JP2004027887A - Manufacturing method for multi-blade impeller - Google Patents

Manufacturing method for multi-blade impeller Download PDF

Info

Publication number
JP2004027887A
JP2004027887A JP2002182453A JP2002182453A JP2004027887A JP 2004027887 A JP2004027887 A JP 2004027887A JP 2002182453 A JP2002182453 A JP 2002182453A JP 2002182453 A JP2002182453 A JP 2002182453A JP 2004027887 A JP2004027887 A JP 2004027887A
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral structure
manufacturing
end faces
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002182453A
Other languages
Japanese (ja)
Inventor
Takashi Tsubouchi
坪内 剛史
Satoshi Fukatsu
深津 諭
▲高▼田 泰成
Yasunari Takada
Kiminobu Shionoiri
塩野入 公宣
Yoshimi Iwamura
岩村 義巳
Takanori Imai
今井 孝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002182453A priority Critical patent/JP2004027887A/en
Publication of JP2004027887A publication Critical patent/JP2004027887A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for manufacturing a larger multi-blade impeller with less characteristic dispersion to a blade caulked to a reinforcement ring. <P>SOLUTION: In a blade integral type structural element 5, a plurality of curved blades 2 are arranged on an inner periphery of an arc-like outer peripheral structure. After peripheral end faces of the outer peripheral structure are bound with each other and a blade integrated cylinder 8 with blades 2 arranged along a centerline inside is made of low melting point metal, an outer peripheral structure portion 9 is cut and removed with the reinforcement rings 1 left on both ends so as to expose each blade 2 to the outer peripheral part. The peripheral end faces of the outer peripheral structure bound with each other is carried out by projection and indentation fit of a dovetail groove and a dovetail projection, shiplap joint, pressure-insertion, caulking, baking fit, and welding. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低融点金属のアルミニウムやマグネシウム合金によって構成される遠心ファンや横断流ファンに用いられる多翼羽根車の製造方法に関するものである。
【0002】
【従来の技術】
遠心ファンや横断流ファンの主体となる多翼羽根車について、大風量形のものでは強度上、全体が金属材料で構成されている。この種の羽根径の大きな多翼羽根車は、多数の翼を両側において補強リングに一枚ずつカシメ付けて製造されているが、製造に手間がかかりコストも高くついている。これに対して、例えば、特開2001―193689号公報には、図7に示すような内周に多数の翼20を軸方向に備えたアルミニウムやマグネシウム合金のような低融点金属を押出し成形した円筒体21から、多翼羽根車を製造する技術が示されている。これは、押出し成形で得られた円筒体21を、所定の長さに切断した後、両端の補強リング部22を残して翼部分の外周肉部23を、切削加工して各翼を呈出させ、モーターの回転軸に連結する主板を結合するものである。こうして製造された多翼羽根車は、一体構造のため回転バランスも良く、騒音も低い。
【0003】
【発明が解決しようとする課題】
上記した従来の多翼羽根車の製造方法において、羽根径の大きな大型の多翼羽根車については、円筒体21を押出し成形する成形機が非常に大型になり、事実上困難である。一方、従前から行われている翼の補強リングへのカシメ付けによる仕方では、製造に手間がかかり、騒音等の特性にもばらつきが出来易いといった問題点がある。
【0004】
本発明は、係る従来の問題点を解決するためになされたものであって、その課題とするところは、特性のばらつきの少ない大型の多翼羽根車の製造方法を開発することでる。
【0005】
【課題を解決するための手段】
前記課題を達成するために請求項1の発明は、円弧状の外周構造の内周に湾曲した複数の翼が並んだ翼一体構造の構造要素を、その外周構造の周方向端面同士を結合して内面に翼が中心線に沿って並ぶ翼一体の円筒体を低融点金属で作った後、両端に補強リング部を残して円筒体の外周構造部分を切削除去して各翼を外周部に呈出させる手段を採用する。
【0006】
前記課題を達成するために請求項2の発明は、請求項1に係る前記手段における外周構造の周方向端面同士を凹凸嵌合により結合する手段を採用する。
【0007】
前記課題を達成するために請求項3の発明は、請求項1に係る前記手段における外周構造の周方向端面同士を相じゃくり継ぎにより結合する手段を採用する。
【0008】
前記課題を達成するために請求項4の発明は、請求項1〜請求項3までのいずれかに係る前記手段における外周構造の周方向端面同士を結合した後、補強リング部となる部分に補強リングを装着する手段を採用する。
【0009】
前記課題を達成するために請求項5の発明は、請求項2に係る前記手段における外周構造の周方向端面同士を圧入して結合固定する手段を採用する。
【0010】
前記課題を達成するために請求項6の発明は、請求項3に係る前記手段における外周構造の周方向端面同士をカシメ付けにより結合固定する手段を採用する。
【0011】
前記課題を達成するために請求項7の発明は、請求項2に係る前記手段における外周構造の周方向端面同士を焼き嵌めにより結合固定する手段を採用する。
【0012】
前記課題を達成するために請求項8の発明は、請求項1〜請求項4までのいずれかに係る前記手段における外周構造の周方向端面同士を溶接して結合固定する手段を採用する。
【0013】
【発明の実施の形態】
実施の形態1.
本実施の形態は、遠心ファンや横断流ファンのような送風機に用いられる図1に示す大型の多翼羽根車の製造方法に関するものである。この製造方法によって製造された多翼羽根車は、低融点金属のアルミニウムやマグネシウム合金によって構成された両端のリング状の補強リング部1と、補強リング部1間に周方向に一体に架設された多数の湾曲板形状の翼2とで構成されている。各翼2の内周部には、各翼2の内周端縁にわたる円形板状の主板3がカシメ付けにより装着され、主板3の中心に設けられたボス部4においてモーターの回転軸に装着される。
【0014】
この大型の多翼羽根車は、まず、羽根車の有効径より大き目の想定円筒を、径の大きさに応じてなん等分かにした円弧状の外周構造を押出し成形によって成形する。外周構造の内周には湾曲した複数の翼2が一体に並び、これを所定の長さに切断して、翼一体構造の構造要素5を作り出す。この構造要素5の周方向端面には、一方にはアリ溝6が、他方にはアリ溝6に嵌合する鳩尾状突部7が一体成形されている(図2参照)。
【0015】
続いて、この構造要素5を周方向端面同士、アリ溝6への鳩尾状突部7の圧入により連結固定して、内面に翼2が中心線に沿って並ぶ図3に示す翼一体の円筒体8を作る。この後、この円筒体8を、両端に補強リング部1を残して外周構造部分9を切削除去して各翼2を外周部に呈出させ、羽根車の有効径を作り出す。最後に各翼2にわたる主板3を中心線方向の中央に挿入し、各翼2にカシメ付けて大型の多翼羽根車が完成する。
【0016】
この製造方法によれば、羽根径の大きさに応じて外周構造の分割個数を設定でき、小型の押出し成形装置で外周構造を一体成形することができるので、全体を一体成形することは事実上困難な大型の多翼羽根車も作ることができる。この製造方法で得られた多翼羽根車は、各翼2を補強リングにカシメ付けたものより特性のばらつきが少ない。
【0017】
構造要素5の連結固定については、圧入の他にも凹凸嵌合させたり図4に示すように相じゃくり継ぎにしてカシメ付けたり、焼き嵌め、冷やし嵌め、摩擦溶接、接着による手段を併用または単独で採用することができる。
【0018】
実施の形態2.
図5と図6によって示す本実施の形態は、実施の形態1で示した多翼羽根車の製造方法に関し、円筒体に補強リングを設け、多翼羽根車の強度を向上させる工夫を講じたものであり、これに係る工程以外は、実施の形態1のものと同じである。従って、実施の形態1のものと同じ部分については、実施の形態1のものと同じ符号を用い、それらについての説明は省略する。
【0019】
本実施の形態では、構造要素5の両円弧端面に翼結合部にわたるリング溝10を切削加工により形成し、構造要素5をその周方向端面同士を結合した後、リング溝10と円筒体8の端部外周との間にコ状断面形状の補強リング11を装着している。補強リング11は、アルミニウムやマグネシウム合金で作られ、カシメ付けや圧入又は接着により固定している。補強リング部1を残して円筒体8の外周構造部分9を切削除去して多翼羽根車を製造する。
【0020】
この製造方法によれば、構造要素5同士の結合を補強リング11により補強できるうえ、翼2の支持強度も上げることができ、より大型の多翼羽根車を作ることができる。
【0021】
【発明の効果】
請求項1〜請求項8までの発明によれば、特性のばらつきの少ない大型の多翼羽根車を製造することができる。
【図面の簡単な説明】
【図1】実施の形態1の製造方法による多翼羽根車を示す側面図である。
【図2】実施の形態1の多翼羽根車の構造要素の連結部を拡大して示す拡大部分側面図である。
【図3】実施の形態1の製造方法における円筒体を示す斜視図である。
【図4】実施の形態1の多翼羽根車の他の構造要素の連結部を拡大して示す拡大部分側面図である。
【図5】実施の形態2の製造方法による多翼羽根車の断面図である。
【図6】図5におけるA矢印部の拡大図である。
【図7】従来の多翼羽根車の製造方法を示す斜視図である。
【符号の説明】
1 補強リング部、 2 翼、 5 構造要素、 6 アリ溝、 7 鳩尾状突部、 8 円筒体、 11 補強リング。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multi-blade impeller used for a centrifugal fan or a cross-flow fan made of a low melting point metal such as aluminum or magnesium alloy.
[0002]
[Prior art]
Regarding the multi-blade impeller, which is a main component of the centrifugal fan and the cross flow fan, the large air flow type impeller is entirely made of a metal material due to its strength. This type of multi-blade impeller having a large blade diameter is manufactured by caulking a large number of blades one by one on a reinforcing ring on both sides, but it is troublesome and costly to manufacture. On the other hand, for example, Japanese Unexamined Patent Application Publication No. 2001-193689 discloses that a low melting point metal such as aluminum or a magnesium alloy having a large number of blades 20 provided in the axial direction on the inner circumference as shown in FIG. A technique for manufacturing a multi-blade impeller from a cylindrical body 21 is shown. This means that after cutting a cylindrical body 21 obtained by extrusion molding to a predetermined length, the outer peripheral wall portion 23 of the wing portion is cut out to present each wing while leaving the reinforcing ring portions 22 at both ends. The main plate is connected to the rotating shaft of the motor. The multi-blade impeller manufactured in this way has a good rotational balance and low noise due to its integral structure.
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional method for manufacturing a multi-blade impeller, a large-sized multi-blade impeller having a large blade diameter requires a very large molding machine for extruding the cylindrical body 21, which is practically difficult. On the other hand, the conventional method of caulking the reinforcing ring of the wing has a problem that it takes much time and effort to manufacture, and characteristics such as noise tend to vary.
[0004]
The present invention has been made to solve such a conventional problem, and an object of the present invention is to develop a method for manufacturing a large-sized multi-blade impeller with less variation in characteristics.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 combines a structural element of a wing integrated structure in which a plurality of wings curved on an inner periphery of an arc-shaped outer peripheral structure is connected to circumferential end faces of the outer peripheral structure. After the low-melting-point metal is used to make a wing-integrated cylindrical body with wings arranged along the center line on the inner surface, the outer peripheral structure of the cylindrical body is cut and removed, leaving reinforcing rings at both ends. Employ means for presentation.
[0006]
In order to achieve the above object, a second aspect of the present invention adopts a means for connecting the circumferential end faces of the outer peripheral structure by the concave and convex fitting in the first aspect of the present invention.
[0007]
In order to achieve the above object, a third aspect of the present invention employs the means according to the first aspect, wherein the circumferential end faces of the outer peripheral structure are joined to each other by a phase joint.
[0008]
In order to achieve the above object, a fourth aspect of the present invention provides a method according to any one of the first to third aspects, wherein after joining the circumferential end faces of the outer peripheral structure to each other, a reinforcing ring portion is reinforced. A means for attaching a ring is employed.
[0009]
In order to achieve the above object, the invention according to claim 5 employs a means for press-fitting and fixing the circumferential end faces of the outer peripheral structure in the means according to claim 2.
[0010]
In order to achieve the above object, a sixth aspect of the present invention adopts a means for connecting and fixing the circumferential end faces of the outer peripheral structure by crimping in the means according to the third aspect.
[0011]
In order to achieve the above object, the invention according to claim 7 employs means for joining and fixing the circumferential end faces of the outer peripheral structure by shrink fitting in the means according to claim 2.
[0012]
In order to achieve the above object, the invention of claim 8 employs means for welding and fixing the circumferential end faces of the outer peripheral structure in the means according to any one of claims 1 to 4.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
The present embodiment relates to a method for manufacturing a large-sized multi-blade impeller shown in FIG. 1 used for a blower such as a centrifugal fan or a cross flow fan. The multi-blade impeller manufactured by this manufacturing method is integrally provided in the circumferential direction between the ring-shaped reinforcing ring portions 1 at both ends made of a low melting point metal such as aluminum or magnesium alloy, and the reinforcing ring portions 1. And a number of curved plate-shaped wings 2. A circular plate-shaped main plate 3 extending over the inner peripheral edge of each wing 2 is attached to the inner peripheral portion of each wing 2 by caulking, and is attached to the rotating shaft of the motor at a boss 4 provided at the center of the main plate 3. Is done.
[0014]
In this large-sized multi-blade impeller, first, an assumed outer cylinder having an effective diameter larger than the effective diameter of the impeller is formed by extruding an arc-shaped outer peripheral structure obtained by equally dividing the assumed cylinder in accordance with the diameter. A plurality of curved wings 2 are arranged integrally on the inner periphery of the outer peripheral structure, and are cut into a predetermined length to produce a structural element 5 having an integral wing structure. A dovetail 6 is integrally formed on one end of the structural element 5 in the circumferential direction, and a dovetail-shaped protrusion 7 is fitted on the other end of the structural element 5 (see FIG. 2).
[0015]
Subsequently, this structural element 5 is connected and fixed by press-fitting the dovetail-shaped protrusions 7 into the circumferential end faces and the dovetail groove 6, and the wing-integrated cylinder shown in FIG. 3 in which the wings 2 are arranged along the center line on the inner surface. Make body 8. Thereafter, the cylindrical body 8 is cut and removed from the outer peripheral structure portion 9 while leaving the reinforcing ring portions 1 at both ends to expose each blade 2 to the outer peripheral portion, thereby creating an effective diameter of the impeller. Finally, the main plate 3 extending over each wing 2 is inserted into the center of the center line direction, and each wing 2 is caulked to complete a large multi-blade impeller.
[0016]
According to this manufacturing method, the number of divisions of the outer peripheral structure can be set according to the size of the blade diameter, and the outer peripheral structure can be integrally formed by a small extrusion molding apparatus. Difficult large multi-blade impellers can also be made. The multi-blade impeller obtained by this manufacturing method has less variation in characteristics than the one in which each blade 2 is caulked to a reinforcing ring.
[0017]
As for the connection and fixing of the structural element 5, in addition to press-fitting, uneven fitting, crimping by jointing as shown in FIG. 4, shrink fitting, cold fitting, friction welding, bonding means or Can be employed alone.
[0018]
Embodiment 2 FIG.
The present embodiment shown in FIGS. 5 and 6 relates to the method of manufacturing the multi-blade impeller shown in the first embodiment, in which a reinforcing ring is provided on the cylindrical body to improve the strength of the multi-blade impeller. This is the same as the first embodiment except for the steps related to this. Therefore, the same reference numerals as in the first embodiment denote the same parts as in the first embodiment, and a description thereof will be omitted.
[0019]
In the present embodiment, a ring groove 10 is formed by cutting on both arc end faces of the structural element 5 over the wing joint portion, and after joining the structural element 5 with its circumferential end faces, the ring groove 10 and the cylindrical body 8 are joined together. A reinforcing ring 11 having a U-shaped cross section is mounted between the outer circumference of the end portion. The reinforcing ring 11 is made of aluminum or a magnesium alloy, and is fixed by caulking, press-fitting, or bonding. The multi-blade impeller is manufactured by cutting and removing the outer peripheral structural portion 9 of the cylindrical body 8 while leaving the reinforcing ring portion 1.
[0020]
According to this manufacturing method, the connection between the structural elements 5 can be reinforced by the reinforcing ring 11, the supporting strength of the blade 2 can be increased, and a larger multi-blade impeller can be manufactured.
[0021]
【The invention's effect】
According to the first to eighth aspects of the present invention, it is possible to manufacture a large-sized multi-blade impeller with little variation in characteristics.
[Brief description of the drawings]
FIG. 1 is a side view showing a multi-blade impeller according to a manufacturing method of a first embodiment.
FIG. 2 is an enlarged partial side view showing a connection portion of structural elements of the multi-blade impeller of the first embodiment in an enlarged manner.
FIG. 3 is a perspective view showing a cylindrical body in the manufacturing method according to the first embodiment.
FIG. 4 is an enlarged partial side view showing a connection portion of another structural element of the multi-blade impeller according to the first embodiment in an enlarged manner.
FIG. 5 is a cross-sectional view of the multiblade impeller according to the manufacturing method of the second embodiment.
FIG. 6 is an enlarged view of a portion indicated by an arrow A in FIG.
FIG. 7 is a perspective view showing a method for manufacturing a conventional multi-blade impeller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reinforcement ring part, 2 wings, 5 structural elements, 6 Dovetails, 7 Dovetail-shaped projections, 8 Cylindrical bodies, 11 Reinforcement rings.

Claims (8)

円弧状の外周構造の内周に湾曲した複数の翼が並んだ翼一体構造の構造要素を、その外周構造の周方向端面同士を結合して内面に翼が中心線に沿って並ぶ翼一体の円筒体を低融点金属で作った後、この円筒体を、両端に補強リング部を残して外周構造部分を切削除去して各翼を外周部に呈出させる多翼羽根車の製造方法。A wing-integrated structural element in which a plurality of curved wings are arranged on the inner periphery of an arc-shaped outer peripheral structure is joined to the wing-integrated wings in which the circumferential end faces of the outer peripheral structure are joined together and the wings are arranged on the inner surface along the center line. A method for manufacturing a multi-blade impeller, wherein a cylindrical body is made of a low melting point metal, and the cylindrical body is cut and removed from an outer peripheral structure portion while leaving reinforcing ring portions at both ends to present each blade to the outer peripheral portion. 請求項1に記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士を凹凸嵌合により結合した多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to claim 1, wherein the circumferential end faces of the outer peripheral structure are connected by uneven fitting. 請求項1に記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士を相じゃくり継ぎにより結合した多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to claim 1, wherein the circumferential end faces of the outer peripheral structure are joined by phase joining. 請求項1〜請求項3までのいずれかに記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士を結合した後、補強リング部となる部分に補強リングを装着する多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to any one of claims 1 to 3, wherein after joining circumferential end faces of the outer peripheral structure, a reinforcing ring is attached to a portion to be a reinforcing ring portion. Manufacturing method of wing impeller. 請求項2に記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士を圧入して結合固定する多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to claim 2, wherein the circumferential end faces of the outer peripheral structure are press-fitted and fixedly connected. 請求項3に記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士をカシメ付けにより結合固定する多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to claim 3, wherein the circumferential end faces of the outer peripheral structure are joined and fixed by caulking. 請求項2に記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士を焼き嵌めにより結合固定する多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to claim 2, wherein the circumferential end faces of the outer peripheral structure are joined and fixed by shrink fitting. 請求項1〜請求項4までのいずれかに記載の多翼羽根車の製造方法であって、外周構造の周方向端面同士を溶接して結合固定する多翼羽根車の製造方法。The method for manufacturing a multi-blade impeller according to any one of claims 1 to 4, wherein the circumferential end faces of the outer peripheral structure are welded and fixed together.
JP2002182453A 2002-06-24 2002-06-24 Manufacturing method for multi-blade impeller Pending JP2004027887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182453A JP2004027887A (en) 2002-06-24 2002-06-24 Manufacturing method for multi-blade impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182453A JP2004027887A (en) 2002-06-24 2002-06-24 Manufacturing method for multi-blade impeller

Publications (1)

Publication Number Publication Date
JP2004027887A true JP2004027887A (en) 2004-01-29

Family

ID=31178946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182453A Pending JP2004027887A (en) 2002-06-24 2002-06-24 Manufacturing method for multi-blade impeller

Country Status (1)

Country Link
JP (1) JP2004027887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203714A (en) * 2009-03-05 2010-09-16 Panasonic Corp Cooker
CN101943182A (en) * 2010-09-21 2011-01-12 浙江亿利达风机股份有限公司 Integrated fan propeller and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133808A (en) * 1975-05-14 1976-11-19 Toshiba Corp Method of producing mult iblade fan
JPS5770999A (en) * 1980-10-21 1982-05-01 Mitsubishi Electric Corp Cylindrical impeller
JPS5795491U (en) * 1980-11-29 1982-06-11
JPS6384928A (en) * 1986-09-30 1988-04-15 Toshiba Corp Apparatus for welding lateral-flow fan
JPH0587091A (en) * 1991-09-30 1993-04-06 Toshiba Lighting & Technol Corp Blower
JP2001193689A (en) * 2000-01-17 2001-07-17 Mitsubishi Electric Corp Air blower, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133808A (en) * 1975-05-14 1976-11-19 Toshiba Corp Method of producing mult iblade fan
JPS5770999A (en) * 1980-10-21 1982-05-01 Mitsubishi Electric Corp Cylindrical impeller
JPS5795491U (en) * 1980-11-29 1982-06-11
JPS6384928A (en) * 1986-09-30 1988-04-15 Toshiba Corp Apparatus for welding lateral-flow fan
JPH0587091A (en) * 1991-09-30 1993-04-06 Toshiba Lighting & Technol Corp Blower
JP2001193689A (en) * 2000-01-17 2001-07-17 Mitsubishi Electric Corp Air blower, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203714A (en) * 2009-03-05 2010-09-16 Panasonic Corp Cooker
CN101943182A (en) * 2010-09-21 2011-01-12 浙江亿利达风机股份有限公司 Integrated fan propeller and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7736129B2 (en) Cooling fan for rotating machine
JPH11101198A (en) Centrifugal blower, its manufacture and air conditioner with the centrifugal blower
JP2005325839A (en) Hollow vane-shaped part joined by friction stirring and method for it
FR2789450A1 (en) Stator for ventilator fan for motor vehicle air conditioning has surface area of stator blades less than thirty percent of surface area of rotor blades
US7350485B2 (en) Engine cooling fan shroud
JP4389998B2 (en) Centrifugal multi-blade fan
JP2003206892A (en) Turbo fan and air conditioner therewith
JP5007457B2 (en) Turbo fan
CA2777140C (en) An axial fan, fan rotor and method of manufacturing a rotor for an axial fan
WO2009036403A2 (en) Fan with structural support ring
JP2004027887A (en) Manufacturing method for multi-blade impeller
US10502215B2 (en) Blower assembly kit, device kit and associated method
JP4052030B2 (en) Multi-blade impeller
JP2010281256A (en) Turbo fan
JP2005504929A (en) Centrifugal wheel
JP4396952B2 (en) Impeller for sirocco fan
JP2004245412A (en) Impeller of torque converter and its manufacturing method
JP2011074763A (en) Impeller and blower having the same
JP2000337103A (en) Integral shroud stationary blade
WO2023153155A1 (en) Centrifugal blower
JP2005155580A (en) Centrifugal multiblade blower
CN110943583B (en) Method for manufacturing induction rotor
US20090071138A1 (en) Bladed shell or stator shell for a hydrodynamic torque converter, method for producing a stator shell of said type, and hydrodynamic torque converter having a stator shell of said type
JP2005240557A (en) Method of manufacturing impeller of water pump for cooling automobile engine
KR102582901B1 (en) axial fan assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828