JP2004023055A - Polymeric ptc element - Google Patents

Polymeric ptc element Download PDF

Info

Publication number
JP2004023055A
JP2004023055A JP2002179990A JP2002179990A JP2004023055A JP 2004023055 A JP2004023055 A JP 2004023055A JP 2002179990 A JP2002179990 A JP 2002179990A JP 2002179990 A JP2002179990 A JP 2002179990A JP 2004023055 A JP2004023055 A JP 2004023055A
Authority
JP
Japan
Prior art keywords
ptc element
resistance
polymer ptc
polymer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002179990A
Other languages
Japanese (ja)
Inventor
Daisuke Seki
関  大介
Mitsumune Kataoka
片岡 光宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002179990A priority Critical patent/JP2004023055A/en
Publication of JP2004023055A publication Critical patent/JP2004023055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve without voltage without raising a resistance of a polymeric PTC element, where electrodes are arranged on a sheet-like compact of an admixture in which metallic conductive powers are distributed, in a binding material comprising a crystalline polymeric compound. <P>SOLUTION: An inclination degree is given to thickness of the polymeric PTC element. Contribution of a thin part to resistance reduction and contribution of a thick part to withstand voltage are used. Thus, the polymeric PTC element having lower resistance and higher withstand voltage as compared to that having conventional thickness and a uniform structure can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、いわゆるPTC(Positive Temperature Coefficient;正温度係数)特性を有するPTC素子に関し、特に結晶性高分子に導電性粉末を充填したPTC組成物からなる成形体に、電極を設けた構造の高分子PTC素子に関するものである。
【0002】
【従来の技術】
特定の温度領域において、電気抵抗が急激に増大する正の温度特性を示すPTC素子は、自動的に温度を制御するヒータや、自己復帰型の過電流保護素子などとして多用されている。そして、PTC素子に用いる組成物としては、酸化イットリウム(Y)を微量添加したチタン酸バリウム(BaTiO)などのセラミックス系PTC組成物、カーボンブラックなどの導電性粒子を結晶性高分子中に分散した高分子PTC組成物が知られている。
【0003】
セラミックス系PTC組成物を用いたPTC 素子では、キュリー点での急激な抵抗上昇を利用しているが、定常状態における抵抗が、約100Ω・cmと高いために、数A程度の比較的大きな電流を流すことができない。このことは、セラミックス系PTC組成物を用いたPTC素子が、過電流保護素子として利用するのが困難であることを意味している。また、セラミックス系PTC組成物は、所望の形状に成形、加工するのに多くの工程を要し、耐衝撃性に劣るという問題がある。
【0004】
これに対し、高分子PTC組成物を用いた高分子PTC素子では、室温における抵抗が低いために、過電流保護素子に適していて、耐衝撃性が優れ、成形、加工が容易である。
【0005】
高分子PTC素子の動作原理は、結晶性高分子の結晶融点での大きな熱膨張を利用して、室温でネットワークを形成している導電性粒子を切り離すことによるものである。このために、規定値以上の電流により過度に発熱した際に、結晶融点近傍の温度で、抵抗が急激に上昇し、室温に戻ると、導電性粒子のネットワークが再形成され、抵抗が低下する。
【0006】
そして、高分子PTC素子の一般的な製造方法には、ロールなどを用いて結晶性高分子に導電性粒子を分散させて高分子PTC組成物を得、これを加熱プレスやロールなどでシート成形し、金属箔などからなる電極を圧着した後、所要の形状に打ち抜くという、乾式法がある。
【0007】
また、高分子PTC組成物のシートを得る方法として、結晶性高分子の溶液に導電性フィラーを分散させたペーストを用いて成膜する湿式法もあり、この場合は、電極を構成する金属箔の上に成膜して、成膜した側を対向させて一体化するという方法もある。
【0008】
そして、近年の二次電池を始めとする、電気電子機器やそれらに用いられる部品の小型化が進むに従い、高分子PTC素子についても、抵抗の低減が要求され、用いる導電性粉末として、カーボン系に替えて、金属や金属炭化物が用いられていて、その中でも炭化チタンのような金属炭化物が、導電性が高いことや凝集が生じ難いことなどから多用される傾向にある。
【0009】
一方で、高分子PTC素子に求められる特性の一つに、耐電圧がある。これは、混触や突入電圧による急激な電圧上昇に対して、素子を保護するために設定され、主に素子の厚さに依存するので、耐電圧を大きくするには、素子を厚くすればよい。しかし、素子を厚くすることは、当然のことながら抵抗の上昇に繋がり、前記の低抵抗化の要求に反することになる。
【0010】
【発明が解決しようとする課題】
従って、本発明の技術的な課題は、低抵抗を維持しながら、耐電圧も大きい、高分子PTC素子を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、前記の課題解決のため、素子の構造を再検討した結果なされたものである。
【0012】
即ち、本発明は、結晶高分子を含む結合材100重量部と、300〜550重量部の金属系導電性粉末からなる、高分子PTC組成物のシート状成形体の両面に、電極を配置してなる高分子PTC素子において、前記高分子PTC組成物のシート状成形体は、厚さに傾斜を有することを特徴とする高分子PTC素子である。
【0013】
本発明の高分子PTC素子は、その厚さに傾斜構造を付与してあるため、厚い部分によって耐電圧の増加機能を、薄い部分によって抵抗の低減機能を同時に発現させることができる。このため、抵抗を増加させることなく、耐電圧を高くすることが可能となる。
【0014】
また、本発明の高分子PTC素子は、前記のように結晶性高分子を含む結合材:100重量部と、金属系導電性粉末:300〜550重量部からなるため、室温における抵抗率が1Ω・cm以下であり、温度の上昇による急激な抵抗上昇、即ちスイッチングが起こる温度を超えた温度領域における抵抗率は、10Ω・cmとなる。
【0015】
なお、本発明で、金属系導電性粉末の混合比率を、結合材:100重量部に対して、300〜550重量部としたのは、この範囲よりも導電性粉末の量が少ないと、所要の抵抗が得られないためであり、この範囲よりも導電性粉末の量が多いと、相対的に結合材の量が不足し、スイッチングを繰り返した際の抵抗増加が顕著になるためである。
【0016】
【発明の実施の形態】
次に、本発明の実施の形態につき、例を挙げて具体的に説明する。
【0017】
まず、結合材として、高密度ポリエチレン、導電性粉末として、平均粒径が1.5μmの炭化チタンを準備し、高密度ポリエチレン100重量部、炭化チタン525重量部をそれぞれ秤量し、ロールを用いて、150℃で15分間混練して、高分子PTC組成物を得た。ロールから高分子PTC組成物を取り出す際に、厚さを約2mmとしてシート状に予備成形した。
【0018】
次に、電極として片面に粗面化加工を施した、厚さ25μmのニッケル箔を準備した。このニッケル箔の粗面化側を対向させた状態で、間に前記の高分子PTC組成物シートを挟み、金型を用いてプレス成形した。
【0019】
次に、ニッケル箔の部分にリード線を取り付け、本発明の高分子PTC素子とした。図1は、前記のようにして得られた、本発明の高分子PTC素子の概略を示す斜視図である。図1において、1は高分子PTC組成物、2はニッケル箔、3はリード線を示す。この高分子PTC素子の寸法は、全体の厚さの一方が1mm、他方が2mmで、厚さが傾斜している側の辺の長さが10mm、他方の辺の長さが5mmである。
【0020】
また、比較に供するために、前記の高分子PTC組成物とニッケル箔を用いて、厚さに傾斜がなく、全体の厚さが、1mmと2mmで、5mm×10mmの大きさの、比較例の高分子PTC素子を調製した。これら3種類の高分子PTC素子について、それぞれ抵抗と耐電圧を測定した。表1は、これらの結果をまとめて示したものである。
【0021】
【表1】

Figure 2004023055
【0022】
表1示した結果によれば、本発明の高分子PTC素子は、抵抗については、厚さが1mmの比較例と同等、耐電圧については、厚さが2mmの比較例と同等の数値を示している。このような特性は、従来の厚さが一様な構造の高分子PTC素子では得られないものである。
【0023】
【発明の効果】
以上に説明したように、本発明によれば、高分子PTC素子の厚さに傾斜を付与することで、抵抗を上げることなく、耐電圧を向上することができる。これは、薄い部分が抵抗の低下に寄与し、厚い部分が耐電圧の向上に寄与した結果と解され、高分子PTC素子の特性向上ひいては、用途拡大に繋がるものである。
【図面の簡単な説明】
【図1】本発明の高分子PTC素子の概略を示す斜視図。
【符号の説明】
1  高分子PTC組成物
2  ニッケル箔
3  リード線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a PTC element having a so-called PTC (Positive Temperature Coefficient) characteristic, and more particularly to a PTC element having a structure in which an electrode is provided on a molded body made of a PTC composition in which a crystalline polymer is filled with a conductive powder. It relates to a molecular PTC element.
[0002]
[Prior art]
2. Description of the Related Art PTC elements exhibiting a positive temperature characteristic in which electric resistance rapidly increases in a specific temperature range are widely used as heaters for automatically controlling temperature, self-recovering overcurrent protection elements, and the like. Examples of the composition used for the PTC element include ceramic-based PTC compositions such as barium titanate (BaTiO 3 ) to which a small amount of yttrium oxide (Y 2 O 3 ) is added, and conductive particles such as carbon black. Polymer PTC compositions dispersed therein are known.
[0003]
A PTC element using a ceramic PTC composition utilizes a rapid increase in resistance at the Curie point. However, since the resistance in a steady state is as high as about 100 Ω · cm, a relatively large current of about several A is used. Can not flow. This means that it is difficult to use a PTC element using a ceramic PTC composition as an overcurrent protection element. In addition, the ceramic-based PTC composition requires many steps for molding and processing into a desired shape, and has a problem of poor impact resistance.
[0004]
On the other hand, a polymer PTC device using a polymer PTC composition has low resistance at room temperature, is suitable for an overcurrent protection device, has excellent impact resistance, and is easy to mold and process.
[0005]
The operation principle of the polymer PTC element is based on the fact that conductive particles forming a network at room temperature are separated by using a large thermal expansion at a crystal melting point of a crystalline polymer. For this reason, when excessive heat is generated by a current equal to or higher than a specified value, the resistance rapidly increases at a temperature near the crystal melting point, and when the temperature returns to room temperature, a network of conductive particles is reformed and the resistance decreases. .
[0006]
In a general method of manufacturing a polymer PTC element, a polymer PTC composition is obtained by dispersing conductive particles in a crystalline polymer using a roll or the like, and this is formed into a sheet by a hot press or a roll. Then, there is a dry method in which an electrode made of a metal foil or the like is pressed and then punched into a required shape.
[0007]
As a method for obtaining a sheet of the polymer PTC composition, there is also a wet method in which a film is formed using a paste in which a conductive filler is dispersed in a solution of a crystalline polymer, and in this case, a metal foil constituting an electrode is used. There is also a method in which a film is formed on a substrate, and the film-formed sides are opposed to be integrated.
[0008]
In recent years, as electric and electronic devices such as secondary batteries and components used therein have become smaller, the resistance of polymer PTC elements has also been required to be reduced. Instead, metals and metal carbides are used, and among them, metal carbides such as titanium carbide tend to be frequently used because of their high conductivity and the difficulty of aggregation.
[0009]
On the other hand, one of the characteristics required for the polymer PTC element is withstand voltage. This is set to protect the element against a sudden voltage rise due to contact or inrush voltage, and mainly depends on the thickness of the element. . However, increasing the thickness of the element naturally leads to an increase in resistance, which is contrary to the above-mentioned demand for lowering the resistance.
[0010]
[Problems to be solved by the invention]
Therefore, a technical problem of the present invention is to provide a polymer PTC element having high withstand voltage while maintaining low resistance.
[0011]
[Means for Solving the Problems]
The present invention has been made as a result of reconsidering the structure of the element in order to solve the above-mentioned problems.
[0012]
That is, according to the present invention, electrodes are arranged on both surfaces of a sheet-like molded body of a polymer PTC composition, which is composed of 100 parts by weight of a binder containing a crystalline polymer and 300 to 550 parts by weight of a metal-based conductive powder. In the above polymer PTC element, the sheet-like molded body of the polymer PTC composition is characterized in that the sheet has a thickness with an inclination.
[0013]
Since the polymer PTC element of the present invention has an inclined structure in its thickness, the function of increasing the withstand voltage can be exhibited by the thick part, and the function of reducing the resistance can be exhibited by the thin part at the same time. Therefore, the withstand voltage can be increased without increasing the resistance.
[0014]
Further, as described above, the polymer PTC element of the present invention is composed of 100 parts by weight of the binder containing the crystalline polymer and 300 to 550 parts by weight of the metal-based conductive powder. Cm or less, and the resistivity in a temperature region exceeding the temperature at which switching occurs, that is, a sharp rise in resistance due to a rise in temperature, is 10 6 Ω · cm.
[0015]
In the present invention, the mixing ratio of the metal-based conductive powder is set to 300 to 550 parts by weight with respect to 100 parts by weight of the binder, when the amount of the conductive powder is smaller than this range. The reason is that if the amount of the conductive powder is larger than this range, the amount of the binder is relatively insufficient, and the resistance when switching is repeated becomes remarkable.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be specifically described with reference to examples.
[0017]
First, a high-density polyethylene was prepared as a binder, and titanium carbide having an average particle size of 1.5 μm was prepared as a conductive powder. At 150 ° C. for 15 minutes to obtain a polymer PTC composition. When the polymer PTC composition was taken out from the roll, it was preformed into a sheet with a thickness of about 2 mm.
[0018]
Next, a nickel foil having a thickness of 25 μm and having one surface roughened was prepared as an electrode. In a state where the roughened side of the nickel foil was opposed to the above, the above-mentioned polymer PTC composition sheet was sandwiched therebetween, and press-molded using a mold.
[0019]
Next, a lead wire was attached to the nickel foil portion to obtain a polymer PTC element of the present invention. FIG. 1 is a perspective view schematically showing the polymer PTC element of the present invention obtained as described above. In FIG. 1, 1 indicates a polymer PTC composition, 2 indicates a nickel foil, and 3 indicates a lead wire. Regarding the dimensions of this polymer PTC element, one of the total thickness is 1 mm, the other is 2 mm, the length of the side having the inclined thickness is 10 mm, and the length of the other side is 5 mm.
[0020]
In addition, for the purpose of comparison, using the above-mentioned polymer PTC composition and nickel foil, a comparative example having a thickness of 1 mm and 2 mm, a size of 5 mm × 10 mm, without any inclination in thickness. Was prepared. The resistance and withstand voltage of each of these three types of polymer PTC elements were measured. Table 1 summarizes these results.
[0021]
[Table 1]
Figure 2004023055
[0022]
According to the results shown in Table 1, the polymer PTC element of the present invention has a resistance equivalent to that of the comparative example having a thickness of 1 mm and a withstand voltage equivalent to that of the comparative example having a thickness of 2 mm. ing. Such characteristics cannot be obtained with the conventional polymer PTC element having a uniform thickness structure.
[0023]
【The invention's effect】
As described above, according to the present invention, the withstand voltage can be improved without increasing the resistance by giving a gradient to the thickness of the polymer PTC element. This is understood to be the result of the thin portion contributing to the reduction of the resistance and the thick portion contributing to the improvement of the withstand voltage, which leads to the improvement of the characteristics of the polymer PTC element and the expansion of the application.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a polymer PTC element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Polymer PTC composition 2 Nickel foil 3 Lead wire

Claims (1)

結晶高分子を含む結合材100重量部と、300〜550重量部の金属系導電性粉末からなる、高分子PTC組成物のシート状成形体の両面に、電極を配置してなる高分子PTC素子において、前記高分子PTC組成物のシート状成形体は、厚さに傾斜を有することを特徴とする高分子PTC素子。A polymer PTC element comprising 100 parts by weight of a binder containing a crystalline polymer and 300 to 550 parts by weight of a metal-based conductive powder, and electrodes arranged on both surfaces of a sheet-shaped molded body of a polymer PTC composition. 3. The polymer PTC element according to claim 1, wherein the sheet-shaped molded body of the polymer PTC composition has an inclination in thickness.
JP2002179990A 2002-06-20 2002-06-20 Polymeric ptc element Pending JP2004023055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179990A JP2004023055A (en) 2002-06-20 2002-06-20 Polymeric ptc element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179990A JP2004023055A (en) 2002-06-20 2002-06-20 Polymeric ptc element

Publications (1)

Publication Number Publication Date
JP2004023055A true JP2004023055A (en) 2004-01-22

Family

ID=31177252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179990A Pending JP2004023055A (en) 2002-06-20 2002-06-20 Polymeric ptc element

Country Status (1)

Country Link
JP (1) JP2004023055A (en)

Similar Documents

Publication Publication Date Title
US4849133A (en) PTC compositions
US8558655B1 (en) Positive temperature coefficient polymer composition and positive temperature coefficient circuit protection device
JP4738537B2 (en) Fixing heater and manufacturing method thereof
JP2000188206A (en) Polymer ptc composition and ptc device
JP2004023055A (en) Polymeric ptc element
JP2000331804A (en) Ptc composition
JP2004047555A (en) Polymer ptc compound and polymer ptc element
JP2002353003A (en) High polymer ptc element and manufacturing method therfor
JP3018580B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP5263668B2 (en) Semiconductor porcelain composition
JP2003318008A (en) Polymer ptc composition and polymer ptc element
JP2689756B2 (en) Sudden change thermistor and manufacturing method thereof
JP3301312B2 (en) PTC material composition and PTC material
JP2003318006A (en) Polymer ptc composition and polymer ptc element
JP2002343606A (en) Polymer ptc composition and polymer ptc element
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JP2003282307A (en) Polymer ptc composition and polymer ptc device using the same
JP2002208504A (en) Polymer ptc device and method of manufacturing the same
JP2005038974A (en) Macromolecular ptc element and its manufacturing method
JPH11329675A (en) Ptc composition
JPH0740509B2 (en) Heating element
JPH04129189A (en) Ceramic heater
WO1998026433A1 (en) Overcurrent protective circuit element
JP2004022799A (en) Coated conductive powder, its manufacturing method, and polymer ptc device using the same
JP2013197508A (en) Laminate type ptc thermistor