JP2004028630A - Method for measuring road surface form - Google Patents

Method for measuring road surface form Download PDF

Info

Publication number
JP2004028630A
JP2004028630A JP2002181635A JP2002181635A JP2004028630A JP 2004028630 A JP2004028630 A JP 2004028630A JP 2002181635 A JP2002181635 A JP 2002181635A JP 2002181635 A JP2002181635 A JP 2002181635A JP 2004028630 A JP2004028630 A JP 2004028630A
Authority
JP
Japan
Prior art keywords
road surface
dimensional
measuring
data
observation points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181635A
Other languages
Japanese (ja)
Inventor
Yoshio Obara
小原 吉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002181635A priority Critical patent/JP2004028630A/en
Publication of JP2004028630A publication Critical patent/JP2004028630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Road Repair (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can easily and accurately measure a road surface form. <P>SOLUTION: A plurality of observation points C are set on the road surface 4 as an object. Three-dimensional positions of the respective observation points C are measured by an optical wave range finder 1. A three-dimensional form of the road surface 4 as the object is calculated by using data of the three-dimensional positions of the obtained observation points C. Many of the observation points C are measured easily, so that the three-dimensional form of the road surface 4 as the object can be obtained precisely and accurately by calculation using data of the points C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、凹凸のある路面などの表面形状を詳しく測定する場合などに特に適した路面形状の計測方法に関するものである。
【0002】
例えば路面舗装の修復作業を行う際には、表面の凹凸の形状などの現状をまず計測し、そのデータを基にして目標とする出来上がり形状との差異から舗装材の必要量が見積もられる。舗装修復では工事の材料費の大半は舗装材で占められるから、舗装材の必要量を正確に把握することは極めて重要であり、そのためには現状の路面形状を正確に知る必要がある。
【0003】
従来行われている路面形状の計測方法としては、対象となる1つの工区内において、例えば10〜20mごとにレベルと呼ばれる測量器械で横断測量を行うことが一般的であり、計測個所の中間に散在する窪みやなだらかな起伏などは考慮されない。対象区間の舗装材の必要量は、各計測個所の断面図と目標とする出来上がり形状との差異をそれぞれ算出し、その平均値から求められることになるので、舗装材の必要量は必然的に大きな誤差を伴いやすい。この誤差を小さくするには上述の横断測量を行う箇所を多くすればよいが、計測には相当の工数を必要とするなどの問題があり、計測個所を増やすことは容易ではなかった。
【0004】
【発明が解決しようとする課題】
この発明はこのような問題点に着目し、計測個所を増やすことが容易で路面形状を正確に計測できる方法を提供することを課題としてなされたものである。
【0005】
【課題を解決するための手段】
上記の課題を達成するために、この発明の計測方法は、対象となる路面における複数個の観測点の三次元位置を光波測距儀により測定し、得られた各観測点の三次元位置のデータを用いて対象となる路面の三次元形状を演算するようにしている。光波測距儀を使用して観測点を視準すれば、光波測距儀を設置してある基準点に対する観測点の相対的な三次元位置や、基準点の絶対的な三次元位置が既知であれば観測点の絶対的な三次元位置を容易に測定できるから、多数の観測点について測定し、そのデータを用いて演算することにより、対象となる路面の三次元形状を精度よく求めることができる。
【0006】
上述の演算に際しては、例えば隣接する観測点間を直線で結び、直線の両端の三次元位置から直線上の任意の箇所の三次元位置を求め、この三次元位置のデータを演算に利用することができ、これによって正確な演算が可能となる。
【0007】
また、演算で求められた三次元形状に基づいて、対象となる路面の等高線図を作成するようにしている。この等高線図はそのまま平面図としてディスプレイに表示し、あるいはこの等高線図を利用して対象となる路面の俯瞰図を作成してディスプレイに表示するようにしている。また必要に応じてプリントアウトすることもでき、種々の用途に利用することができる。
【0008】
また、求められた三次元形状に基づいて、対象となる路面の所定箇所における断面図を作成するようにしている。断面図の作成箇所を増やすことは容易であるから、対象区間の舗装材の必要量を正確に算出することが可能となる。
【0009】
【発明の実施の形態】
次にこの発明の実施の形態を説明する。図1及び図2は発明を実施する要領の説明図であり、1は光波測距儀、2はコンピュータ、3は測量用ポール、4は計測の対象となる路面、Aは基準点となる定点、Bは方向基準点、Cは観測点である。コンピュータ2には以下に述べる各種の操作や演算に適合したソフトウェアがあらかじめインストールされており、このソフトウェアを利用して操作や演算が行われる。計測の際には、図1に示すようにまず光波測距儀1を定点Aに設置し、方向基準点Bを視準して内部の角度を0にセットする。
【0010】
計測はこの状態で行われるのであり、観測点Cを視準して水平角θ、高低角α、斜距離Lを測定してそのデータをコンピュータ2に入力する。なお、測量用ポール3の高さHは既知であり、そのデータはあらかじめコンピュータ2に入力しておく。次に、定点Aを基準点としてX=0、Y=0と置き、定点Aと方向基準点B間の線分を基準軸として、上記のデータθ、α、L及びHを用いて観測点Cの三次元位置X、Y、Zを計算するのであり、これにより定点Aを基準とする観測点Cの三次元位置のデータを得る。なお定点A、すなわち基準点の絶対的な三次元位置が既知であれば、上述のような定点Aに対する相対的な三次元位置ではなく、観測点の絶対的な三次元位置のデータが得られる。
【0011】
上記の手順を対象となる路面4上の複数個の観測点について繰り返すことにより、複数個の観測点の三次元位置のデータがそれぞれ得られるので、そのX値とY値を用いて各観測点の二次元位置をコンピュータ2のディスプレイ上に点表示する。この点表示により、観測点の分布状態や測定忘れ箇所を確認できるので、観測点の追加や念のため測定しておいた方が良い点などを即座に発見することができる。なお、点表示を平面図の形式で行う場合にはZ値の表示を省略してもよいが、場合によっては各点のZ値を例えば数値によって併記することもできる。また平面図ではなく、Z値を棒グラフで表した俯瞰図の形式を用いることもできる。
【0012】
観測点の密度や位置は、例えば舗装材の必要量の算出などの計測の目的や、凹凸の度合いなどに応じて適宜選定されればよい。また、実際の工事作業の際には例えば歩道や側溝、水路などの周辺のデータが必要となる場合があるので、計測の目的に直接関係する箇所だけでなく、周辺の事物にまで範囲を拡げて予備的な観測点を選定しておくことが望ましい。この場合には、目的のために直接必要となる観測点群と予備的な観測点群とを区分できるようにしておくのであり、例えば認識コードや観測点名を付与したり、あるいはディスプレイに表示する場合に色分けできるような機能を持たせておく。
【0013】
隣接する観測点間の三次元位置のデータは、図3に例示したように観測点間を直線5で結ぶ結線処理を行い、直線5上の任意の箇所のデータを直線両端の三次元位置から比例近似計算によって求めることにより補完できる。図3では結線処理により多数の三角形が構成されているが、隣接する観測点間のデータを補完することができればよいので、四角形などの他の多角形が構成されてもよい。
【0014】
こうして多数の観測点C、C……についてそれらの三次元位置のデータが得られるので、これらのデータから対象となる路面4の三次元形状が求められる。図4は同じ高さとなる点を結んだ等高線を演算し、等高線図の形式で路面4の三次元形状を表した例を示しており、これをコンピュータ2のディスプレイに必要に応じて表示し、あるいはプリントアウトするのである。また図示はしてないが、等高線図を利用して計測面の俯瞰図を作成してこれをディスプレイに表示し、あるいはプリントアウトすることも可能となる。
【0015】
例えば舗装材の必要量を算出する場合には、上記によって求められた路面4の三次元形状に基づいて、図5に示すような断面図が多数作成される。図4のa−a、b−b等の鎖線は断面図を作成する箇所を例示したものである。なお、図5は高さ(Z軸)を拡大して示してある。対象区間の舗装材の必要量は、各断面図と目標とする出来上がり形状との差異の平均値から求められるが、断面図の作成箇所を増やすことは容易であるから、対象区間の舗装材の必要量を正確に算出することができるのである。
【0016】
【発明の効果】
以上の説明から明らかなように、この発明の計測方法は、対象となる路面における複数個の観測点の三次元位置を光波測距儀により測定し、得られた各観測点の三次元位置のデータを用いて対象となる路面の三次元形状を演算するようにしている。光波測距儀を使用して観測点を視準すれば、光波測距儀を設置してある基準点に対する観測点の相対的な三次元位置を容易に測定できるから、多数の観測点について測定し、そのデータを用いて演算することが可能となり、対象となる路面の三次元形状を精度よく求めることができる。
【0017】
上述の演算に際しては、例えば隣接する観測点間を直線で結び、直線の両端の三次元位置から直線上の任意の箇所の三次元位置を求め、この三次元位置のデータを演算に利用する方法では、観測点以外の箇所の三次元位置を補完して正確な演算を行うことが可能となる。
【0018】
また、演算で求められた三次元形状に基づいて、対象となる路面の等高線図を作成する方法では、この等高線図はそのまま利用して表示したり、これを加工して表示したりするなど、種々の用途に利用することができる。
【0019】
また、求められた三次元形状に基づいて、対象となる路面の所定箇所における断面図を作成する方法では、対象区間の舗装材の必要量を正確に算出することが可能となる。
【図面の簡単な説明】
【図1】この発明を実施する要領の説明図である。
【図2】同じくこの発明を実施する要領の説明図である。
【図3】データを補完するための結線処理を例示した図である。
【図4】この発明により得られた等高線図である。
【図5】この発明により得られた三次元形状に基づいて作成される断面図の例である。
【符号の説明】
1 光波測距儀
2 コンピュータ
3 測量用ポール
4 路面
A 定点
B 方向基準点
C 観測点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a road surface shape, which is particularly suitable for, for example, measuring the surface shape of an uneven road surface in detail.
[0002]
For example, when performing a repair work on a road surface pavement, the present condition such as the shape of the surface unevenness is first measured, and the required amount of the pavement material is estimated from the difference from the target finished shape based on the data. In pavement rehabilitation, most of the construction material cost is occupied by pavement material, so it is extremely important to accurately determine the required amount of pavement material.
[0003]
Conventionally, as a method of measuring a road surface shape, it is common to perform a cross-sectional survey with a surveying instrument called a level every 10 to 20 m, for example, in one target construction section, and in the middle of a measurement location. Scattered depressions and gentle undulations are not considered. The required amount of paving material in the target section is calculated from the difference between the cross-sectional view of each measurement point and the target finished shape, and the average value is calculated. It is easy to involve large errors. In order to reduce this error, it is only necessary to increase the number of places where the above-mentioned cross-sectional survey is performed, but it is not easy to increase the number of measurement points due to the problem that a considerable number of steps are required for measurement.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such a problem, and an object thereof is to provide a method capable of easily measuring a road surface shape by easily increasing the number of measurement points.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the measurement method of the present invention measures the three-dimensional positions of a plurality of observation points on a target road surface using a lightwave ranging instrument, and obtains the three-dimensional positions of the obtained observation points. The three-dimensional shape of the target road surface is calculated using the data. If the observation point is collimated using a lightwave rangefinder, the relative three-dimensional position of the observation point with respect to the reference point where the lightwave rangefinder is installed and the absolute three-dimensional position of the reference point are known. If this is the case, the absolute three-dimensional position of the observation point can be easily measured.Therefore, it is necessary to accurately measure the three-dimensional shape of the target road surface by measuring at many observation points and calculating using the data. Can be.
[0006]
In the above calculation, for example, a line is connected between adjacent observation points, a three-dimensional position of an arbitrary point on the straight line is obtained from the three-dimensional positions at both ends of the straight line, and the data of the three-dimensional position is used for the calculation. , Which allows accurate calculations.
[0007]
Further, a contour map of the target road surface is created based on the three-dimensional shape obtained by the calculation. This contour map is displayed as it is on the display as a plan view, or an overhead view of the target road surface is created using the contour map and displayed on the display. It can also be printed out as needed, and can be used for various purposes.
[0008]
Further, based on the obtained three-dimensional shape, a cross-sectional view at a predetermined location on the target road surface is created. Since it is easy to increase the number of locations where the cross-sectional views are created, it is possible to accurately calculate the required amount of pavement material in the target section.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described. 1 and 2 are explanatory views of the procedure for carrying out the present invention, wherein 1 is an optical distance meter, 2 is a computer, 3 is a survey pole, 4 is a road surface to be measured, and A is a fixed point serving as a reference point. , B are direction reference points, and C is an observation point. Software suitable for various operations and calculations described below is installed in the computer 2 in advance, and operations and calculations are performed using this software. At the time of measurement, first, as shown in FIG. 1, the optical distance measuring instrument 1 is set at a fixed point A, and a direction reference point B is collimated to set the internal angle to zero.
[0010]
The measurement is performed in this state. The observation point C is collimated to measure the horizontal angle θ, the elevation angle α, and the oblique distance L, and the data is input to the computer 2. The height H of the survey pole 3 is known, and its data is input to the computer 2 in advance. Next, X = 0 and Y = 0 are set with the fixed point A as a reference point, and the observation point is set using the above data θ, α, L and H with the line segment between the fixed point A and the direction reference point B as a reference axis. The three-dimensional position X, Y, Z of C is calculated, and thereby the data of the three-dimensional position of the observation point C with respect to the fixed point A is obtained. If the fixed point A, that is, the absolute three-dimensional position of the reference point is known, the data of the absolute three-dimensional position of the observation point can be obtained instead of the three-dimensional position relative to the fixed point A as described above. .
[0011]
By repeating the above procedure for a plurality of observation points on the target road surface 4, data of the three-dimensional positions of the plurality of observation points can be obtained. Are displayed as dots on the display of the computer 2. This point display allows the user to confirm the distribution state of the observation points and the places where the measurement was forgotten, so that it is possible to immediately find points that should be measured for the addition of the observation points or just in case. When the point display is performed in the form of a plan view, the display of the Z value may be omitted. However, in some cases, the Z value of each point may be described by a numerical value, for example. Instead of a plan view, a bird's-eye view format in which Z values are represented by a bar graph can be used.
[0012]
The density and position of the observation points may be appropriately selected according to the purpose of measurement such as calculation of the required amount of pavement material and the degree of unevenness. In addition, during actual construction work, there may be cases where peripheral data such as sidewalks, gutters, and waterways are required.Therefore, the range should be expanded not only to locations directly related to the purpose of measurement, but also to peripheral objects. It is desirable to select preliminary observation points. In this case, the observation point group that is directly required for the purpose and the preliminary observation point group are made to be distinguishable, for example, an identification code or an observation point name is given or displayed on a display. Provide a function that allows you to color-code in cases.
[0013]
The data of the three-dimensional position between the adjacent observation points is subjected to a connection process of connecting the observation points with a straight line 5 as illustrated in FIG. It can be complemented by finding by a proportional approximation calculation. Although a large number of triangles are formed by the connection processing in FIG. 3, another polygon such as a quadrangle may be formed as long as data between adjacent observation points can be complemented.
[0014]
Since the data of the three-dimensional positions of many observation points C, C... Are obtained in this way, the three-dimensional shape of the target road surface 4 is obtained from these data. FIG. 4 shows an example in which a contour line connecting points having the same height is calculated and the three-dimensional shape of the road surface 4 is represented in the form of a contour map, and this is displayed on the display of the computer 2 as necessary. Or print out. Although not shown, it is also possible to create a bird's-eye view of the measurement surface using the contour map and display this on a display or to print out.
[0015]
For example, when calculating the required amount of pavement material, many cross-sectional views as shown in FIG. 5 are created based on the three-dimensional shape of the road surface 4 obtained as described above. Dashed lines such as aa and bb in FIG. 4 exemplify places where a cross-sectional view is created. FIG. 5 shows the height (Z axis) in an enlarged manner. The required amount of pavement material in the target section can be obtained from the average value of the difference between each cross-sectional view and the target finished shape. The required amount can be calculated accurately.
[0016]
【The invention's effect】
As is clear from the above description, the measurement method of the present invention measures the three-dimensional positions of a plurality of observation points on a target road surface using a light wave ranging instrument, and obtains the three-dimensional positions of the obtained observation points. The three-dimensional shape of the target road surface is calculated using the data. If the observation points are collimated using a lightwave rangefinder, the relative three-dimensional position of the observation point with respect to the reference point where the lightwave rangefinder is installed can be easily measured. In addition, the calculation can be performed using the data, and the three-dimensional shape of the target road surface can be obtained with high accuracy.
[0017]
In the above calculation, for example, a method in which adjacent observation points are connected by a straight line, a three-dimensional position of an arbitrary point on the straight line is obtained from three-dimensional positions at both ends of the straight line, and data of the three-dimensional position is used for the calculation. Thus, it is possible to perform an accurate calculation by complementing the three-dimensional position of a portion other than the observation point.
[0018]
Also, in the method of creating a contour map of the target road surface based on the three-dimensional shape obtained by the calculation, the contour map may be displayed as it is, or it may be processed and displayed. It can be used for various applications.
[0019]
Further, in the method of creating a cross-sectional view at a predetermined location on a target road surface based on the obtained three-dimensional shape, it is possible to accurately calculate the required amount of the pavement material in the target section.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for implementing the present invention.
FIG. 2 is an explanatory view of a method for implementing the present invention.
FIG. 3 is a diagram illustrating a connection process for complementing data;
FIG. 4 is a contour diagram obtained by the present invention.
FIG. 5 is an example of a sectional view created based on a three-dimensional shape obtained by the present invention.
[Explanation of symbols]
Reference Signs List 1 light wave distance measuring instrument 2 computer 3 survey pole 4 road surface A fixed point B direction reference point C observation point

Claims (6)

対象となる路面における複数個の観測点の三次元位置を光波測距儀により測定し、得られた各観測点の三次元位置のデータを用いて対象となる路面の三次元形状を演算することを特徴とする路面形状の計測方法。Measuring the three-dimensional positions of multiple observation points on the target road surface using a lightwave ranging instrument and calculating the three-dimensional shape of the target road surface using the obtained three-dimensional position data of each observation point A road surface shape measuring method characterized by the following. 隣接する観測点間を直線で結び、直線の両端の三次元位置から直線上の任意の箇所の三次元位置を求め、この三次元位置のデータを演算に利用するようにした請求項1記載の路面形状の計測方法。2. The method according to claim 1, wherein adjacent observation points are connected by a straight line, a three-dimensional position of an arbitrary point on the straight line is determined from three-dimensional positions at both ends of the straight line, and data of the three-dimensional position is used for calculation. Road surface shape measurement method. 演算で求められた三次元形状に基づいて、対象となる路面の等高線図を作成するようにした請求項1又は2に記載の路面形状の計測方法。3. The road surface shape measuring method according to claim 1, wherein a contour map of the target road surface is created based on the three-dimensional shape obtained by the calculation. 得られた等高線図をディスプレイに表示するようにした請求項3記載の路面形状の計測方法。4. The method for measuring a road surface shape according to claim 3, wherein the obtained contour map is displayed on a display. 得られた等高線図を利用して対象となる路面の俯瞰図をディスプレイに表示するようにした請求項3記載の路面形状の計測方法。4. The method for measuring a road surface shape according to claim 3, wherein an overhead view of the target road surface is displayed on a display using the obtained contour map. 演算で求められた三次元形状に基づいて、対象となる路面の所定箇所における断面図を作成するようにした請求項1又は2に記載の路面形状の計測方法。3. The method for measuring a road surface shape according to claim 1, wherein a cross-sectional view at a predetermined location on a target road surface is created based on the three-dimensional shape obtained by the calculation.
JP2002181635A 2002-06-21 2002-06-21 Method for measuring road surface form Pending JP2004028630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181635A JP2004028630A (en) 2002-06-21 2002-06-21 Method for measuring road surface form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181635A JP2004028630A (en) 2002-06-21 2002-06-21 Method for measuring road surface form

Publications (1)

Publication Number Publication Date
JP2004028630A true JP2004028630A (en) 2004-01-29

Family

ID=31178422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181635A Pending JP2004028630A (en) 2002-06-21 2002-06-21 Method for measuring road surface form

Country Status (1)

Country Link
JP (1) JP2004028630A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170821A (en) * 2005-12-19 2007-07-05 Enzan Kobo:Kk Three-dimensional displacement measurement method
EP1591752A3 (en) * 2004-04-30 2009-03-04 Kabushiki Kaisha Topcon Measuring method and measuring system
JP2010249709A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Cross section measuring device, cross section measuring method, and cross section measuring program
CN101881000A (en) * 2010-06-11 2010-11-10 中国人民解放军国防科学技术大学 Photographic measurement system and method for pavement evenness
CN103148843A (en) * 2013-02-07 2013-06-12 上海岩土工程勘察设计研究院有限公司 Observation method for deformation observation instrument

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591752A3 (en) * 2004-04-30 2009-03-04 Kabushiki Kaisha Topcon Measuring method and measuring system
US7671998B2 (en) 2004-04-30 2010-03-02 Kabushiki Kaisha Topcon Surface configuration measuring method and surface configuration measuring system
JP2007170821A (en) * 2005-12-19 2007-07-05 Enzan Kobo:Kk Three-dimensional displacement measurement method
JP2010249709A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Cross section measuring device, cross section measuring method, and cross section measuring program
CN101881000A (en) * 2010-06-11 2010-11-10 中国人民解放军国防科学技术大学 Photographic measurement system and method for pavement evenness
CN103148843A (en) * 2013-02-07 2013-06-12 上海岩土工程勘察设计研究院有限公司 Observation method for deformation observation instrument

Similar Documents

Publication Publication Date Title
US10191183B2 (en) Method of constructing digital terrain model
CA2610144C (en) Terrain modeling based on curved surface area
KR101843866B1 (en) Method and system for detecting road lane using lidar data
US9068849B2 (en) Method and system for reducing shape points in a geographic data information system
JP6591131B1 (en) Structure measuring apparatus and structure measuring method
CN111238504B (en) Road segment modeling data generation method and device of road map and related system
CN109491384B (en) Method and device for acquiring road marking data
KR20130096012A (en) Method for calculating the curve radius and the longitudinal/transverse gradient of the road using the lidar data
JP2019137989A (en) Structure deformation detector
CN111238502A (en) Road map generation method, device and related system
CN109937342B (en) Method, device and system for locating moving object
CN111238498A (en) Lane-level display road map generation method and device and related system
JP2004028630A (en) Method for measuring road surface form
JP2003288665A (en) Road aspect estimation method and system using traffic volume sensor
JPH09264743A (en) Control method for finished form of pavement
CN111238503A (en) Road segment map generation method, device and related system
CN111238500B (en) Map generation method, device and system for road segments of road map area
KR20200036404A (en) Apparatus and method for establishing a hd map
CN109405834A (en) A kind of shield angle real-time resolving method and system based on numerical map
KR100451705B1 (en) Fabricating Method of a Digital Map by Curve Fitting of GPS Coordinates
CN107796407A (en) A kind of map-matching method and device
JP7133821B1 (en) Automatic measurement program, automatic measurement device and automatic measurement method by arbitrary coordinate system point cloud
KR980011955A (en) Position detection method by the reflected scattered light of the laser beam irradiated to the position detection object
CN111238499A (en) Road map generation method and device and related system
CN117058210B (en) Distance calculation method and device based on vehicle-mounted sensor, storage medium and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Effective date: 20051025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307