JP2004027868A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2004027868A
JP2004027868A JP2002181363A JP2002181363A JP2004027868A JP 2004027868 A JP2004027868 A JP 2004027868A JP 2002181363 A JP2002181363 A JP 2002181363A JP 2002181363 A JP2002181363 A JP 2002181363A JP 2004027868 A JP2004027868 A JP 2004027868A
Authority
JP
Japan
Prior art keywords
check valve
valve
scroll
chamber
scroll compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181363A
Other languages
Japanese (ja)
Inventor
Kenji Kumazawa
熊沢 健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2002181363A priority Critical patent/JP2004027868A/en
Publication of JP2004027868A publication Critical patent/JP2004027868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scroll compressor capable of reducing wear loss of a check valve by making the hardness of the material of the check valve arranged at a discharge port harder than the material of a valve housing. <P>SOLUTION: The scroll compressor comprises a fixed scroll; a swivelling scroll; the check valve formed in a center portion of the fixed scroll, arranged at the discharge port for discharging gas compressed in a compressing chamber to a discharge chamber, and opening/closing the discharge port; and the valve housing having valve chamber storing the check valve, provided with a gas passage hole communicating the discharge chamber and the valve chamber at an upper part center thereof, and equipped with a valve receiving surface on an outer periphery of the gas passage hole. The thickness of the check valve 11 is within 0.2 to 0.7 of the height of an inner wall of the valve housing 14. The hardness of the check valve 11 is hardened to make a difference in hardness between the check valve 11 and the valve housing 14 not less than 200 in Vickers hardness. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スクロール圧縮機に係り、詳しくは固定スクロールの吐出口に配設され、吐出ガスの逆流を防止する逆止弁の材質に関する。
【0002】
【従来の技術】
従来のこの種のスクロール圧縮機について、その断面図である図1、及びその要部拡大断面図である図2(A)、(B)を用いて説明する。
スクロール圧縮機は、密閉容器1内に上下に圧縮部2と電動機3を配置し、同圧縮部2は、渦捲き状の固定スクロール4と、同固定スクロール4と互いに噛み合わせて複数の圧縮室5を形成する旋回スクロール6と、同旋回スクロール6の自転を防止するオルダムリング7と、前記旋回スクロール6のボス部6aに、先端に形成した旋回軸8aを挿入して旋回駆動するシャフト8と、前記旋回軸8aの下部に形成された主軸8bを支承するメインフレーム9とから構成されている。
【0003】
前記電動機3が回転すると、シャフト8の先端に形成した旋回軸8aによって旋回スクロール6を、オルダムリング7で自転を防止しながら旋回運動をさせる。旋回スクロール6の旋回運動によって吸入管51から圧縮部2に吸入された低圧冷媒は、圧縮室5の外周部から中心部へ順次移動しながら圧縮され高圧冷媒ガスとなり、同冷媒ガスは吐出孔4aを経由して吐出口4bから吐出室10に吐出され、その後吐出管52から密閉容器1の外部に放出される。
【0004】
上記において、圧縮機が停止直後、吐出された吐出室10の高圧冷媒ガスが高圧より低い前記圧縮室5へ逆流して、前記旋回スクロール6を逆転させ、大きな衝撃音や部品の破損を発生させてしまう。これを防止するため、固定スクロール4の吐出口4bに逆止弁11を設けている。逆止弁11は平板状に形成され、筒状の弁ハウジング14の弁室15内に収納されおり、ガスの流れ方向により、前記弁室15内を上下に移動するように構成されている。
【0005】
前記弁ハウジング14は上部中央に前記吐出室10と前記弁室10を連通するガス通路孔14a を設け、同ガス通路孔14a の外周に、前記逆止弁11の上下の移動量を規制する弁受け面14b を備えた一体的な筒状に構成されている。
また、前記逆止弁11は、前記吐出口4bの径の外周部に対応する位置に、複数のガス孔11a が設けられている。
【0006】
上記構成において、圧縮機運転時は、圧縮された冷媒ガスは吐出孔4aを経由して吐出口4bから弁室15に噴出され、高圧により逆止弁11は上方に押し上げられ、弁受け面14b に受け止められると同時に、冷媒ガスは破線矢印で示すようにガス孔11a を通り吐出室10へ流出される。また、圧縮機が停止する際には、吐出室10から弁室15への圧力により、逆止弁11は下降し吐出口4bを閉塞し、冷媒の圧縮室5への逆流を防止する構造となっている。
【0007】
ここで、従来の逆止弁11の材料には鋼材、弁ハウジング14の材料にはアルミや鋼材等を用いており、その硬度は逆止弁11の方が弁ハウジング14よりも硬い材料としているが、図4に示すように、その硬度差はビッカース硬度(Hv)で100以下となっていた。前記逆止弁11は、起動・停止を繰り返すたびに、逆止弁11の外周面が弁ハウジング内壁面に一部接触しながら上下する。その際、逆止弁11の厚さh1は弁ハウジング14の高さh2よりも小さいため、逆止弁11の摩耗量は厚さh1が薄くなるほど、弁ハウジング14の内壁面の摩耗量に対し大きくなる。
【0008】
しかしながら、従来の逆止弁11のように、逆止弁11と弁ハウジング14のHv差が100以下の場合、図5(A)に示すように約10倍以上の摩耗量となる。このように逆止弁11の外周面の摩耗量が大きいと、長期に運転した場合、逆止弁11の外径が小さくなってしまうため、図5(B)に示すように、圧縮機停止時にガス孔11a が吐出口4bと重なり(a部分)、吐出室から高圧ガスが圧縮室内に逆流し旋回スクロールが逆転する。これによりスクロ─ルラップ等の摩耗や逆転による騒音が発生してしまうという問題がある。
【0009】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みなされたもので、逆止弁の材質の硬度を、弁ハウジングの材質より硬くし、逆止弁の摩耗量を低減することができるスクロール圧縮機を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明は上記の課題を解決するためなされたもので、鏡板に渦捲き状のラップを有する固定スクロールと、同固定スクロールと互いに噛み合わせて複数の圧縮室を形成する旋回スクロールと、前記固定スクロールの中央部に形成され、前記圧縮室で圧縮されたガスを吐出室へ吐出する吐出孔の吐出口に配設され、同吐出口を開閉する平板状の逆止弁と、同逆止弁を収納する弁室を有し、上部中央に前記吐出室と前記弁室を連通するガス通路孔を設け、同ガス通路孔の外周に、前記逆止弁の上下の移動量を規制する弁受け面を備えた弁ハウジングとからなるスクロール圧縮機において、
前記逆止弁の厚さが前記弁ハウジングの内壁の高さの0.2〜0.7の範囲内であって、前記逆止弁と前記弁ハウジングとの材質の硬度差が、ビッカース硬度で200以上となるよう前記逆止弁の硬度を硬くしてなる構成となっている。
【0011】
また、前記逆止弁に拡散・浸透処理を施し表面を硬化させてなる構成となっている。
【0012】
また、前記逆止弁に侵炭処理を施し表面を硬化させてなる構成となっている。
【0013】
また、前記逆止弁を窒化またはホウ化処理を施し表面を硬化させてなる構成となっている。
【0014】
また、前記逆止弁にクロム(Cr)または珪素(Si)を拡散させ表面を硬化させてなる構成となっている。
【0015】
また、前記逆止弁の表面に皮膜処理を施し炭化物、窒化物、炭窒化物または酸化物の皮膜を形成し、前記逆止弁の表面を硬化させてなる構成となっている。
【0016】
また、前記逆止弁の表面にダイヤモンドライクカーボン(DLC)層を皮膜形成し、前記逆止弁の表面を硬化させてなる構成となっている。
【0017】
【発明の実施の形態】
本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は本発明(従来例も同じ)におけるスクロール圧縮機の縦断面図、図2は本発明(従来例も同じ)における要部拡大図で、(A)は断面図、(B)は逆止弁の上面図である。図において、密閉容器1内に上下に圧縮部2と電動機3を配置し、同圧縮部2は、渦捲き状の固定スクロール4と、同固定スクロール4と互いに噛み合わせて複数の圧縮室5を形成する旋回スクロール6と、同旋回スクロール6の自転を防止するオルダムリング7と、前記旋回スクロール6のボス部6aに、先端に形成した旋回軸8aを挿入して旋回駆動するシャフト8と、前記旋回軸8aの下部に形成された主軸8bを支承するメインフレーム9とから構成されている。
【0018】
前記固定スクロール4の中央部に形成され、前記圧縮室5で圧縮されたガスを吐出室10へ吐出する吐出孔4aの吐出口4bに、同吐出口4bを開閉し、圧縮機停止時に前記吐出室10から、前記圧縮室5に圧縮ガスの逆流を防止する逆止弁11が配設されている。
前記逆止弁11は、円板状に形成され、筒状の弁ハウジング14の弁室15内に収納されおり、ガスの流れ方向により、前記弁室15内を上下に移動するように構成されている。また、前記逆止弁11は、前記吐出口4bの径の外周部に対応する位置に、複数のガス孔11a が設けられている。
【0019】
前記弁ハウジング14は、上部中央に前記吐出室10と前記弁室10を連通するガス通路孔14a を設け、同ガス通路孔14a の外周に、前記逆止弁11の上下の移動量を規制する弁受け面14b を備えた一体的な円筒状に構成されている。
図3は前記逆止弁11と前記弁ハウジング14の材質の硬度差(Hv)に対する相対的摩耗量を表わしたもので、前記弁ハウジング14の内壁の高さh2に対し、前記逆止弁11の厚さh1が薄くなるほど、前記逆止弁11の摩耗量は増加する。
ここで、前記硬度差(Hv)がビッカース硬度(Hv)で200以上となると、前記逆止弁11の厚さh1が薄くなっても摩耗量は増加しないことがわかる。
【0020】
前記逆止弁11の厚さh1と前記弁ハウジング14の高さh2の比h=h1/h2 は0.2(1/5)〜0.7(2/3)の範囲内で設計されるため、図4に示すように、前記逆止弁11の厚さが前記弁ハウジング14の内壁の高さの0.2〜0.7の範囲内であって、前記逆止弁11と前記弁ハウジング14との材質の硬度差が、ビッカース硬度で200以上となるよう前記逆止弁11の硬度を硬くしてなる構成となっている。
【0021】
上記構成において、圧縮機が運転されると、旋回スクロール6の旋回運動によって吸入管51から圧縮部2の吸入室5aに吸入された低圧冷媒は、圧縮室5の外周部から中心部へ順次移動しながら圧縮され高圧冷媒ガスとなり、同冷媒ガスは吐出孔4aを経由して吐出口4bから圧力により逆止弁11にぶつかり開弁して弁室15に流入し、逆止弁11を上方に押し上げ、更に弁受け面14b に逆止弁11を張り付かすと同時に、冷媒ガスは図2(A)の破線矢印で示すように、前記ガス孔11a から前記ガス通路孔14a を通り吐出室10に吐出される。そして、冷媒は吐出管52から密閉容器1の外部に放出される。
また、圧縮機が停止する際には、吐出室10の高圧より低い圧縮室5へ、圧力が働き、逆止弁11は下降し、逆止弁11はスムーズに吐出口4bに接して閉じ、冷媒の圧縮室5への逆流を無くすことができ、旋回スクロール6の逆転を防止することができる。
【0022】
この結果、前記逆止弁11は、起動・停止を繰り返すたびに、逆止弁11の外周面が弁ハウジング内壁面に一部接触しながら上下するが、逆止弁11の材質の硬度は、前記弁ハウジング14の材質より硬くし、その硬度差をビッカース硬度(Hv)で200以上とした構成となっているため、従来例に較べ逆止弁11の摩耗量を大幅に低減することができる。
【0023】
本発明による第一の実施例としてガス侵炭法により逆止弁11の表面を硬化させる例について示す。一酸化炭素(CO)、炭化水素(例えばメタンCH4 )などの、炭素を含む侵炭性ガスの雰囲気中で鋼材の逆止弁11を約800度まで加熱し、その表面層に侵炭させる。これにより、逆止弁11の表面は炭化鉄( Fe3 C)となり硬度は大幅に向上するため、逆止弁11の外周面の摩耗量は、図3に示すように、従来例の未処理品の鋼材に較べ約1/20にまで減少する。
【0024】
また、侵炭性ガスの代わりに窒素を含むガス(例えばアンモニアNH)を用いれば、逆止弁11の表面に窒素が浸透し、表面が窒化鉄(Fe2 N・Fe4 N) となり硬化し、上記と同様に逆止弁11の摩耗量を低減することができる。
【0025】
また、第二の実施例として、イオンプレーディング法により逆止弁11の表面に皮膜を形成し硬化させた例について述べる。真空中で窒化物(例えば窒化チタンTiN)を加熱蒸発させ、イオン化して逆止弁11の表面に薄膜を形成し硬化させることにより、上記と同様の効果を得ることができる。
【0026】
また、薄膜を形成させる方法としては、他にスパッタリング法による照射、化学蒸着法などがある。窒化物としては、窒化チタン(TiN)の代わりに、窒化クロム(CrN)、窒化珪素(SiN)などを用いてもよい。また、炭窒化物としては、炭窒化チタン(TiCN)、酸化物としてアルミナ(Al) などを用いてもよい。
尚、前記逆止弁11に表面にダイヤモンドライクカーボン(DLC)層を皮膜形成し、前記逆止弁11の表面を硬化させてもよい。
【0027】
また、第三の実施例として、ショットピーニング法により逆止弁11の表面を硬化させた例について述べる。逆止弁11の表面に鋼球などのピーニング材を高速で叩きつける(投射する)ことにより、わざと表面を加工硬化させる。これにより硬化させた逆止弁11の表面上記と同様の効果を得ることができる。
【0028】
以上に説明したように、前記逆止弁11を鋼材の表面に拡散・浸透処理、侵炭処理または皮膜処理などを施し、前記逆止弁11の厚さが前記弁ハウジングの内壁の高さの0.2〜0.7の範囲内であって、逆止弁11の材質の硬度を弁ハウジング14の材質より、ビッカース硬度(Hv)で200以上硬くした構成とすることにより、従来品に較べ逆止弁11の摩耗量を大幅に低減することができるスクロール圧縮機となる。
【0029】
【発明の効果】
以上のように本発明においては、逆止弁を鋼材の表面に拡散・浸透処理、侵炭処理または皮膜処理などを施し、逆止弁の厚さが前記弁ハウジングの内壁の高さの0.2〜0.7の範囲内であって、逆止弁の硬度を弁ハウジングより、ビッカース硬度(Hv)で200以上硬くした構成とすることにより、逆止弁の摩耗量を大幅に低減することがで、かつ信頼性向上が図れるスクロール圧縮機となる。
【図面の簡単な説明】
【図1】本発明及び従来例によるスクロール圧縮機の縦断面図である。
【図2】本発明及び従来例による要部拡大図で、(A)は断面図、(B)は逆止弁の上面図である。
【図3】本発明による逆止弁の硬度対摩耗量を表わした説明表である。
【図4】本発明と従来例との逆止弁の厚さに対する摩耗量を比較した説明表である。
【図5】(A)は従来例による逆止弁と弁ハウジングの摩耗量を表わした説明表で、(B)は従来例による冷媒ガスの逆流を説明する説明図である。
【符号の説明】
1 密閉容器
2 圧縮部
3 電動機
4 固定スクロール
4a  吐出孔
4b  吐出口
5 圧縮室
6 旋回スクロール
6a  ボス部
7  オルダムリング
8 シャフト
8a 旋回駆
9 メインフレーム
10  吐出室
11 逆止弁
11a  ガス孔
14 弁ハウジング
14a  ガス通路孔14a
14b  弁受け面
15 弁室
51 吸入管
52 吐出管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a scroll compressor, and more particularly, to a material of a check valve that is disposed at a discharge port of a fixed scroll and that prevents a backflow of discharge gas.
[0002]
[Prior art]
A conventional scroll compressor of this type will be described with reference to FIG. 1 which is a cross-sectional view thereof, and FIGS. 2A and 2B which are enlarged cross-sectional views of main parts thereof.
In the scroll compressor, a compression unit 2 and an electric motor 3 are vertically arranged in a closed container 1, and the compression unit 2 includes a spiral fixed scroll 4 and a plurality of compression chambers meshing with the fixed scroll 4. 5, an Oldham ring 7 for preventing the orbiting scroll 6 from rotating, and a shaft 8 for orbiting by inserting a orbiting shaft 8a formed at the tip into the boss 6a of the orbiting scroll 6. And a main frame 9 that supports a main shaft 8b formed below the turning shaft 8a.
[0003]
When the electric motor 3 rotates, the orbiting scroll 6 is caused to orbit by the Orbit ring 7 while being prevented from rotating by the orbiting shaft 8 a formed at the tip of the shaft 8. The low-pressure refrigerant sucked into the compression unit 2 from the suction pipe 51 by the orbiting motion of the orbiting scroll 6 is compressed while moving sequentially from the outer periphery to the center of the compression chamber 5 to become a high-pressure refrigerant gas. Is discharged from the discharge port 4b to the discharge chamber 10 through the discharge port 52, and then discharged from the discharge pipe 52 to the outside of the closed container 1.
[0004]
In the above, immediately after the compressor is stopped, the discharged high-pressure refrigerant gas in the discharge chamber 10 flows back into the compression chamber 5 lower than the high pressure, causing the orbiting scroll 6 to rotate in the reverse direction, generating loud impact noise and damage to parts. Would. In order to prevent this, a check valve 11 is provided at the discharge port 4b of the fixed scroll 4. The check valve 11 is formed in a flat plate shape, is housed in a valve chamber 15 of a cylindrical valve housing 14, and is configured to move up and down in the valve chamber 15 depending on a gas flow direction.
[0005]
The valve housing 14 is provided with a gas passage hole 14a at the upper center thereof for communication between the discharge chamber 10 and the valve chamber 10, and a valve for regulating the amount of vertical movement of the check valve 11 on the outer periphery of the gas passage hole 14a. It has an integral cylindrical shape with a receiving surface 14b.
The check valve 11 is provided with a plurality of gas holes 11a at positions corresponding to the outer peripheral portion of the diameter of the discharge port 4b.
[0006]
In the above configuration, during the operation of the compressor, the compressed refrigerant gas is ejected from the discharge port 4b to the valve chamber 15 via the discharge hole 4a, and the check valve 11 is pushed upward by high pressure, and the valve receiving surface 14b At the same time, the refrigerant gas flows out to the discharge chamber 10 through the gas hole 11a as shown by the dashed arrow. When the compressor is stopped, the check valve 11 is lowered by the pressure from the discharge chamber 10 to the valve chamber 15 to close the discharge port 4b, thereby preventing the refrigerant from flowing back into the compression chamber 5. Has become.
[0007]
Here, a conventional check valve 11 is made of a steel material, and a material of the valve housing 14 is made of aluminum, steel, or the like. The hardness of the check valve 11 is harder than that of the valve housing 14. However, as shown in FIG. 4, the difference in hardness was 100 or less in Vickers hardness (Hv). Each time the check valve 11 repeatedly starts and stops, the outer peripheral surface of the check valve 11 moves up and down while partially contacting the inner wall surface of the valve housing. At this time, since the thickness h1 of the check valve 11 is smaller than the height h2 of the valve housing 14, the wear amount of the check valve 11 is smaller than the wear amount of the inner wall surface of the valve housing 14 as the thickness h1 is smaller. growing.
[0008]
However, when the Hv difference between the check valve 11 and the valve housing 14 is 100 or less as in the case of the conventional check valve 11, as shown in FIG. If the amount of wear on the outer peripheral surface of the check valve 11 is large as described above, the outer diameter of the check valve 11 becomes small in a long-term operation, so that as shown in FIG. Occasionally, the gas hole 11a overlaps the discharge port 4b (portion a), high-pressure gas flows backward from the discharge chamber into the compression chamber, and the orbiting scroll reverses. As a result, there is a problem that noise due to abrasion or reverse rotation of the scroll wrap or the like is generated.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and provides a scroll compressor in which the material of the check valve is made harder than the material of the valve housing and the amount of wear of the check valve can be reduced. The purpose is.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and includes a fixed scroll having a spiral wrap on a head plate, an orbiting scroll which meshes with the fixed scroll to form a plurality of compression chambers, and the fixed scroll. A flat check valve that is formed at a central portion of the discharge port of the discharge hole that discharges the gas compressed in the compression chamber to the discharge chamber, and that opens and closes the discharge port. A valve receiving surface that has a valve chamber to house therein, has a gas passage hole communicating the discharge chamber and the valve chamber in the upper center, and restricts the amount of vertical movement of the check valve on the outer periphery of the gas passage hole. A scroll compressor comprising a valve housing having:
The thickness of the check valve is within the range of 0.2 to 0.7 of the height of the inner wall of the valve housing, and the hardness difference between the materials of the check valve and the valve housing is Vickers hardness. The check valve is configured to have a hardness of 200 or more.
[0011]
Further, the check valve is configured to be subjected to a diffusion / penetration treatment to harden the surface.
[0012]
Further, the check valve is carburized to harden the surface.
[0013]
Further, the check valve is configured to be subjected to nitriding or boring treatment to harden the surface.
[0014]
Further, the check valve is configured such that chromium (Cr) or silicon (Si) is diffused into the check valve to harden the surface.
[0015]
In addition, the surface of the check valve is subjected to a film treatment to form a film of carbide, nitride, carbonitride or oxide, and the surface of the check valve is hardened.
[0016]
Further, a diamond-like carbon (DLC) layer is formed on the surface of the check valve and the surface of the check valve is hardened.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 is a longitudinal sectional view of a scroll compressor according to the present invention (same as the conventional example), FIG. 2 is an enlarged view of a main part of the present invention (same as the conventional example), FIG. 1A is a cross-sectional view, and FIG. It is a top view of a stop valve. In the figure, a compression unit 2 and an electric motor 3 are arranged vertically in a closed container 1, and the compression unit 2 forms a spiral fixed scroll 4 and a plurality of compression chambers 5 by meshing with the fixed scroll 4. A orbiting scroll 6 to be formed, an Oldham ring 7 for preventing rotation of the orbiting scroll 6, a shaft 8 for driving a orbiting by inserting a orbiting shaft 8 a formed at the tip into a boss 6 a of the orbiting scroll 6, And a main frame 9 that supports a main shaft 8b formed below the turning shaft 8a.
[0018]
The discharge port 4b of the discharge hole 4a formed at the center of the fixed scroll 4 and discharging the gas compressed in the compression chamber 5 to the discharge chamber 10 is opened and closed. A check valve 11 for preventing backflow of the compressed gas from the chamber 10 to the compression chamber 5 is provided.
The check valve 11 is formed in a disk shape, is housed in a valve chamber 15 of a cylindrical valve housing 14, and is configured to move up and down in the valve chamber 15 depending on a gas flow direction. ing. The check valve 11 is provided with a plurality of gas holes 11a at positions corresponding to the outer peripheral portion of the diameter of the discharge port 4b.
[0019]
The valve housing 14 is provided with a gas passage hole 14a communicating the discharge chamber 10 and the valve chamber 10 at the upper center, and restricts the amount of vertical movement of the check valve 11 on the outer periphery of the gas passage hole 14a. It is formed in an integral cylindrical shape having a valve receiving surface 14b.
FIG. 3 shows a relative wear amount with respect to a hardness difference (Hv) between the materials of the check valve 11 and the valve housing 14. The height h2 of the inner wall of the valve housing 14 corresponds to the check valve 11. As the thickness h1 of the check valve 11 decreases, the amount of wear of the check valve 11 increases.
Here, it can be seen that when the hardness difference (Hv) is 200 or more in Vickers hardness (Hv), the wear amount does not increase even if the thickness h1 of the check valve 11 is reduced.
[0020]
The ratio h = h1 / h2 of the thickness h1 of the check valve 11 to the height h2 of the valve housing 14 is designed in a range of 0.2 (1/5) to 0.7 (2/3). Therefore, as shown in FIG. 4, the thickness of the check valve 11 is within the range of 0.2 to 0.7 of the height of the inner wall of the valve housing 14, and the check valve 11 and the valve The check valve 11 is configured to have a high hardness so that the hardness difference between the material of the check valve 11 and the material of the housing 14 is 200 or more in Vickers hardness.
[0021]
In the above configuration, when the compressor is operated, the low-pressure refrigerant sucked from the suction pipe 51 into the suction chamber 5a of the compression section 2 by the orbiting motion of the orbiting scroll 6 sequentially moves from the outer periphery to the center of the compression chamber 5. While being compressed, the refrigerant gas becomes high-pressure refrigerant gas. The refrigerant gas collides with the check valve 11 via the discharge port 4b by pressure from the discharge port 4b, opens the valve, flows into the valve chamber 15, and moves the check valve 11 upward. At the same time, the check valve 11 is adhered to the valve receiving surface 14b, and at the same time, the refrigerant gas passes from the gas hole 11a through the gas passage hole 14a to the discharge chamber 10 as indicated by the dashed arrow in FIG. Is discharged. Then, the refrigerant is discharged from the discharge pipe 52 to the outside of the closed container 1.
When the compressor stops, pressure acts on the compression chamber 5 lower than the high pressure of the discharge chamber 10, the check valve 11 descends, and the check valve 11 smoothly contacts and closes the discharge port 4b, The backflow of the refrigerant to the compression chamber 5 can be eliminated, and the reverse rotation of the orbiting scroll 6 can be prevented.
[0022]
As a result, each time the check valve 11 is repeatedly started and stopped, the outer peripheral surface of the check valve 11 moves up and down while partially contacting the inner wall surface of the valve housing, but the hardness of the material of the check valve 11 is Since the material of the valve housing 14 is made harder and the difference in hardness is 200 or more in Vickers hardness (Hv), the amount of wear of the check valve 11 can be significantly reduced as compared with the conventional example. .
[0023]
As a first embodiment according to the present invention, an example in which the surface of a check valve 11 is hardened by a gas carburizing method will be described. The check valve 11 made of steel is heated to about 800 ° C. in an atmosphere of a carburizing gas containing carbon, such as carbon monoxide (CO) or a hydrocarbon (for example, methane CH 4 ), so that the surface layer is carburized. . As a result, the surface of the check valve 11 becomes iron carbide (Fe 3 C), and the hardness is greatly improved. Therefore, the amount of wear on the outer peripheral surface of the check valve 11 is reduced as shown in FIG. It is reduced to about 1/20 of the steel material.
[0024]
If a gas containing nitrogen (for example, ammonia NH 3 ) is used instead of the carburizing gas, nitrogen penetrates into the surface of the check valve 11, and the surface becomes iron nitride (Fe 2 N · Fe 4 N) and hardens. However, the wear amount of the check valve 11 can be reduced in the same manner as described above.
[0025]
As a second embodiment, an example in which a film is formed on the surface of the check valve 11 by the ion plating method and cured is described. The same effect as described above can be obtained by heating and evaporating nitride (for example, titanium nitride TiN) in a vacuum and ionizing to form a thin film on the surface of the check valve 11 and harden it.
[0026]
Other methods for forming a thin film include irradiation by a sputtering method, a chemical vapor deposition method, and the like. As the nitride, chromium nitride (CrN), silicon nitride (SiN), or the like may be used instead of titanium nitride (TiN). Further, titanium carbonitride (TiCN) may be used as the carbonitride, and alumina (Al 2 O 3 ) may be used as the oxide.
Incidentally, a diamond-like carbon (DLC) layer may be formed on the surface of the check valve 11 so that the surface of the check valve 11 is hardened.
[0027]
As a third embodiment, an example in which the surface of the check valve 11 is hardened by the shot peening method will be described. A peening material such as a steel ball is struck (projected) at a high speed onto the surface of the check valve 11 to intentionally harden the surface. Thereby, the same effect as described above can be obtained on the surface of the cured check valve 11.
[0028]
As described above, the check valve 11 is subjected to a diffusion / penetration treatment, a carburizing treatment or a coating treatment on the surface of a steel material, and the thickness of the check valve 11 is the height of the inner wall of the valve housing. The hardness of the material of the check valve 11 is in the range of 0.2 to 0.7, and the hardness of the material of the check valve 11 is set to be 200 or more in terms of Vickers hardness (Hv) from the material of the valve housing 14, so that the check valve 11 can be compared with the conventional product. The scroll compressor can greatly reduce the amount of wear of the check valve 11.
[0029]
【The invention's effect】
As described above, in the present invention, the check valve is subjected to a diffusion / penetration treatment, a carburizing treatment, a coating treatment, or the like on the surface of the steel material, and the thickness of the check valve is 0.1 mm of the height of the inner wall of the valve housing. The wear amount of the check valve is significantly reduced by setting the hardness of the check valve within the range of 2 to 0.7 and the hardness of the check valve by 200 or more in terms of Vickers hardness (Hv) from the valve housing. In addition, the scroll compressor can be improved in reliability.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a scroll compressor according to the present invention and a conventional example.
FIG. 2 is an enlarged view of a main part according to the present invention and a conventional example, in which (A) is a sectional view and (B) is a top view of a check valve.
FIG. 3 is an explanatory table showing hardness versus wear amount of a check valve according to the present invention.
FIG. 4 is an explanatory table comparing the amount of wear with respect to the thickness of a check valve of the present invention and a conventional example.
FIG. 5A is an explanatory table showing a wear amount of a check valve and a valve housing according to a conventional example, and FIG. 5B is an explanatory diagram illustrating a backflow of a refrigerant gas according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Closed container 2 Compression part 3 Electric motor 4 Fixed scroll 4a Discharge hole 4b Discharge port 5 Compression chamber 6 Revolving scroll 6a Boss part 7 Oldham ring 8 Shaft 8a Revolving drive 9 Main frame 10 Discharge chamber 11 Check valve 11a Gas hole 14 Valve housing 14a Gas passage hole 14a
14b Valve receiving surface 15 Valve chamber 51 Suction pipe 52 Discharge pipe

Claims (8)

鏡板に渦捲き状のラップを有する固定スクロールと、同固定スクロールと互いに噛み合わせて複数の圧縮室を形成する旋回スクロールと、前記固定スクロールの中央部に形成され、前記圧縮室で圧縮されたガスを吐出室へ吐出する吐出孔の吐出口に配設され、同吐出口を開閉する平板状の逆止弁と、同逆止弁を収納する弁室を有し、上部中央に前記吐出室と前記弁室を連通するガス通路孔を設け、同ガス通路孔の外周に、前記逆止弁の上下の移動量を規制する弁受け面を備えた弁ハウジングとからなるスクロール圧縮機において、
前記逆止弁の厚さが前記弁ハウジングの内壁の高さの0.2〜0.7の範囲内であって、前記逆止弁と前記弁ハウジングとの材質の硬度差が、ビッカース硬度で200以上となるよう前記逆止弁の硬度を硬くしてなることを特徴とするスクロール圧縮機。
A fixed scroll having a spiral wrap on a head plate, a revolving scroll which meshes with the fixed scroll to form a plurality of compression chambers, and a gas formed in a central portion of the fixed scroll and compressed by the compression chamber. Is disposed at the discharge port of the discharge hole that discharges the discharge chamber, has a flat check valve that opens and closes the discharge port, and a valve chamber that houses the check valve, the discharge chamber in the upper center In a scroll compressor comprising: a gas passage hole communicating with the valve chamber; and a valve housing having a valve receiving surface on an outer periphery of the gas passage hole for regulating a vertical movement amount of the check valve.
The thickness of the check valve is within the range of 0.2 to 0.7 of the height of the inner wall of the valve housing, and the hardness difference between the materials of the check valve and the valve housing is Vickers hardness. A scroll compressor wherein the check valve has a hardness of 200 or more.
前記逆止弁に拡散・浸透処理を施し表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。2. The scroll compressor according to claim 1, wherein the check valve is subjected to a diffusion / penetration treatment to harden the surface. 前記逆止弁に侵炭処理を施し表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。2. The scroll compressor according to claim 1, wherein the check valve is carburized to harden a surface. 前記逆止弁を窒化またはホウ化処理を施し表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。2. The scroll compressor according to claim 1, wherein the check valve is subjected to nitriding or boring treatment to harden the surface. 前記逆止弁にクロム(Cr)または珪素(Si)を拡散させ表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。The scroll compressor according to claim 1, wherein chromium (Cr) or silicon (Si) is diffused into the check valve to harden the surface. 前記逆止弁の表面に皮膜処理を施し炭化物、窒化物、炭窒化物または酸化物の皮膜を形成し、前記逆止弁の表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。2. The scroll according to claim 1, wherein a film is formed on the surface of the check valve to form a film of carbide, nitride, carbonitride or oxide, and the surface of the check valve is hardened. Compressor. 前記逆止弁の表面にダイヤモンドライクカーボン(DLC)層を皮膜形成し、前記逆止弁の表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。The scroll compressor according to claim 1, wherein a diamond-like carbon (DLC) layer is formed on the surface of the check valve, and the surface of the check valve is hardened. 前記逆止弁の表面にショットピーニング処理を施し、表面を硬化させてなることを特徴とする請求項1記載のスクロール圧縮機。The scroll compressor according to claim 1, wherein a shot peening process is performed on a surface of the check valve to harden the surface.
JP2002181363A 2002-06-21 2002-06-21 Scroll compressor Pending JP2004027868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181363A JP2004027868A (en) 2002-06-21 2002-06-21 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181363A JP2004027868A (en) 2002-06-21 2002-06-21 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2004027868A true JP2004027868A (en) 2004-01-29

Family

ID=31178225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181363A Pending JP2004027868A (en) 2002-06-21 2002-06-21 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2004027868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136083A2 (en) 2008-06-17 2009-12-23 Mitsubishi Electric Corporation A rotary compressor
JP2019167839A (en) * 2018-03-22 2019-10-03 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device
WO2020151364A1 (en) * 2019-01-24 2020-07-30 艾默生环境优化技术(苏州)有限公司 Valve assembly and compressor
WO2022114144A1 (en) * 2020-11-27 2022-06-02 京セラ株式会社 Ball for check valves

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136083A2 (en) 2008-06-17 2009-12-23 Mitsubishi Electric Corporation A rotary compressor
JP2019167839A (en) * 2018-03-22 2019-10-03 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device
WO2020151364A1 (en) * 2019-01-24 2020-07-30 艾默生环境优化技术(苏州)有限公司 Valve assembly and compressor
WO2022114144A1 (en) * 2020-11-27 2022-06-02 京セラ株式会社 Ball for check valves

Similar Documents

Publication Publication Date Title
JP5039327B2 (en) Scroll compressor
JP2567712B2 (en) Scroll compressor
JP4737141B2 (en) Compressor
JPH0763181A (en) Compressor
TW200512385A (en) Scroll machine
JP2007032360A (en) Hermetic compressor and refrigeration cycle device
JP2004027868A (en) Scroll compressor
WO2015045433A1 (en) Rotary compressor
JPS62103368A (en) Ceramic coating metal
JP2008261261A (en) Slide member and scroll type motor-driven compressor using it
JP4743067B2 (en) Scroll compressor
JP2000018179A (en) Scroll compressor
JP2000110744A (en) Scroll compressor
WO2023214561A1 (en) Compressor
JP2003172274A (en) Scroll compressor
JPH0219678A (en) Scroll compressor
JPH0643512Y2 (en) Scroll compressor
JP2007218206A (en) Fluid machine
JPH0476285A (en) Scroll type compressor
JP2003172275A (en) Scroll compressor
CN220748528U (en) Compressor and refrigeration equipment
JP2000110742A (en) Scroll compressor
JP2003155983A (en) Scroll compressor
JP6614268B2 (en) Rotary compressor
JP3783182B2 (en) Tip seal for compressor, compressor using the tip seal, and surface treatment method for tip seal for compressor