには、以下の公知の演算式(1)を用いる。
m=F×ln(R0 /R)              ……(1)
ただし、
0 ;空のリボンフィルタのβ線散乱強度〔I/s〕
R ;SPM捕集後のリボンフィルタのβ線散乱強度〔I/s〕
F ;校正係数〔μg/m3 
【0017】
前記校正係数Fは、β線散乱強度をSPMの質量に換算するための係数で、F=A/(μ/ρ)で表される。ここで、A〔cm3 〕はリボンフィルタの測定断面積〔cm3 〕であり、μ/ρ〔cm/mg〕は、β線源7の固有の質量崩壊係数〔cm/mg〕である。
【0018】
前記(1)式によって求められるSPMの質量と、サンプルガスSGの流量および圧力を補正することにより、SPM濃度B(μg/m3 〕が得られる。
【0019】
自然界に存在するα線やβ線の量は、場所により、また、時間によって全く異なっている。上述のように、β線吸収方式の測定に用いる検出器によって、β線のみならずα線の測定を連続して行い、この測定されたα線から、本来の測定に用いるβ線の検出値に影響を与えている部分のα線の量を求め、このα線量に基づいて自然界に存在するβ線の量をも算出し、前記α線およびβ線に由来する透過β線量に与える誤差量を、前記透過β線量から差し引くことにより、前記自然界に存在するα線やβ線の誤差影響を除去した透過β線量を得ることができ、これに基づいて演算を行うことにより、SPMを高精度に測定することができるのである。
【0020】
より具体的には、自然界に存在するα線の量およびβ線の量をそれぞれNα、Nβとし、α線を検出する検出器の感度をeff(α)、β線を検出する検出器の感度をeff(β)とすると、下記(2)式が成り立つことが知られている。
Nα・eff(α)/Nβ・eff(β)=3.5   ……(2)
上記数値3.5およびNα、Nβは、理論上特定できる値である。よって、自然界に存在するα線およびβ線の誤差影響を除去した透過線量をR1 、測定されたα線、β線の量をそれぞれR(α)、R(β)とすると、下記(3)式が成立する。
1 =R(β)−R(α)・3.5          ……(3)
したがって、前記(3)式を用いて透過線量を補正することにより、SPMをより高精度に測定することができるのである。
【0021】
なお、検出器8としては、シンチレーション検出器や半導体検出器など他の放射線検出器を用いてもよい。
【0022】
【発明の効果】
以上説明したように、この発明においては、検出器によって常時検出されるα線量を用いて、前記検出器におけるβ線検出値から、自然界に存在するα線およびβ線に由来する誤差影響を除去するようにしているので、従来に比べて、精度の高い測定結果を得ることができるようになった。したがって、この発明のSPM濃度測定装置によれば、PM2.5のような絶対量の少ない微細なSPMをも高精度で測定することができる。
【図面の簡単な説明】
【図1】この発明の浮遊粒子状物質濃度測定装置の構成の一例を概略的に示す図である。
【図2】比例計数管におけるα線とβ線の透過分布の状態を示す図である。
【符号の説明】
2…真空テャンバ、5…捕集手段、6…浮遊粒子状物質(SPM)、7…β線源、8…検出器、15…サンプリング管、SG…サンプルガス。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suspended particulate matter concentration measuring device for measuring suspended particulate matter in the atmosphere.
[0002]
[Prior art]
As a device for measuring suspended particulate matter (Suspended Particulate Matter: SPM) in the atmosphere, a constant flow of air is continuously sucked into a sampling tube as a sample gas, and provided at a downstream side of the sampling tube. In the vacuum chamber, the suspended particulate matter in the sample gas is continuously collected by a ribbon filter, and the collected suspended particulate matter is irradiated with β-rays from a β-ray source. There is a method in which a line is detected by a detector, and the concentration of the collected suspended particulate matter is measured by a β-ray absorption method using the output of the detector.
[0003]
In the β-ray absorption type SPM concentration measuring device, a proportional counter is generally used as a detector for detecting transmitted β-rays. This proportional counter can detect α rays in addition to β rays. As can be understood from the transmission distribution curves A and B in FIG. 2, this proportional counter measures the transmission amount of α-ray (shown by curve A in the figure) and β-ray (shown by curve B in the figure). Since the peaks P A and P B are different, when detecting α-rays and β-rays, there is no problem in most wavelength regions. However, in the portion indicated by reference numeral C in FIG. 2, since the β-ray and the α-ray overlap each other, the α-ray is a positive error factor for the β-ray in the C portion.
[0004]
Also, in the natural world, there are α-rays (radon gas) and β-rays in trace amounts, and when measuring the concentration of suspended particulate matter collected by the β-ray absorption method, the β-ray source in the measuring device is required. All radioactive substances other than the (sealed radiation source) cause an error, and the SPM cannot be accurately measured by the β-ray absorption method.
[0005]
By the way, recently, it has been required to measure a fine SPM having a particle diameter of 2.5 μm or less (hereinafter, referred to as PM2.5) with high sensitivity. Since the error effect due to α-rays and the error effect due to β-rays existing in the natural world become a major obstacle when measuring the PM2.5 with high sensitivity, it is desired to reduce these effects as much as possible. I have.
[0006]
The present invention has been made in consideration of the above-mentioned matters, and has as its object the purpose of obtaining a floating particle form capable of obtaining a highly accurate measurement result from which the influence of a small amount of α-rays and β-rays existing in nature has been removed. It is to provide a substance concentration measuring device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a constant flow rate of air is continuously sucked into a sampling tube as a sample gas, and suspended particles in the sample gas are formed in a vacuum chamber provided downstream of the sampling tube. The substance is continuously collected using a collecting means, the collected suspended particulate matter is irradiated with β-rays from a β-ray source, and the transmitted β-ray at that time is detected by a detector, In a suspended particulate matter concentration measurement device configured to measure the concentration of the collected suspended particulate matter by a β-ray absorption method using an output of a detector, an α dose that is always detected by the detector is measured. In addition, the influence of errors due to α-rays and β-rays existing in nature is removed from the β-ray detection value of the detector.
[0008]
More specifically, the detector, in addition to the β-rays used for the main measurement, and always detected also α rays (radon gas), made by calculating the correction factor F 1 using the α dose obtained by the detection , using the correction factor F 1, to calculate the α rays (radon gas) of a portion indicated by reference sign C in FIG. As for the β rays existing in nature, with reference to the detected α dose created by calculating the correction factor F 2, to calculate the β dose nature using the correction factor F 2. Then, an error value derived from each of the α-rays and the β-rays is subtracted from the β dose obtained by the detector, and the difference is canceled. In this way, the influence of errors due to α-rays and β-rays existing in the natural world is removed, and a highly accurate transmitted β-ray value can be obtained in a β-ray absorption type SPM concentration measuring apparatus. The SPM can be measured with high accuracy by calculating the line value using a predetermined calculation formula.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the details of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an example of the configuration of an SPM concentration measuring apparatus according to the present invention. In this figure, reference numeral 1 denotes a measuring apparatus main body. The measuring device main body 1 is configured as follows. That is, reference numeral 2 denotes a vacuum chamber, in which a ribbon filter 5 as a collecting means of an appropriate width, which is unwound from a supply reel 3 and wound on a take-up reel 4, travels. Is provided with a β-ray source 7 for irradiating β-rays to the deposited layer 6 a of the SPM 6 collected on one surface (upper surface) of the ribbon filter 5, and on the other side (upper side). On the side), there is provided a detector 8 for detecting β-rays transmitted through the deposition layer 6a. The detector 8 includes, for example, a proportional counter, and outputs a signal corresponding to the intensity of the detected β-ray, and has a function of detecting the α-ray, and has a function of detecting the intensity of the α-ray. Which can measure the concentration of SPM6 by the β-ray absorption method and also measure the intensity of α-rays. Note that 9a and 9b are compensation chambers. Reference numeral 10 denotes a power supply for applying a predetermined DC voltage between the detector 8 and the compensation chamber 9b.
[0010]
Reference numeral 11 denotes an exhaust system for evacuating the vacuum chamber 2 and the compensation chamber 9a to a predetermined vacuum state. The exhaust system 11 is connected to a vacuum pump 13 via a gas flow controller 12, and is used for measuring the flow rate of the sample gas SG. A flow meter 14 is provided.
[0011]
Reference numeral 15 denotes a sampling pipe for supplying a constant flow rate of air as a sample gas SG to the vacuum chamber 2, and a particle sizer 16 is provided at the most upstream end thereof. The classifier 16 classifies SPM5 contained in the sample gas SG sucked into the sampling pipe 15, captures SPM exceeding a predetermined particle size, and vacuums only SPM having a predetermined particle size or less. It passes through the chamber 2.
[0012]
Reference numeral 17 denotes an arithmetic control unit for controlling the measuring apparatus main body 1 and processing signals from the measuring apparatus main body 1 side; 18 for a CPU for performing various calculations; 19 for converting an analog signal into a digital signal; Is an analog signal to which the output of the detector 8 is input, 21 is an analog I / O to which the detection output from the gas flow meter 14 or another sensor 22 is input, and 23 is a digital signal. I / O, 24 is a RAM, 25 is an electrically erasable ROM, 26 is a display for displaying calculation results and the like, and 27 is an input key. Reference numerals 28a and 28b denote COM1 and COM2 as external connection terminals.
[0013]
The operation of the SPM concentration measuring device having the above configuration will be described. When the vacuum pump 8 is turned on, the atmosphere is sucked into the sampling pipe 15 via the particle sizer 16 as the sample gas SG. At this time, among the SPMs contained in the sample gas SG sucked into the sampling pipe 15, those exceeding a predetermined particle size are removed, and SPMs having a predetermined particle size or less (hereinafter, referred to as a divided SPM). Moves to the downstream side (the vacuum chamber 2 side).
[0014]
Thereafter, the sample gas SG containing the classified SPM is introduced into the vacuum chamber 2 through the sampling tube 15 and passes through the ribbon filter 5. At this time, the classified SPM is Are deposited in the form of spots on the upper surface of the substrate to form a deposited layer 6a. When the deposition layer 6a is irradiated with β-rays from the β-ray source 7, the β-rays are absorbed by the divided SPM and the ribbon filter 5, but the transmitted β-rays are detected by the detector 8. . The signal S output from the detector 8 includes a signal A proportional to the α-ray in addition to the signal B proportional to the received β-ray, and this signal S passes through the amplifier 20 and the signal converter 19. It is input to the CPU 18.
[0015]
In the CPU22, first, using said α dose contained in the signal S from the detector made by calculating the correction factor F 1, using the correction factor F 1, the portion indicated by reference sign C in FIG. 2 Calculate the amount of alpha rays (Radon gas). Since the signal S also includes a transmitted β dose derived from β rays existing in nature, a correction coefficient F 2 is created by calculation using the detected α dose, and this correction coefficient F 2 Is used to calculate the β dose in the natural world.
[0016]
Thereafter, the error values respectively derived from the α-rays and the β-rays are subtracted from the transmitted β-ray dose obtained by the detector to cancel the error values, and the corrected transmitted β-ray dose is obtained. By doing so, the influence of errors due to α-rays and β-rays existing in the natural world is removed, and a highly accurate transmitted β-ray value can be obtained in a β-ray absorption type SPM concentration measuring device. In order to determine the mass m [μg] of the SPM attached to the ribbon filter 5 from the transmission β-ray value, the following known equation (1) is used.
m = F × ln (R 0 / R) (1)
However,
R 0 ; β-ray scattering intensity of empty ribbon filter [I / s]
R: β-ray scattering intensity [I / s] of ribbon filter after SPM collection
F: calibration coefficient [μg / m 3 ]
[0017]
The calibration coefficient F is a coefficient for converting the β-ray scattering intensity into the mass of SPM, and is represented by F = A / (μ / ρ). Here, A [cm 3 ] is the measured cross-sectional area [cm 3 ] of the ribbon filter, and μ / ρ [cm / mg] is the intrinsic mass decay coefficient [cm / mg] of the β-ray source 7.
[0018]
The SPM concentration B (μg / m 3 ) is obtained by correcting the mass of the SPM obtained by the above equation (1) and the flow rate and pressure of the sample gas SG.
[0019]
The amount of α-rays and β-rays existing in nature is completely different from place to place and from time to time. As described above, the detector used for the measurement of the β-ray absorption method continuously measures not only the β-ray but also the α-ray, and from the measured α-ray, the detected value of the β-ray used for the original measurement The amount of α-rays in the part that is affecting the amount of α-rays, the amount of β-rays present in nature is also calculated based on this α-rays, and the amount of error given to the transmitted β-rays derived from the α-rays and β-rays Is subtracted from the transmitted β dose, it is possible to obtain a transmitted β dose in which the influence of errors in α-rays and β-rays existing in the natural world has been removed, and by performing calculations based on this, the SPM can be obtained with high accuracy. It can be measured at any time.
[0020]
More specifically, the amount of α-rays and the amount of β-rays existing in nature are respectively Nα and Nβ, the sensitivity of the detector for detecting α-rays is eff (α), and the sensitivity of the detector for detecting β-rays Is known as eff (β), the following equation (2) is established.
Nα · eff (α) / Nβ · eff (β) = 3.5 (2)
The numerical value 3.5 and Nα and Nβ are theoretically identifiable values. Therefore, assuming that the transmitted dose from which the influence of the error of α-rays and β-rays existing in nature is removed is R 1 , and the measured amounts of α-rays and β-rays are R (α) and R (β), respectively, the following (3) ) Expression holds.
R 1 = R (β) −R (α) · 3.5 (3)
Therefore, the SPM can be measured with higher accuracy by correcting the transmitted dose using the above equation (3).
[0021]
As the detector 8, another radiation detector such as a scintillation detector or a semiconductor detector may be used.
[0022]
【The invention's effect】
As described above, in the present invention, the influence of errors derived from α-rays and β-rays existing in the natural world is removed from the β-ray detection value of the detector by using the α-ray dose constantly detected by the detector. As a result, it is possible to obtain a measurement result with higher accuracy than in the past. Therefore, according to the SPM concentration measuring apparatus of the present invention, fine SPM having a small absolute amount such as PM2.5 can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a configuration of a suspended particulate matter concentration measuring device of the present invention.
FIG. 2 is a diagram showing a state of transmission distribution of α rays and β rays in a proportional counter.
[Explanation of symbols]
2: vacuum chamber, 5: collecting means, 6: suspended particulate matter (SPM), 7: β-ray source, 8: detector, 15: sampling tube, SG: sample gas.

Claims (1)

一定流量の大気をサンプルガスとして連続的にサンプリング管内に吸引し、このサンプリング管の下流側に設けられた真空チャンバ内において前記サンプルガス中の浮遊粒子状物質を捕集手段を用いて連続的に捕集し、この捕集した浮遊粒子状物質に対してβ線源からβ線を照射し、そのときの透過β線を検出器によって検出し、この検出器の出力を用いてβ線吸収方式により前記捕集した浮遊粒子状物質の濃度を測定するように構成された浮遊粒子状物質濃度測定装置において、前記検出器によって常時検出されるα線量を用いて、前記検出器におけるβ線検出値から、自然界に存在するα線およびβ線に由来する誤差影響を除去するようにしたことを特徴とする浮遊粒子状物質濃度測定装置。A constant flow of air is continuously sucked into the sampling pipe as a sample gas, and the suspended particulate matter in the sample gas is continuously collected using a collecting means in a vacuum chamber provided on the downstream side of the sampling pipe. The collected suspended particulate matter is irradiated with β-rays from a β-ray source, the transmitted β-rays are detected by a detector, and the output of this detector is used to absorb β-rays. In the suspended particulate matter concentration measuring device configured to measure the concentration of the trapped suspended particulate matter, the β-ray detection value in the detector using an α-ray dose constantly detected by the detector. A device for measuring the concentration of suspended particulate matter, wherein an influence of an error originating from α-rays and β-rays existing in nature is removed.
JP2002189201A 2002-06-28 2002-06-28 Apparatus for measuring concentration of suspended particulate matter Pending JP2004028945A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002189201A JP2004028945A (en) 2002-06-28 2002-06-28 Apparatus for measuring concentration of suspended particulate matter
US10/602,501 US6964190B2 (en) 2002-06-28 2003-06-24 Particulate matter concentration measuring apparatus
CNA2006100025682A CN1841044A (en) 2002-06-28 2003-06-25 Particulate matter concentration measuring apparatus
CNA2006100025678A CN1841043A (en) 2002-06-28 2003-06-25 Particulate matter concentration measuring apparatus
CN031492886A CN1470862B (en) 2002-06-28 2003-06-25 Apparatus for measuring concentration of micro particle like matter and filtering band for sand measuring
DE10328867A DE10328867A1 (en) 2002-06-28 2003-06-26 Device for measuring the concentration of a particulate substance and filter tape used for measuring the concentration of a particulate substance
US11/119,123 US7159446B2 (en) 2002-06-28 2005-04-29 Particulate matter concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189201A JP2004028945A (en) 2002-06-28 2002-06-28 Apparatus for measuring concentration of suspended particulate matter

Publications (1)

Publication Number Publication Date
JP2004028945A true JP2004028945A (en) 2004-01-29

Family

ID=31183688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189201A Pending JP2004028945A (en) 2002-06-28 2002-06-28 Apparatus for measuring concentration of suspended particulate matter

Country Status (2)

Country Link
JP (1) JP2004028945A (en)
CN (2) CN1841043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226906A (en) * 2005-02-18 2006-08-31 Horiba Ltd Instrument for measuring concentration of suspended particulate matter
CN103277845A (en) * 2013-04-27 2013-09-04 林智勇 PM2.5 filtering window device functioning at low temperature and high temperature
CN103776783A (en) * 2014-02-20 2014-05-07 中国环境科学研究院 Measuring method of concentration of cationic surface organic active substances in air
CN109765157A (en) * 2019-02-26 2019-05-17 北京清环宜境技术有限公司 Particulate matter on-line computing model based on β ray method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608009A (en) * 2011-12-14 2012-07-25 河北先河环保科技股份有限公司 Automatic particle monitor
CN102721580B (en) * 2012-07-11 2016-04-13 山东省分析测试中心 Multifunction atmospheric floating dust gathers and sample preparation system automatically
CN102928264B (en) * 2012-09-29 2015-09-02 中国科学院安徽光学精密机械研究所 Particle PM10 particle diameter cutter sweep
CN102980992B (en) * 2012-10-31 2014-03-19 北京林业大学 Method and apparatus for measuring value of particulate matters capable of entering into lung and adsorbed by twigs
CN103323319A (en) * 2012-11-23 2013-09-25 江苏天瑞仪器股份有限公司 Enriching and detecting equipment for particles
CN105092442B (en) * 2014-05-14 2018-07-20 江苏元泰智能科技股份有限公司 A kind of fine particle measuring device and its measurement method
CN104359816A (en) * 2014-11-19 2015-02-18 武汉怡特环保科技有限公司 Beta-ray atmospheric particulate matter monitoring device
JP6714441B2 (en) * 2016-06-09 2020-06-24 アズビル株式会社 Particle detecting device and method of controlling particle detecting device
JP6586929B2 (en) * 2016-07-29 2019-10-09 東亜ディーケーケー株式会社 measuring device
CN107917862B (en) * 2017-12-29 2020-08-14 安徽蓝盾光电子股份有限公司 Beta ray method particulate matter monitoring devices with automatic early warning function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226906A (en) * 2005-02-18 2006-08-31 Horiba Ltd Instrument for measuring concentration of suspended particulate matter
CN103277845A (en) * 2013-04-27 2013-09-04 林智勇 PM2.5 filtering window device functioning at low temperature and high temperature
CN103776783A (en) * 2014-02-20 2014-05-07 中国环境科学研究院 Measuring method of concentration of cationic surface organic active substances in air
CN109765157A (en) * 2019-02-26 2019-05-17 北京清环宜境技术有限公司 Particulate matter on-line computing model based on β ray method

Also Published As

Publication number Publication date
CN1841043A (en) 2006-10-04
CN1841044A (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP2004028945A (en) Apparatus for measuring concentration of suspended particulate matter
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
CN105334147B (en) Particulate matter on-line monitoring system and method based on β ray methods and light scattering method
US9201056B2 (en) Apparatus and process for measuring properties
FI70750C (en) ANORDINATION FOR THE MAINTENANCE OF THE CONCENTRATION FOR AND FOR THE OCCASION OF A TILLSATSAEMNE
JP2003139725A (en) Instrument for measuring suspended particulate substance
JPH07198856A (en) Method and apparatus for measuring concentration of particular radioactive substance in the air
JP2013061254A (en) Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method
JP2002357532A (en) Floating particle-like substance measuring apparatus
JP2004003900A (en) Apparatus for measuring concentration of suspended particulate matter
JPS62159079A (en) Method of measuring radioactive contamination and radiation and sensor
JP4455279B2 (en) Radioactive dust monitor
JP4184176B2 (en) Airborne particulate matter concentration measuring device
JPH01134291A (en) Scintillation type dose rate meter
JPH09211133A (en) Radiation monitor
CN111929224B (en) Method, device, equipment and storage medium for determining particle content in infrared cell detection
RU2123192C1 (en) Radiometer for on-line measurement of volumetric activities of radon, thoron and daughter products of their decay in air
Gründel et al. Characterisation of an electronic radon gas personal dosemeter
JPS6255549A (en) Beta rays absorption type continuous floating dust measuring apparatus
CN115436987B (en) Gamma-beta joint monitoring system and method for I-131 in air
JPS60113173A (en) Background subtracting method of pollutive radiation dode measuring device
JPS6118143B2 (en)
JPS63285485A (en) Detecting apparatus of radiation contamination density
CN115015987A (en) Device and method for synchronously measuring effective decay constant and radon exhalation rate
US6717153B2 (en) Apparatus and methods for monitoring emissions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926