JP2004028289A - Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same - Google Patents

Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same Download PDF

Info

Publication number
JP2004028289A
JP2004028289A JP2002189106A JP2002189106A JP2004028289A JP 2004028289 A JP2004028289 A JP 2004028289A JP 2002189106 A JP2002189106 A JP 2002189106A JP 2002189106 A JP2002189106 A JP 2002189106A JP 2004028289 A JP2004028289 A JP 2004028289A
Authority
JP
Japan
Prior art keywords
pressure bearing
dynamic pressure
sintered material
dynamic
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002189106A
Other languages
Japanese (ja)
Inventor
Kiyobumi Inoue
井上 清文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2002189106A priority Critical patent/JP2004028289A/en
Publication of JP2004028289A publication Critical patent/JP2004028289A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve abrasion resistance of a dynamic-pressure bearing formed from the porous sintered material, and to improve durability and reliability thereof. <P>SOLUTION: This manufacturing method has a process for filling the first sintered material M<SB>1</SB>having magnetism in a mold 11 magnetized in the predetermined part thereof to adhere the first sintered material M<SB>1</SB>to the predetermined part with the magnetic force, a process for filling the second sintered material M<SB>2</SB>in the mold 11, a process for compressing the filled first sintered material M<SB>1</SB>and the second sintered material M<SB>2</SB>for molding, and a process for burning the sintered material compressed for molding. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、動圧軸受の製造方法並びに動圧軸受及びこの動圧軸受を備えた動圧軸受装置、スピンドルモータ、ディスク駆動装置に関するものである。
【0002】
【従来の技術】
例えば特開平10−196646号公報に開示されているような多孔質焼結材からなる動圧軸受が、高速回転するモータ等の軸受として近年広く使用されつつある。この多孔質焼結材からなる動圧軸受では、焼結材中にオイルが含浸されているので、摺動性に優れ、いわゆるロックを起こしにくいという利点がある。
【0003】
【発明が解決しようとする課題】
一方、この多孔質焼結材は動圧軸受を構成する部材としては軟質であるため、ステンレス鋼や銅系合金などの無垢の金属部材に比べて耐摩耗性に劣るという問題があった。このため、多孔質焼結材からなる動圧軸受の耐久性や信頼性をいかにして向上させるかが従来からの大きな課題であった。
【0004】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは耐摩耗性を高めた動圧軸受を確実且つ効率的に製造できる方法を提供することにある。
【0005】
また本発明の目的は、高い耐摩耗性を有し、耐久性や信頼性を向上させた多孔質焼結材からなる動圧軸受を提供することにある。
【0006】
さらに本発明の目的は、耐久性および信頼性に優れた動圧軸受装置、スピンドルモータ、ディスク駆動装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、動圧軸受装置において、振動や衝撃といった外乱あるいはモータの起動・停止時の低速回転時に軸部材とスラストプレート、あるいは軸部材と動圧軸受との接触が発生するが、実際に接触が頻繁に発生する部位は限られているとの知見を得た。具体的には、動圧軸受の内周面の上下端部及びスラスト軸受側端面の内外周である。そこで、金型を用いて動圧軸受を加圧成形する際に、接触による摩耗が懸念される部分に対応する金型の部分に、鉄などの耐摩耗性の高い材料を局在させておけばよいことを見出し本発明をなすに至った。
【0008】
すなわち、第1の発明に係る動圧軸受の製造方法では、所定部分を磁気帯びさせた金型に、磁性を有する第1の焼結材料を充填し、この第1の焼結材料を磁力により前記所定部分に付着させる工程、第2の焼結材料を前記金型に充填する工程、充填された第1の焼結材料および第2の焼結材料を圧縮成形する工程、圧縮成形された焼結材料を焼成する工程を有する構成とした。
【0009】
また第2の発明に係る動圧軸受の製造方法では、帯電させた第3の焼結材料を、この第3の焼結材料と反対の極性に所定部分を帯電させた金型に充填し、電気的吸引力により第3の焼結材料を前記所定部分に付着させる工程、第2の焼結材料を前記金型に充填する工程、充填された第3の焼結材料および第2の焼結材料を圧縮成形する工程、圧縮成形された焼結材料を焼成する工程を有する構成とした。
【0010】
本発明に係る動圧軸受では、多孔質焼結体からなる円筒状の動圧軸受であって、軸部材と接触しやすい部分の表面硬度を他の部分よりも高くする構成とした。ここで、この軸部材と接触しやすい部分は通常は、円筒状の動圧軸受の内周面の両端部である。
【0011】
動圧軸受の耐久性や信頼性をより向上させるには、前記軸部材と接触しやすい部分の表面硬度を前記他の部分の表面硬度の2倍以上とするのが望ましい。また前記軸部材と接触しやすい部分の主成分としてはFe又はセラミックが好ましい。
【0012】
さらに本発明に係る動圧軸受装置では、有底穴を有するハウジング部材と、該ハウジング部材の前記有底穴の内周面に取り付けられた円筒状の動圧軸受と、該動圧軸受の中心孔に微小間隙を有して挿通された軸部材とを備え、前記動圧軸受として前記記載の動圧軸受を用いる構成とした。
【0013】
また本発明に係るスピンドルモータでは、前記記載の動圧軸受装置を備えた構成とした。
【0014】
そしてまた本発明のディスク駆動装置では、情報を記録できる円板状記録媒体が装着されるディスク駆動装置において、筐体と、該筐体の内部に固定され前記記録媒体を回転させるスピンドルモータと、前記記録媒体の所望の位置に情報を書き込み又は読み出すための情報アクセス手段とを有し、前記スピンドルモータとして前記記載のモータを用いる構成とした。
【0015】
【発明の実施の形態】
以下、図に基づいて本発明の動圧軸受の製造方法について説明する。図1は、第1の発明に係る動圧軸受の製造方法の一例を示す工程図である。まず、円筒状の溝11aが形成された下金型11において、軸部材3(図4に図示)との接触による摩耗が懸念される、半径方向内方の溝内周面の上下端部分に磁気を帯びさせる。金型の所定部分に磁気を帯びさせる方法としては従来公知の方法を用いることができ、例えば電磁石やコイル、永久磁石などを金型の所望の部分に所定時間以上対置することによりその部分を磁化させる、あるいは金型の所定部分に溝を形成し、そこに磁石を填め込むことによって磁気を帯びさせることができる。
【0016】
次に、所定部分に磁気を帯びさせたこの下金型の溝11aに、磁気を有し且つ耐摩耗性を有する第1の焼結材料Mを充填し、下金型の溝11aの磁気帯び部分に焼結材料Mを付着させる(図1(a))。付着しなかった焼結材料Mは溝11aから取り出す。ここで使用できる焼結材料Mとしては、磁性を有し且つ耐摩耗性を有するものであれば特に限定はなく、例えば、Fe、Ni、Cr、Co、Mo、Ti、Wなどを主成分とする炭化物や合金で、磁性を有するものなどが挙げられる。この中でも、Fe及びFeを主成分とする合金が好適に使用できる。Feを主成分とする合金としては、Al、Ti、Nb、Co、Cr、Mo、W、V、Ta、Si、C、B、Zr、Pからなる群から選ばれる1又は2以上の元素とFeとの合金が挙げられる。
【0017】
そして、第2の焼結材料M2を下金型11の溝11aに充填する(同図(b))。ここで使用できる第2の焼結材料Mは多孔質焼結材として従来から使用されている焼結材料であって、例えばFe−CuやCu−Sn、Cu−Sn−Pb、Fe−Cなどが挙げられる。
【0018】
次に、下金型の溝11aに嵌合する凸部を有する上金型12を上方から下降させて、溝11aに充填した第1の焼結材料Mおよび第2の焼結材料Mを圧縮成形する(同図(c))。圧縮成形条件としては特に限定はなく従来公知の条件を用いることができ、例えば成形圧力が5〜8ton/cmの範囲で、成形時間2〜10secの範囲である。
【0019】
圧縮成形した動圧軸受前駆体2’は金型11から取り出された後(同図(d))、焼成される。焼成条件としては従来公知の条件がここでも採用でき、焼成温度は例えば銅系材料の場合には750〜900℃の範囲、鉄系の場合には980〜1180℃の範囲、ステンレス鋼の場合には1180〜1350℃の範囲である。
【0020】
以上のようにして製造された動圧軸受は、次工程以後従来公知の方法により、外周面および内周面がサイジングされた後その内周面に動圧発生溝が形成され、完成品としての動圧軸受とされる。図2に、完成した動圧軸受の一例を示す断面図を示す。図2の動圧軸受の内周面の上下端部には、第1の焼結材料からなる高硬度部分21,22が形成され、また軸方向に離隔した位置には2つのラジアル動圧発生溝23a、23bが形成されている。ここで、動圧軸受装置としたときの潤滑流体における負圧の発生を防止するために、ラジアル動圧発生溝23aは軸方向下方に潤滑流体を流動させる、軸方向に不平衡なヘリングボーン状溝としている。ラジアル動圧発生溝23aを構成する一対のスパイラル溝部23a、23aのうち、軸方向上側に位置する方のスパイラル溝部23aの軸方向寸法を、軸方向下側に位置する方のスパイラル溝部23aの軸方向寸法よりも幾分大きく設定することで、軸方向上側のスパイラル溝部23aによる潤滑流体に対するポンピング力が軸方向下側のスパイラル溝部23aのポンピング力を上回り、潤滑流体は軸方向下側へと流動させることができる。なお、溝の上下の長さ比や本数など具体的条件は、用いる潤滑流体の種類や微小間隙の幅などを考慮して適宜決定される。
【0021】
次に、第2の発明に係る動圧軸受の製造方法について説明する。接触による摩耗が懸念される部分に対応する金型の部分に、鉄などの耐摩耗性の高い材料を局在させてその部分の表面硬度を高くする点は、第1の発明に係る製造方法と共通し、耐摩耗性の高い材料を局在させる方法として、磁力に換えて電気的吸引力を用いる点が異なる。
【0022】
すなわち、第2の発明に係る製造方法の大きな特徴は、帯電させた第3の焼結材料を、この第3の焼結材料と反対の極性に帯電させた金型の所定部分に電気的吸引力により付着させることにある。なお、これ以外の製造工程は第1の発明に係る製造方法と同じであるのでその説明はここでは省略し、電気的吸引力による付着について以下説明する。
【0023】
円筒状の溝11aが形成された下金型11において、軸部材3(図4に図示)との接触による摩耗が懸念される、半径方向内方の溝内周面の上下端部分を帯電させる。図3に示すように、帯電させる方法としては、例えば金型11の前記の上下端部分の表面に周溝12を形成し、その周溝12にアルミナなどのセラミック材mを充填し、このセラミック材mの充填部分を例えばコロナ放電や導電性ブラシなどにより帯電させればよい。
【0024】
一方、ここで使用する第3の焼結材料としては、帯電性を有し且つ耐摩耗性を有するものであれば特に限定はなく、例えばジルコニアやアルミナなどのセラミック材料が挙げられる。また、Feやステンレス鋼などそのままでは帯電しない材料の場合には、微小のシリカやアルミナなどをそれらの材料表面に付着させることにより摩擦帯電性を付与することができる。
【0025】
このようにして作製した動圧軸受は、図2に示したように、軸部材と接触が懸念される部分、ここでは動圧軸受の内周面の上下端部分21,22の硬度が他の部分よりも高くなっている。これにより、低速回転時や外部衝撃時などに軸部材3が動圧軸受2とたとえ接触したとしても、その接触部分は他の部分よりも硬度を高くしてあるため接触摩耗が抑えられ、耐久性及び信頼性が格段に向上する。
【0026】
前記軸部材と接触しやすい部分の表面硬度としては、他の部分の表面硬度の2倍以上が好ましい。耐摩耗性を向上させると共に耐焼き付き性をも維持・向上させる観点から、軸受部材の大部分にはCu系材料を用いて耐焼き付き性を維持・向上させる一方、耐摩耗性を要求させる部分には主成分がFe又はセラミックの材料を用いるのが好ましい。Cu系材料の硬度は例えば青銅の場合でHB59であり、通常HB100以下である。一方、Feを主成分とする材料の硬度は、例えばSUS304の場合でHB140〜160、SUS420J2の場合でHB170〜200である。またセラミック材料の硬度は、例えばジルコニアの場合でHv1300、アルミナの場合でHv1600である。
【0027】
もちろん、前記説明した製造方法以外の方法により、軸部材と接触が懸念される部分の硬度を他の部分よりも高くした動圧軸受を製造してもよく、この場合の動圧軸受も本発明の技術的範囲に含まれる。
【0028】
次に、このような動圧軸受を用いた動圧軸受装置について説明する。以下、図4に基づいて本発明の動圧軸受装置について詳述する。図4は本発明に係る動圧軸受装置の一例を示す縦断面図である。図4の動圧軸受装置においてハウジング部材4は、円筒状のスリーブ支持部材41と、このスリーブ支持部材41の下端に形成された嵌合溝部43に嵌装されたスラストブッシュ部材42とからなる。スラストブッシュ部材42の上面にはスラスト動圧発生溝42aが形成されている。そして、スリーブ支持部材41の内周面には、軸方向長さがスリーブ支持部材41よりも短い、多孔質焼結体からなる中空円筒状のスリーブ部材(動圧軸受)2が固着されている。図2に示したように、このスリーブ部材2の内周面の上下端部には高硬度部分21,22が形成されていると共に、2つのラジアル動圧発生溝23a,23bが軸方向に離隔して形成され、その下端面にはスラスト動圧発生溝23cが形成されている。
【0029】
一方、軸部材3は、軸部31と、軸部31の下端に形成されたスラストプレート部32とからなる。そして、スラストプレート部32はスリーブ部材2とスラストブッシュ部材42とで形成させる空間に所定間隙を有して挟み込まれ、軸部31はスリーブ部材2の貫通孔24に所定間隙を有して挿通している。スリーブ支持部材41の上側開口には、中央に孔51が穿設されたキャップ部材5が、その孔51に軸部31を挿通させた状態で、その上面とスリーブ支持部材41の上端面とが同一面となるように嵌装されている。
【0030】
そして、ハウジング部材4とキャップ部材5とで囲まれた空間内部は潤滑流体(不図示)で充填される。充填された潤滑流体は、キャップ部材5と軸部テーパ面311とで構成されるテーパシール部Sで外気圧とバランスし、装置外に漏出しないようにシールされている。
【0031】
このような構造の動圧軸受装置において、軸部材3が回転を始めると、スリーブ部材2の内周面に形成されたヘリングボーン型の2つのラジアル動圧発生溝23a,23bで発生する流体動圧により軸部材3のラジアル荷重が支持され、他方スリーブ部材2の下端面及びスラストブッシュ部材42の表面に形成されたスパイラル型のスラスト動圧発生溝23c、42aで発生する流体動圧により軸部材3のスラスト荷重が支持される。一方、軸部材の回転開始及び停止時には軸部材3は動圧軸受2と接触するが、軸部材3が接触する動圧軸受2の部分は高硬度部分21,22としてあるので、軸部材3の接触による動圧軸受2の摩耗は防止される。また、軸部材3の回転中、各動圧発生溝の端部側では潤滑流体の内圧が低下するが、図2に示したように軸方向上側のラジアル動圧発生溝23aを軸方向に不平衡なヘリングボーン状溝としていると、潤滑流体における負圧の発生が抑えられる。
【0032】
次に、本発明に係るモータについて説明する。本発明のモータの大きな特徴は前記説明した動圧軸受装置を搭載した点にある。以下、図に基づいて本発明のモータを詳述する。
【0033】
図5は前記説明した本発明の動圧軸受装置1を搭載したHDDスピンドルモータの縦断面図である。ブラケット6は中心部に設けられた基部61と、この基部61の外周方向に設けられた周壁62と、この周壁62からさらに外方向に延設された鍔部63とからなり、これらが一体且つ同軸的に形成されている。
【0034】
基部61の中心部には環状突部64が形成され、そこに図4に示した動圧軸受装置Bが嵌合固定されている。そして動圧軸受装置Bの軸部材3の上端は、略円筒状のロータハブ7の上面中央部に形成された孔部71に嵌合固定されている。ロータハブ7の内周面には、周方向に多極着磁されたロータマグネット72が全周にわたり配設されている。またロータマグネット72の半径方向内方には、ロータマグネット72に対向してステータ8がブラケット6の基部62に形成された環状突部64に配設されている。ステータ8と環状突部64との固定は、圧入による嵌合固定の他、接着剤による固定でもよい。
【0035】
ロータハブ7の外周下側には鍔部73が形成され、ここにハードディスク(不図示)が装着される。具体的にはロータハブ7の外周部74により位置決めされて、鍔部73の上に一又は複数のハードディスクが装着された後、クランプ部材(不図示)などにより孔部75にネジ止めされて、ハードディスクはロータハブ7に対して保持固定される。
【0036】
本発明のディスク駆動装置について以下説明する。図6に、一般的なディスク駆動装置9の内部構成を模式図として示す。ハウジング(筐体)91の内部は塵・埃などが極端に少ないクリーンな空間を形成しており、その内部に情報を記憶する円板状のディスク板(記録媒体)93が装着されたモータ92が設置されている。加えてハウジング91の内部には、ディスク板93に対して情報を読み書きするヘッド移動機構(情報アクセス手段)が配置され、このヘッド移動機構はディスク板93上の情報を読み書きするヘッド96、このヘッド96を支えるアーム95,およびヘッド96並びにアーム95をディスク板93上の所要位置に移動させるアクチュエータ部94により構成される。
【0037】
【発明の効果】
第1の発明に係る動圧軸受の製造方法では、軸部材との接触による摩耗が懸念される部分に対応する金型部分に磁気を帯びさせておき、磁性を有し耐摩耗性の高い焼結材料をここに充填し、この焼結材料を磁力により前記部分に付着させるようにしたので、局所的に耐摩耗性の高めた動圧軸受を確実且つ効率的に製造できる。
【0038】
第2の発明に係る動圧軸受の製造方法では、軸部材との接触による摩耗が懸念される部分に対応する金型部分を帯電させておき、この金型と反対の極性に帯電させた耐摩耗性の高い焼結材料をここに充填し、この焼結材料を電気的吸引力により前記部分に付着させるようにしたので、第1の発明と同様に、局所的に耐摩耗性の高めた動圧軸受を確実且つ効率的に製造できる。
【0039】
本発明の動圧軸受では、多孔質焼結体からなる円筒状の動圧軸受であって、軸部材と接触しやすい部分の表面硬度を他の部分よりも高くする構成としたので軸部材と接触しても摩耗が抑えられ、耐久性および信頼性が格段に向上した。
【0040】
本発明の動圧軸受装置、スピンドルモータ、ディスク駆動装置では、動圧軸受として前記動圧軸受を用いるので前記と同様の効果が得られる。
【図面の簡単な説明】
【図1】第1の発明に係る動圧軸受の製造方法の一例を示す工程図である。
【図2】本発明の動圧軸受の一例を示す断面図である。
【図3】第2の発明に係る動圧軸受の製造方法に用いる金型の一例を示す断面図である。
【図4】本発明の動圧軸受装置の一例を示す断面図である。
【図5】本発明のスピンドルモータの一例を示す断面図である。
【図6】本発明のディスク駆動装置の一例を示す概説図である。
【符号の説明】
2 スリーブ部材(動圧軸受)
3 軸部材
4 ハウジング部材
B 動圧軸受
11 下金型
12 上金型
21,22 高硬度部分
24 中心孔
 第1の焼結材料
 第2の焼結材料
 第3の焼結材料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a dynamic bearing, a dynamic bearing, and a dynamic bearing device, a spindle motor, and a disk drive provided with the dynamic bearing.
[0002]
[Prior art]
For example, a dynamic pressure bearing made of a porous sintered material as disclosed in Japanese Patent Application Laid-Open No. 10-196646 has been widely used in recent years as a bearing for a high-speed rotating motor or the like. The dynamic pressure bearing made of this porous sintered material has an advantage that since the sintered material is impregnated with oil, it has excellent slidability and is less likely to cause lock.
[0003]
[Problems to be solved by the invention]
On the other hand, since this porous sintered material is soft as a member constituting the dynamic pressure bearing, there is a problem that its wear resistance is inferior to that of a solid metal member such as stainless steel or a copper alloy. For this reason, how to improve the durability and reliability of the hydrodynamic bearing made of a porous sintered material has been a major problem in the past.
[0004]
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a method capable of reliably and efficiently manufacturing a hydrodynamic bearing with improved wear resistance.
[0005]
Another object of the present invention is to provide a dynamic pressure bearing made of a porous sintered material having high wear resistance and improved durability and reliability.
[0006]
A further object of the present invention is to provide a dynamic pressure bearing device, a spindle motor, and a disk drive device having excellent durability and reliability.
[0007]
[Means for Solving the Problems]
In the dynamic pressure bearing device, the shaft member and the thrust plate, or the contact between the shaft member and the dynamic pressure bearing occurs at the time of disturbance such as vibration or impact or at the time of low-speed rotation when the motor is started / stopped. It was found that the sites where contact frequently occurred were limited. Specifically, the upper and lower ends of the inner peripheral surface of the dynamic pressure bearing and the inner and outer periphery of the thrust bearing side end surface. Therefore, when press-molding a dynamic pressure bearing using a mold, a highly wear-resistant material such as iron should be localized in the part of the mold corresponding to the part where the wear due to contact is concerned. The inventors have found that it is sufficient to accomplish the present invention.
[0008]
That is, in the method of manufacturing a dynamic pressure bearing according to the first invention, a mold having a predetermined portion magnetically charged is filled with a first sintered material having magnetism, and the first sintered material is magnetized. Attaching to the predetermined portion, filling the mold with a second sintered material, compressing the filled first sintered material and the second sintered material, The configuration includes a step of firing the binding material.
[0009]
In the method of manufacturing a dynamic pressure bearing according to the second invention, the charged third sintered material is charged into a mold having a predetermined portion charged to a polarity opposite to that of the third sintered material, A step of attaching a third sintered material to the predetermined portion by an electric attraction force, a step of filling a second sintered material into the mold, a filled third sintered material and a second sintered material The structure includes a step of compressing the material and a step of firing the sintered material.
[0010]
The dynamic pressure bearing according to the present invention is a cylindrical dynamic pressure bearing made of a porous sintered body, and has a configuration in which the surface hardness of a portion that is easily in contact with the shaft member is higher than other portions. Here, the portions that are likely to come into contact with the shaft member are usually both ends of the inner peripheral surface of the cylindrical dynamic pressure bearing.
[0011]
In order to further improve the durability and reliability of the dynamic pressure bearing, it is desirable that the surface hardness of a portion that is easy to contact with the shaft member be at least twice the surface hardness of the other portion. In addition, as a main component of the portion that easily contacts the shaft member, Fe or ceramic is preferable.
[0012]
Further, in the hydrodynamic bearing device according to the present invention, the housing member having the bottomed hole, the cylindrical hydrodynamic bearing mounted on the inner peripheral surface of the bottomed hole of the housing member, and the center of the hydrodynamic bearing A shaft member inserted with a minute gap in the hole, and the above-described dynamic pressure bearing is used as the dynamic pressure bearing.
[0013]
Further, a spindle motor according to the present invention has a configuration including the above-described dynamic pressure bearing device.
[0014]
Further, in the disk drive of the present invention, in a disk drive in which a disk-shaped recording medium capable of recording information is mounted, a housing, a spindle motor fixed inside the housing and rotating the recording medium, An information access unit for writing or reading information at a desired position on the recording medium is provided, and the motor described above is used as the spindle motor.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing the dynamic pressure bearing of the present invention will be described with reference to the drawings. FIG. 1 is a process chart showing an example of a method for manufacturing a dynamic pressure bearing according to the first invention. First, in the lower mold 11 in which the cylindrical groove 11a is formed, the upper and lower end portions of the inner circumferential surface of the groove in the radial direction in which there is a concern that abrasion due to contact with the shaft member 3 (shown in FIG. Make it magnetic. As a method of imparting magnetism to a predetermined portion of the mold, a conventionally known method can be used. For example, an electromagnet, a coil, a permanent magnet, or the like is magnetized by facing a desired portion of the mold for a predetermined time or more. Alternatively, the magnet can be made magnetic by forming a groove in a predetermined portion of the mold and inserting a magnet therein.
[0016]
Next, the grooves 11a of the lower mold was magnetized in a predetermined portion, filling the first sintered material M 1 and having a wear resistance has a magnetic, magnetic groove 11a of the lower die depositing a sintered material M 1 in the portion charged (Figure 1 (a)). It has not adhered sintered material M 1 is taken out from the groove 11a. Examples of the sintered material M 1 which may be used is not particularly limited as long as it has and wear resistance having magnetism, for example, Fe, Ni, Cr, Co , Mo, Ti, W and principal component Carbides and alloys having magnetic properties. Among them, Fe and an alloy containing Fe as a main component can be preferably used. Examples of the alloy containing Fe as a main component include one or more elements selected from the group consisting of Al, Ti, Nb, Co, Cr, Mo, W, V, Ta, Si, C, B, Zr, and P. An alloy with Fe is mentioned.
[0017]
Then, the groove 11a of the lower mold 11 is filled with the second sintered material M2 (FIG. 2B). Wherein the second sintered material M 2 which may be used is a sintered material which is conventionally used as a porous sintered material, for example, Fe-Cu and Cu-Sn, Cu-Sn- Pb, Fe-C And the like.
[0018]
Then, by lowering the upper mold 12 having a convex portion fitted into the groove 11a of the lower mold from above, the first sintered material M 1 and the second sintered material filled in the groove 11a M 2 Is compression-molded (FIG. 3 (c)). The compression molding conditions are not particularly limited, and conventionally known conditions can be used. For example, the molding pressure is in the range of 5 to 8 ton / cm 2 and the molding time is in the range of 2 to 10 sec.
[0019]
After the compression molded hydrodynamic bearing precursor 2 ′ is taken out of the mold 11 (FIG. 4D), it is fired. Conventionally known firing conditions can be adopted here, and the firing temperature is, for example, in the range of 750 to 900 ° C. for copper-based materials, 980 to 1180 ° C. for iron-based materials, and in the case of stainless steel. Is in the range of 1180-1350 ° C.
[0020]
The hydrodynamic bearing manufactured as described above, after the next step, the outer peripheral surface and the inner peripheral surface are sized by a conventionally known method, and then a dynamic pressure generating groove is formed on the inner peripheral surface thereof. It is considered as a dynamic pressure bearing. FIG. 2 is a sectional view showing an example of a completed dynamic pressure bearing. High-hardness portions 21 and 22 made of the first sintered material are formed at the upper and lower ends of the inner peripheral surface of the dynamic pressure bearing shown in FIG. 2, and two radial dynamic pressures are generated at positions separated in the axial direction. Grooves 23a and 23b are formed. Here, in order to prevent the generation of negative pressure in the lubricating fluid when the hydrodynamic bearing device is used, the radial dynamic pressure generating groove 23a allows the lubricating fluid to flow downward in the axial direction, and has an unbalanced herringbone shape in the axial direction. It has grooves. Of the pair of spiral grooves 23a 1 and 23a 2 constituting the radial dynamic pressure generating groove 23a, the axial dimension of the spiral groove 23a 1 located on the upper side in the axial direction is set to the spiral groove located on the lower side in the axial direction. by setting somewhat larger than the axial dimension of 23a 2, pumping force for lubricating fluid due to the axial upper side of the spiral groove 23a 1 exceeds the pumping force of the spiral groove 23a 2 in the axial direction lower side, the lubricating fluid is axial It can flow downward in the direction. The specific conditions such as the length ratio and the number of the grooves are determined appropriately in consideration of the type of the lubricating fluid to be used, the width of the minute gap, and the like.
[0021]
Next, a method for manufacturing the dynamic pressure bearing according to the second invention will be described. The manufacturing method according to the first invention is characterized in that a material having high abrasion resistance such as iron is localized in a portion of a mold corresponding to a portion where abrasion due to contact is concerned to increase the surface hardness of the portion. In common with the above, the method of localizing a material having high wear resistance is different from that of the first embodiment in that electric attraction is used instead of magnetic force.
[0022]
That is, a significant feature of the manufacturing method according to the second invention is that the charged third sintered material is electrically attracted to a predetermined portion of a mold charged to a polarity opposite to that of the third sintered material. To adhere by force. Since the other manufacturing steps are the same as those of the manufacturing method according to the first invention, the description is omitted here, and the adhesion by the electric suction force will be described below.
[0023]
In the lower mold 11 in which the cylindrical groove 11a is formed, the upper and lower ends of the inner circumferential surface of the groove in the radial direction, which may be worn due to contact with the shaft member 3 (shown in FIG. 4), are charged. . As shown in FIG. 3, as a charging method, for example, a peripheral groove 12 is formed on the surface of the upper and lower ends of the mold 11, and the peripheral groove 12 is filled with a ceramic material m such as alumina. The charged portion of the material m may be charged by, for example, corona discharge or a conductive brush.
[0024]
On the other hand, the third sintered material used here is not particularly limited as long as it has chargeability and wear resistance, and examples thereof include ceramic materials such as zirconia and alumina. In the case of a material that is not charged as it is, such as Fe or stainless steel, triboelectric charging can be imparted by attaching fine silica or alumina to the surface of the material.
[0025]
As shown in FIG. 2, the hardness of the dynamic pressure bearing manufactured in this way is such that the hardness of the upper and lower end portions 21 and 22 of the inner peripheral surface of the dynamic pressure bearing is different from that of the portion where contact with the shaft member is concerned. Is higher than the part. Thus, even if the shaft member 3 comes into contact with the dynamic pressure bearing 2 during low-speed rotation or an external impact, the contact portion has a higher hardness than other portions, so that contact abrasion is suppressed, and durability is reduced. Performance and reliability are significantly improved.
[0026]
It is preferable that the surface hardness of a portion that is easily contacted with the shaft member be twice or more the surface hardness of the other portion. From the viewpoint of improving wear resistance and maintaining / improving seizure resistance, most of the bearing members use Cu-based materials to maintain / improve seizure resistance. It is preferable to use a material whose main component is Fe or a ceramic. The hardness of the Cu-based material is HB59 in the case of bronze, for example, and is usually HB100 or less. On the other hand, the hardness of a material containing Fe as a main component is, for example, HB140 to 160 in the case of SUS304 and HB170 to 200 in the case of SUS420J2. The hardness of the ceramic material is, for example, Hv1300 in the case of zirconia and Hv1600 in the case of alumina.
[0027]
Of course, by a method other than the above-described manufacturing method, a dynamic pressure bearing may be manufactured in which the hardness of a portion that may be in contact with the shaft member is higher than the hardness of the other portion. Included in the technical scope.
[0028]
Next, a hydrodynamic bearing device using such a hydrodynamic bearing will be described. Hereinafter, the hydrodynamic bearing device of the present invention will be described in detail with reference to FIG. FIG. 4 is a longitudinal sectional view showing an example of the hydrodynamic bearing device according to the present invention. In the dynamic pressure bearing device of FIG. 4, the housing member 4 includes a cylindrical sleeve support member 41 and a thrust bush member 42 fitted in a fitting groove 43 formed at a lower end of the sleeve support member 41. A thrust dynamic pressure generating groove 42 a is formed on the upper surface of the thrust bush member 42. A hollow cylindrical sleeve member (dynamic pressure bearing) 2 made of a porous sintered body and having an axial length shorter than that of the sleeve support member 41 is fixed to the inner peripheral surface of the sleeve support member 41. . As shown in FIG. 2, high hardness portions 21 and 22 are formed at the upper and lower ends of the inner peripheral surface of the sleeve member 2, and two radial dynamic pressure generating grooves 23a and 23b are separated in the axial direction. A thrust dynamic pressure generating groove 23c is formed on the lower end surface thereof.
[0029]
On the other hand, the shaft member 3 includes a shaft portion 31 and a thrust plate portion 32 formed at a lower end of the shaft portion 31. The thrust plate portion 32 is sandwiched with a predetermined gap in a space formed by the sleeve member 2 and the thrust bush member 42, and the shaft portion 31 is inserted through the through hole 24 of the sleeve member 2 with a predetermined gap. ing. In the upper opening of the sleeve support member 41, a cap member 5 having a hole 51 drilled in the center has an upper surface and an upper end surface of the sleeve support member 41 with the shaft portion 31 inserted through the hole 51. They are fitted so as to be on the same surface.
[0030]
The space inside the housing member 4 and the cap member 5 is filled with a lubricating fluid (not shown). The filled lubricating fluid is balanced with the outside air pressure by a taper seal portion S composed of the cap member 5 and the shaft portion tapered surface 311 and is sealed so as not to leak out of the apparatus.
[0031]
In the hydrodynamic bearing device having such a structure, when the shaft member 3 starts rotating, the fluid dynamics generated in the two herringbone-type radial dynamic pressure generating grooves 23a and 23b formed on the inner peripheral surface of the sleeve member 2 are formed. The radial load of the shaft member 3 is supported by the pressure, and the shaft member is formed by the fluid dynamic pressure generated in the spiral type thrust dynamic pressure generating grooves 23 c and 42 a formed on the lower end surface of the sleeve member 2 and the surface of the thrust bush member 42. A thrust load of 3 is supported. On the other hand, at the start and stop of rotation of the shaft member, the shaft member 3 comes into contact with the dynamic pressure bearing 2, but the portions of the dynamic pressure bearing 2 with which the shaft member 3 comes into contact are the high hardness portions 21 and 22. Wear of the dynamic pressure bearing 2 due to contact is prevented. Also, while the shaft member 3 is rotating, the internal pressure of the lubricating fluid decreases on the end side of each dynamic pressure generating groove. However, as shown in FIG. The use of the balanced herringbone groove suppresses the generation of a negative pressure in the lubricating fluid.
[0032]
Next, the motor according to the present invention will be described. A major feature of the motor of the present invention resides in that the above-described hydrodynamic bearing device is mounted. Hereinafter, the motor of the present invention will be described in detail with reference to the drawings.
[0033]
FIG. 5 is a longitudinal sectional view of an HDD spindle motor on which the above-described hydrodynamic bearing device 1 of the present invention is mounted. The bracket 6 includes a base 61 provided at the center, a peripheral wall 62 provided in an outer peripheral direction of the base 61, and a flange 63 extending further outward from the peripheral wall 62. It is formed coaxially.
[0034]
An annular projection 64 is formed at the center of the base 61, and the dynamic bearing device B shown in FIG. 4 is fitted and fixed thereto. The upper end of the shaft member 3 of the hydrodynamic bearing device B is fitted and fixed in a hole 71 formed in the center of the upper surface of the substantially cylindrical rotor hub 7. On the inner peripheral surface of the rotor hub 7, a rotor magnet 72 that is multipolarly magnetized in the circumferential direction is disposed over the entire circumference. A stator 8 is provided on an inner side of the rotor magnet 72 in an annular projection 64 formed on the base 62 of the bracket 6 so as to face the rotor magnet 72. The stator 8 and the annular projection 64 may be fixed by press-fitting or by an adhesive.
[0035]
A flange 73 is formed below the outer periphery of the rotor hub 7, and a hard disk (not shown) is mounted here. Specifically, after one or a plurality of hard disks are mounted on the flange 73 and positioned by the outer peripheral portion 74 of the rotor hub 7, the hard disks are screwed to the holes 75 by a clamp member (not shown) or the like. Is held and fixed to the rotor hub 7.
[0036]
The disk drive of the present invention will be described below. FIG. 6 is a schematic diagram showing the internal configuration of a general disk drive 9. The interior of the housing (housing) 91 forms a clean space with extremely little dust and the like, and a motor 92 on which a disk-shaped disk (recording medium) 93 for storing information is mounted. Is installed. In addition, a head moving mechanism (information access means) for reading / writing information from / to the disk plate 93 is disposed inside the housing 91. The head moving mechanism includes a head 96 for reading / writing information on / from the disk plate 93, The head 96 includes an arm 95 for supporting the head 96 and an actuator 94 for moving the arm 95 to a required position on the disk plate 93.
[0037]
【The invention's effect】
In the method of manufacturing a dynamic pressure bearing according to the first invention, the mold portion corresponding to the portion where wear due to contact with the shaft member is magnetized is provided with a magnet having high magnetism and high wear resistance. Since the sintering material is filled here and the sintered material is adhered to the portion by magnetic force, it is possible to reliably and efficiently manufacture a dynamic pressure bearing having locally increased wear resistance.
[0038]
In the method of manufacturing a dynamic pressure bearing according to the second invention, a mold portion corresponding to a portion where wear due to contact with the shaft member is concerned is charged, and the anti-charged portion is charged to a polarity opposite to that of the mold. Since a highly wear-resistant sintered material is filled here and the sintered material is attached to the above-mentioned portion by an electric attraction force, the wear resistance is locally increased as in the first invention. The dynamic pressure bearing can be manufactured reliably and efficiently.
[0039]
The dynamic pressure bearing of the present invention is a cylindrical dynamic pressure bearing made of a porous sintered body, and has a configuration in which the surface hardness of a portion that is easily in contact with the shaft member is higher than that of the other portions, so that the shaft member Wear was suppressed even when in contact, and durability and reliability were significantly improved.
[0040]
In the dynamic pressure bearing device, the spindle motor, and the disk drive device of the present invention, the same effect as described above can be obtained because the dynamic pressure bearing is used as the dynamic pressure bearing.
[Brief description of the drawings]
FIG. 1 is a process chart showing an example of a method for manufacturing a dynamic pressure bearing according to a first invention.
FIG. 2 is a sectional view showing an example of the dynamic pressure bearing of the present invention.
FIG. 3 is a cross-sectional view showing an example of a mold used in the method of manufacturing a dynamic pressure bearing according to the second invention.
FIG. 4 is a cross-sectional view illustrating an example of the hydrodynamic bearing device of the present invention.
FIG. 5 is a sectional view showing an example of a spindle motor of the present invention.
FIG. 6 is a schematic diagram showing an example of a disk drive device of the present invention.
[Explanation of symbols]
2 Sleeve member (dynamic pressure bearing)
3 Shaft Member 4 Housing Member B Dynamic Pressure Bearing 11 Lower Die 12 Upper Die 21, 22 High Hardness Portion 24 Center Hole M 1 First Sintered Material M 2 Second Sintered Material M 3 Third Sintered material

Claims (9)

所定部分を磁気帯びさせた金型に、磁性を有する第1の焼結材料を充填し、この第1の焼結材料を磁力により前記所定部分に付着させる工程、第2の焼結材料を前記金型に充填する工程、充填された第1の焼結材料および第2の焼結材料を圧縮成形する工程、圧縮成形された焼結材料を焼成する工程を有することを特徴とする動圧軸受の製造方法。A step of filling a first sintered material having magnetism in a mold having a predetermined portion magnetically attached, and adhering the first sintered material to the predetermined portion by magnetic force; A dynamic pressure bearing comprising: a step of filling a mold; a step of compression-molding the filled first and second sintered materials; and a step of firing the compressed and molded sintered material. Manufacturing method. 帯電させた第3の焼結材料を、この第3の焼結材料と反対の極性に所定部分を帯電させた金型に充填し、電気的吸引力により第3の焼結材料を前記所定部分に付着させる工程、第2の焼結材料を前記金型に充填する工程、充填された第3の焼結材料および第2の焼結材料を圧縮成形する工程、圧縮成形された焼結材料を焼成する工程を有することを特徴とする動圧軸受の製造方法。The charged third sintered material is filled in a mold having a predetermined portion charged to the opposite polarity to the polarity of the third sintered material, and the third sintered material is charged into the predetermined portion by electric attraction. Attaching the second sintered material to the mold, compressing the filled third sintered material and the second sintered material, and compressing the compressed sintered material. A method for manufacturing a dynamic pressure bearing, comprising a step of firing. 多孔質焼結体からなる円筒状の動圧軸受であって、軸部材と接触しやすい部分の表面硬度を他の部分よりも高くしたことを特徴とする動圧軸受。What is claimed is: 1. A dynamic pressure bearing comprising a porous sintered body, wherein a surface hardness of a portion which is easily in contact with a shaft member is higher than other portions. 前記軸部材と接触しやすい部分が内周面の両端部である請求項3記載の動圧軸受。The dynamic pressure bearing according to claim 3, wherein the portions that easily come into contact with the shaft member are both ends of an inner peripheral surface. 前記軸部材と接触しやすい部分の表面硬度が前記他の部分の表面硬度の2倍以上である請求項3又は4記載の動圧軸受。The dynamic pressure bearing according to claim 3, wherein a surface hardness of a portion which is easily contacted with the shaft member is twice or more of a surface hardness of the other portion. 前記軸部材と接触しやすい部分の主成分がFe又はセラミックである請求項3〜5のいずれかに記載の動圧軸受。The dynamic pressure bearing according to any one of claims 3 to 5, wherein a main component of the portion that easily contacts the shaft member is Fe or ceramic. 有底穴を有するハウジング部材と、該ハウジング部材の前記有底穴の内周面に取り付けられた円筒状の動圧軸受と、該動圧軸受の中心孔に微小間隙を有して挿通された軸部材とを備えた動圧軸受装置において、
前記動圧軸受として請求項3〜6のいずれかに記載の動圧軸受を用いたことを特徴とする動圧軸受装置。
A housing member having a bottomed hole, a cylindrical dynamic pressure bearing mounted on the inner peripheral surface of the bottomed hole of the housing member, and a small hole is inserted through a center hole of the dynamic pressure bearing. A dynamic bearing device comprising a shaft member;
A dynamic pressure bearing device comprising the dynamic pressure bearing according to any one of claims 3 to 6 as the dynamic pressure bearing.
請求項7記載の動圧軸受装置を備えたことを特徴とするスピンドルモータ。A spindle motor comprising the dynamic pressure bearing device according to claim 7. 情報を記録できる円板状記録媒体が装着されるディスク駆動装置において、筐体と、該筐体の内部に固定され、前記記録媒体を回転させるスピンドルモータと、前記記録媒体の所望の位置に情報を書き込み又は読み出すための情報アクセス手段とを有するディスク駆動装置であって、前記スピンドルモータとして請求項8記載のモータを用いることを特徴とするディスク駆動装置。In a disk drive device on which a disc-shaped recording medium capable of recording information is mounted, a housing, a spindle motor fixed inside the housing and rotating the recording medium, and information stored in a desired position on the recording medium 9. A disk drive device having information access means for writing or reading data, wherein the motor according to claim 8 is used as said spindle motor.
JP2002189106A 2002-06-28 2002-06-28 Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same Withdrawn JP2004028289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189106A JP2004028289A (en) 2002-06-28 2002-06-28 Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189106A JP2004028289A (en) 2002-06-28 2002-06-28 Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same

Publications (1)

Publication Number Publication Date
JP2004028289A true JP2004028289A (en) 2004-01-29

Family

ID=31183611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189106A Withdrawn JP2004028289A (en) 2002-06-28 2002-06-28 Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same

Country Status (1)

Country Link
JP (1) JP2004028289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749978A (en) * 2019-03-29 2020-10-09 日本电产株式会社 Gas dynamic pressure bearing, motor, and blower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111749978A (en) * 2019-03-29 2020-10-09 日本电产株式会社 Gas dynamic pressure bearing, motor, and blower
CN111749978B (en) * 2019-03-29 2022-04-08 日本电产株式会社 Gas dynamic pressure bearing, motor, and blower

Similar Documents

Publication Publication Date Title
US7015611B2 (en) Spindle motor and recording disk driving apparatus having the spindle motor
US7893585B2 (en) Motor assembly with multifunctional components
US20060244326A1 (en) Motor
JP2006105237A (en) Fluid dynamic pressure bearing, spindle motor provided with the fluid dynamic pressure bearing, and recording disc drive provided with the spindle motor
JP2003232354A (en) Bearing unit and production method for the same and spindle motor
US20080204929A1 (en) Fluid dynamic bearing device, spindle motor including the same, read-write device, and method of manufacturing bearing part
JP2013257034A (en) Fluid dynamic pressure bearing assembly and its manufacturing method
JP2013030242A (en) Rotary apparatus
JP2004028289A (en) Dynamic-pressure bearing manufacturing method, dynamic-pressure bearing, and dynamic-pressure bearing device, spindle motor and disk driving device with the same
WO2004079215A1 (en) Dynamic pressure bearing motor
JP4080229B2 (en) Hydrodynamic bearing, spindle motor, and recording disk drive
JP2002125344A (en) Magnetic disc device and disc-driving spindle motor
JP2013162554A (en) Rotating device
US6519113B1 (en) Spindle motor assembly with polymeric motor shaft and hub for rotating a data storage disk
JP4275982B2 (en) Bearing mechanism, motor and disk drive
JP2003278758A (en) Manufacturing method of dynamic pressure bearing device, dynamic pressure bearing device, motor and disc device using it
US8946953B2 (en) Base assembly for motor and spindle motor including the same
JP4132996B2 (en) DYNAMIC PRESSURE BEARING DEVICE, SPINDLE MOTOR HAVING THE SAME, AND DISK DRIVE DEVICE USING THE SPINDLE MOTOR
JP2002101610A (en) Magnetic disk device and motor
JP4108414B2 (en) Hydrodynamic bearing motor and apparatus using the same
JP3736468B2 (en) Bearing unit, motor and electronic device having bearing unit
JP2004248344A (en) Motor and disk drive
JP2006006100A (en) Motor
JP2000192960A (en) Bearing device
CN106195010A (en) The manufacture method of Hydrodynamic bearing device and spindle motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090421

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20090610

Free format text: JAPANESE INTERMEDIATE CODE: A761